Properties

Label 363.3.h
Level $363$
Weight $3$
Character orbit 363.h
Rep. character $\chi_{363}(245,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $256$
Newform subspaces $18$
Sturm bound $132$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 18 \)
Sturm bound: \(132\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(363, [\chi])\).

Total New Old
Modular forms 400 320 80
Cusp forms 304 256 48
Eisenstein series 96 64 32

Trace form

\( 256 q + 5 q^{3} + 118 q^{4} + 23 q^{6} - 2 q^{7} + 31 q^{9} + 56 q^{10} - 130 q^{12} + 10 q^{13} - 55 q^{15} - 62 q^{16} + 3 q^{18} + 22 q^{19} - 76 q^{21} - 111 q^{24} + 64 q^{25} - 4 q^{27} - 342 q^{28}+ \cdots - 446 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(363, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
363.3.h.a 363.h 33.h $4$ $9.891$ \(\Q(\zeta_{10})\) \(\Q(\sqrt{-3}) \) 363.3.b.a \(0\) \(3\) \(0\) \(-11\) $\mathrm{U}(1)[D_{10}]$ \(q+3\zeta_{10}^{3}q^{3}+4\zeta_{10}^{2}q^{4}+11\zeta_{10}^{2}q^{7}+\cdots\)
363.3.h.b 363.h 33.h $4$ $9.891$ \(\Q(\zeta_{10})\) \(\Q(\sqrt{-3}) \) 363.3.b.a \(0\) \(3\) \(0\) \(11\) $\mathrm{U}(1)[D_{10}]$ \(q+3\zeta_{10}^{3}q^{3}+4\zeta_{10}^{2}q^{4}-11\zeta_{10}^{2}q^{7}+\cdots\)
363.3.h.c 363.h 33.h $8$ $9.891$ 8.0.324000000.3 \(\Q(\sqrt{-3}) \) 363.3.b.e \(0\) \(-6\) \(0\) \(0\) $\mathrm{U}(1)[D_{10}]$ \(q+(-3-3\beta _{2}-3\beta _{4}-3\beta _{6})q^{3}+4\beta _{2}q^{4}+\cdots\)
363.3.h.d 363.h 33.h $8$ $9.891$ 8.0.228765625.1 None 33.3.b.a \(0\) \(-6\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{7}q^{2}+3\beta _{4}q^{3}-7\beta _{2}q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\)
363.3.h.e 363.h 33.h $8$ $9.891$ 8.0.228765625.1 None 33.3.b.a \(0\) \(-6\) \(0\) \(16\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{7}q^{2}+3\beta _{4}q^{3}-7\beta _{2}q^{4}+(2\beta _{1}+\cdots)q^{5}+\cdots\)
363.3.h.f 363.h 33.h $8$ $9.891$ 8.0.228765625.1 \(\Q(\sqrt{-11}) \) 363.3.b.c \(0\) \(-5\) \(0\) \(0\) $\mathrm{U}(1)[D_{10}]$ \(q+(-\beta _{1}-2\beta _{3})q^{3}+4\beta _{7}q^{4}+(-3\beta _{4}+\cdots)q^{5}+\cdots\)
363.3.h.g 363.h 33.h $8$ $9.891$ \(\Q(\zeta_{20})\) None 33.3.h.a \(0\) \(4\) \(0\) \(4\) $\mathrm{SU}(2)[C_{10}]$ \(q+\zeta_{20}q^{2}+(2-2\zeta_{20}-2\zeta_{20}^{2}+\zeta_{20}^{3}+\cdots)q^{3}+\cdots\)
363.3.h.h 363.h 33.h $8$ $9.891$ \(\Q(\zeta_{20})\) None 33.3.h.a \(0\) \(4\) \(0\) \(26\) $\mathrm{SU}(2)[C_{10}]$ \(q+\zeta_{20}q^{2}+(2-2\zeta_{20}-2\zeta_{20}^{2}+\zeta_{20}^{3}+\cdots)q^{3}+\cdots\)
363.3.h.i 363.h 33.h $8$ $9.891$ \(\Q(\zeta_{20})\) None 33.3.h.a \(0\) \(4\) \(0\) \(-26\) $\mathrm{SU}(2)[C_{10}]$ \(q+\zeta_{20}q^{2}+(2+2\zeta_{20}-2\zeta_{20}^{2}-\zeta_{20}^{3}+\cdots)q^{3}+\cdots\)
363.3.h.j 363.h 33.h $16$ $9.891$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 33.3.h.b \(0\) \(-10\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{6}+\beta _{10})q^{3}+(-1+\cdots)q^{4}+\cdots\)
363.3.h.k 363.h 33.h $16$ $9.891$ 16.0.\(\cdots\).1 None 363.3.b.i \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{11}q^{2}+(-\beta _{6}-\beta _{13})q^{3}+3\beta _{9}q^{4}+\cdots\)
363.3.h.l 363.h 33.h $16$ $9.891$ 16.0.\(\cdots\).1 None 33.3.b.b \(0\) \(5\) \(0\) \(4\) $\mathrm{SU}(2)[C_{10}]$ \(q+(\beta _{1}+\beta _{4}+\beta _{5}-\beta _{8}+\beta _{11}-\beta _{13}+\cdots)q^{2}+\cdots\)
363.3.h.m 363.h 33.h $16$ $9.891$ 16.0.\(\cdots\).1 None 33.3.b.b \(0\) \(5\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{10}]$ \(q+(\beta _{1}+\beta _{4}+\beta _{5}-\beta _{8}+\beta _{11}-\beta _{13}+\cdots)q^{2}+\cdots\)
363.3.h.n 363.h 33.h $16$ $9.891$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 33.3.h.b \(0\) \(5\) \(0\) \(34\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{4}q^{2}+(-\beta _{2}+\beta _{6}+\beta _{13})q^{3}+(1+\cdots)q^{4}+\cdots\)
363.3.h.o 363.h 33.h $16$ $9.891$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 33.3.h.b \(0\) \(5\) \(0\) \(-34\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{4}q^{2}+(-\beta _{2}+\beta _{6}-\beta _{12})q^{3}+(1+\cdots)q^{4}+\cdots\)
363.3.h.p 363.h 33.h $24$ $9.891$ None 363.3.b.j \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$
363.3.h.q 363.h 33.h $24$ $9.891$ None 363.3.b.j \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$
363.3.h.r 363.h 33.h $48$ $9.891$ None 363.3.b.n \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{3}^{\mathrm{old}}(363, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(363, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 2}\)