Defining parameters
Level: | \( N \) | \(=\) | \( 363 = 3 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 363.h (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 33 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(132\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(363, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 400 | 320 | 80 |
Cusp forms | 304 | 256 | 48 |
Eisenstein series | 96 | 64 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(363, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(363, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(363, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 2}\)