L(s) = 1 | + (−0.951 + 0.309i)2-s + (0.303 + 2.98i)3-s + (−2.42 + 1.76i)4-s + (−6.29 − 2.04i)5-s + (−1.21 − 2.74i)6-s + (−7.16 + 5.20i)7-s + (4.11 − 5.66i)8-s + (−8.81 + 1.81i)9-s + 6.61·10-s + (−6 − 6.70i)12-s + (4.09 + 12.5i)13-s + (5.20 − 7.16i)14-s + (4.19 − 19.4i)15-s + (1.54 − 4.75i)16-s + (−5.70 − 1.85i)17-s + (7.82 − 4.44i)18-s + ⋯ |
L(s) = 1 | + (−0.475 + 0.154i)2-s + (0.101 + 0.994i)3-s + (−0.606 + 0.440i)4-s + (−1.25 − 0.409i)5-s + (−0.201 − 0.457i)6-s + (−1.02 + 0.743i)7-s + (0.514 − 0.707i)8-s + (−0.979 + 0.201i)9-s + 0.661·10-s + (−0.5 − 0.559i)12-s + (0.314 + 0.968i)13-s + (0.371 − 0.511i)14-s + (0.279 − 1.29i)15-s + (0.0965 − 0.297i)16-s + (−0.335 − 0.109i)17-s + (0.434 − 0.247i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.131528 - 0.0551078i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.131528 - 0.0551078i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.303 - 2.98i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.951 - 0.309i)T + (3.23 - 2.35i)T^{2} \) |
| 5 | \( 1 + (6.29 + 2.04i)T + (20.2 + 14.6i)T^{2} \) |
| 7 | \( 1 + (7.16 - 5.20i)T + (15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (-4.09 - 12.5i)T + (-136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (5.70 + 1.85i)T + (233. + 169. i)T^{2} \) |
| 19 | \( 1 + (-7.38 - 5.36i)T + (111. + 343. i)T^{2} \) |
| 23 | \( 1 + 17.5iT - 529T^{2} \) |
| 29 | \( 1 + (-15.5 - 21.3i)T + (-259. + 799. i)T^{2} \) |
| 31 | \( 1 + (1.91 + 5.89i)T + (-777. + 564. i)T^{2} \) |
| 37 | \( 1 + (-15.8 + 11.5i)T + (423. - 1.30e3i)T^{2} \) |
| 41 | \( 1 + (3.28 - 4.52i)T + (-519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 - 26.2T + 1.84e3T^{2} \) |
| 47 | \( 1 + (10.4 - 14.3i)T + (-682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (21.1 - 6.88i)T + (2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (12.8 + 17.7i)T + (-1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-28.8 + 88.8i)T + (-3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 + 76.7T + 4.48e3T^{2} \) |
| 71 | \( 1 + (62.5 + 20.3i)T + (4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (-12.1 + 8.82i)T + (1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (36.4 + 112. i)T + (-5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-105. - 34.3i)T + (5.57e3 + 4.04e3i)T^{2} \) |
| 89 | \( 1 + 97.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (37.4 + 115. i)T + (-7.61e3 + 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04553622992431565359707974681, −9.865014720860241195947448542227, −9.077705605707178062104726160064, −8.629605515443674189665850472213, −7.64506171481640690521754169776, −6.32800346351236212798519409359, −4.80883497911254183413809336744, −4.03089567377829656355761640929, −3.10852733987554667679333683404, −0.10417238727931920115215521553,
0.927271556580272657579883864751, 2.98820251425583955047059321844, 4.06595769827183158643276771899, 5.66764780197134799382498038273, 6.82646461913787917109256637101, 7.67405416805943116021143198298, 8.346731624360807812551042567720, 9.462597114860066673948874601135, 10.47186368310246446169897305947, 11.24685751172747059898088030540