Properties

Label 361.2.c.j.292.4
Level $361$
Weight $2$
Character 361.292
Analytic conductor $2.883$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,2,Mod(68,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.88259951297\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.324000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 20x^{4} + 25x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 292.4
Root \(-0.587785 - 1.01807i\) of defining polynomial
Character \(\chi\) \(=\) 361.292
Dual form 361.2.c.j.68.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.951057 + 1.64728i) q^{2} +(-0.951057 - 1.64728i) q^{3} +(-0.809017 + 1.40126i) q^{4} +(1.61803 + 2.80252i) q^{5} +(1.80902 - 3.13331i) q^{6} +0.236068 q^{7} +0.726543 q^{8} +(-0.309017 + 0.535233i) q^{9} +(-3.07768 + 5.33070i) q^{10} -1.38197 q^{11} +3.07768 q^{12} +(0.363271 - 0.629204i) q^{13} +(0.224514 + 0.388870i) q^{14} +(3.07768 - 5.33070i) q^{15} +(2.30902 + 3.99933i) q^{16} +(3.23607 + 5.60503i) q^{17} -1.17557 q^{18} -5.23607 q^{20} +(-0.224514 - 0.388870i) q^{21} +(-1.31433 - 2.27648i) q^{22} +(0.190983 - 0.330792i) q^{23} +(-0.690983 - 1.19682i) q^{24} +(-2.73607 + 4.73901i) q^{25} +1.38197 q^{26} -4.53077 q^{27} +(-0.190983 + 0.330792i) q^{28} +(2.12663 - 3.68343i) q^{29} +11.7082 q^{30} +1.90211 q^{31} +(-3.66547 + 6.34878i) q^{32} +(1.31433 + 2.27648i) q^{33} +(-6.15537 + 10.6614i) q^{34} +(0.381966 + 0.661585i) q^{35} +(-0.500000 - 0.866025i) q^{36} -6.60440 q^{37} -1.38197 q^{39} +(1.17557 + 2.03615i) q^{40} +(1.08981 + 1.88761i) q^{41} +(0.427051 - 0.739674i) q^{42} +(-4.66312 - 8.07676i) q^{43} +(1.11803 - 1.93649i) q^{44} -2.00000 q^{45} +0.726543 q^{46} +(5.73607 - 9.93516i) q^{47} +(4.39201 - 7.60719i) q^{48} -6.94427 q^{49} -10.4086 q^{50} +(6.15537 - 10.6614i) q^{51} +(0.587785 + 1.01807i) q^{52} +(2.48990 - 4.31263i) q^{53} +(-4.30902 - 7.46344i) q^{54} +(-2.23607 - 3.87298i) q^{55} +0.171513 q^{56} +8.09017 q^{58} +(-4.39201 - 7.60719i) q^{59} +(4.97980 + 8.62526i) q^{60} +(4.73607 - 8.20311i) q^{61} +(1.80902 + 3.13331i) q^{62} +(-0.0729490 + 0.126351i) q^{63} -4.70820 q^{64} +2.35114 q^{65} +(-2.50000 + 4.33013i) q^{66} +(-6.51864 + 11.2906i) q^{67} -10.4721 q^{68} -0.726543 q^{69} +(-0.726543 + 1.25841i) q^{70} +(-5.06555 - 8.77380i) q^{71} +(-0.224514 + 0.388870i) q^{72} +(-4.50000 - 7.79423i) q^{73} +(-6.28115 - 10.8793i) q^{74} +10.4086 q^{75} -0.326238 q^{77} +(-1.31433 - 2.27648i) q^{78} +(2.35114 + 4.07230i) q^{79} +(-7.47214 + 12.9421i) q^{80} +(5.23607 + 9.06914i) q^{81} +(-2.07295 + 3.59045i) q^{82} -3.23607 q^{83} +0.726543 q^{84} +(-10.4721 + 18.1383i) q^{85} +(8.86978 - 15.3629i) q^{86} -8.09017 q^{87} -1.00406 q^{88} +(-3.71847 + 6.44058i) q^{89} +(-1.90211 - 3.29456i) q^{90} +(0.0857567 - 0.148535i) q^{91} +(0.309017 + 0.535233i) q^{92} +(-1.80902 - 3.13331i) q^{93} +21.8213 q^{94} +13.9443 q^{96} +(2.21238 + 3.83196i) q^{97} +(-6.60440 - 11.4391i) q^{98} +(0.427051 - 0.739674i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} + 4 q^{5} + 10 q^{6} - 16 q^{7} + 2 q^{9} - 20 q^{11} + 14 q^{16} + 8 q^{17} - 24 q^{20} + 6 q^{23} - 10 q^{24} - 4 q^{25} + 20 q^{26} - 6 q^{28} + 40 q^{30} + 12 q^{35} - 4 q^{36} - 20 q^{39}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/361\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.951057 + 1.64728i 0.672499 + 1.16480i 0.977193 + 0.212352i \(0.0681122\pi\)
−0.304695 + 0.952450i \(0.598554\pi\)
\(3\) −0.951057 1.64728i −0.549093 0.951057i −0.998337 0.0576475i \(-0.981640\pi\)
0.449244 0.893409i \(-0.351693\pi\)
\(4\) −0.809017 + 1.40126i −0.404508 + 0.700629i
\(5\) 1.61803 + 2.80252i 0.723607 + 1.25332i 0.959545 + 0.281556i \(0.0908504\pi\)
−0.235938 + 0.971768i \(0.575816\pi\)
\(6\) 1.80902 3.13331i 0.738528 1.27917i
\(7\) 0.236068 0.0892253 0.0446127 0.999004i \(-0.485795\pi\)
0.0446127 + 0.999004i \(0.485795\pi\)
\(8\) 0.726543 0.256872
\(9\) −0.309017 + 0.535233i −0.103006 + 0.178411i
\(10\) −3.07768 + 5.33070i −0.973249 + 1.68572i
\(11\) −1.38197 −0.416678 −0.208339 0.978057i \(-0.566806\pi\)
−0.208339 + 0.978057i \(0.566806\pi\)
\(12\) 3.07768 0.888451
\(13\) 0.363271 0.629204i 0.100753 0.174510i −0.811242 0.584711i \(-0.801208\pi\)
0.911995 + 0.410201i \(0.134541\pi\)
\(14\) 0.224514 + 0.388870i 0.0600039 + 0.103930i
\(15\) 3.07768 5.33070i 0.794654 1.37638i
\(16\) 2.30902 + 3.99933i 0.577254 + 0.999834i
\(17\) 3.23607 + 5.60503i 0.784862 + 1.35942i 0.929082 + 0.369875i \(0.120599\pi\)
−0.144220 + 0.989546i \(0.546067\pi\)
\(18\) −1.17557 −0.277085
\(19\) 0 0
\(20\) −5.23607 −1.17082
\(21\) −0.224514 0.388870i −0.0489930 0.0848583i
\(22\) −1.31433 2.27648i −0.280216 0.485348i
\(23\) 0.190983 0.330792i 0.0398227 0.0689750i −0.845427 0.534091i \(-0.820654\pi\)
0.885250 + 0.465116i \(0.153987\pi\)
\(24\) −0.690983 1.19682i −0.141046 0.244299i
\(25\) −2.73607 + 4.73901i −0.547214 + 0.947802i
\(26\) 1.38197 0.271026
\(27\) −4.53077 −0.871947
\(28\) −0.190983 + 0.330792i −0.0360924 + 0.0625139i
\(29\) 2.12663 3.68343i 0.394905 0.683995i −0.598184 0.801359i \(-0.704111\pi\)
0.993089 + 0.117364i \(0.0374443\pi\)
\(30\) 11.7082 2.13762
\(31\) 1.90211 0.341630 0.170815 0.985303i \(-0.445360\pi\)
0.170815 + 0.985303i \(0.445360\pi\)
\(32\) −3.66547 + 6.34878i −0.647969 + 1.12232i
\(33\) 1.31433 + 2.27648i 0.228795 + 0.396285i
\(34\) −6.15537 + 10.6614i −1.05564 + 1.82842i
\(35\) 0.381966 + 0.661585i 0.0645640 + 0.111828i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) −6.60440 −1.08576 −0.542878 0.839812i \(-0.682665\pi\)
−0.542878 + 0.839812i \(0.682665\pi\)
\(38\) 0 0
\(39\) −1.38197 −0.221292
\(40\) 1.17557 + 2.03615i 0.185874 + 0.321943i
\(41\) 1.08981 + 1.88761i 0.170200 + 0.294796i 0.938490 0.345307i \(-0.112225\pi\)
−0.768289 + 0.640103i \(0.778892\pi\)
\(42\) 0.427051 0.739674i 0.0658954 0.114134i
\(43\) −4.66312 8.07676i −0.711119 1.23169i −0.964437 0.264311i \(-0.914855\pi\)
0.253318 0.967383i \(-0.418478\pi\)
\(44\) 1.11803 1.93649i 0.168550 0.291937i
\(45\) −2.00000 −0.298142
\(46\) 0.726543 0.107123
\(47\) 5.73607 9.93516i 0.836692 1.44919i −0.0559542 0.998433i \(-0.517820\pi\)
0.892646 0.450759i \(-0.148847\pi\)
\(48\) 4.39201 7.60719i 0.633932 1.09800i
\(49\) −6.94427 −0.992039
\(50\) −10.4086 −1.47200
\(51\) 6.15537 10.6614i 0.861924 1.49290i
\(52\) 0.587785 + 1.01807i 0.0815111 + 0.141181i
\(53\) 2.48990 4.31263i 0.342014 0.592385i −0.642793 0.766040i \(-0.722224\pi\)
0.984807 + 0.173655i \(0.0555577\pi\)
\(54\) −4.30902 7.46344i −0.586383 1.01565i
\(55\) −2.23607 3.87298i −0.301511 0.522233i
\(56\) 0.171513 0.0229194
\(57\) 0 0
\(58\) 8.09017 1.06229
\(59\) −4.39201 7.60719i −0.571791 0.990371i −0.996382 0.0849861i \(-0.972915\pi\)
0.424591 0.905385i \(-0.360418\pi\)
\(60\) 4.97980 + 8.62526i 0.642889 + 1.11352i
\(61\) 4.73607 8.20311i 0.606391 1.05030i −0.385439 0.922733i \(-0.625950\pi\)
0.991830 0.127567i \(-0.0407168\pi\)
\(62\) 1.80902 + 3.13331i 0.229745 + 0.397931i
\(63\) −0.0729490 + 0.126351i −0.00919071 + 0.0159188i
\(64\) −4.70820 −0.588525
\(65\) 2.35114 0.291623
\(66\) −2.50000 + 4.33013i −0.307729 + 0.533002i
\(67\) −6.51864 + 11.2906i −0.796378 + 1.37937i 0.125582 + 0.992083i \(0.459920\pi\)
−0.921960 + 0.387285i \(0.873413\pi\)
\(68\) −10.4721 −1.26993
\(69\) −0.726543 −0.0874654
\(70\) −0.726543 + 1.25841i −0.0868384 + 0.150409i
\(71\) −5.06555 8.77380i −0.601171 1.04126i −0.992644 0.121069i \(-0.961368\pi\)
0.391474 0.920189i \(-0.371965\pi\)
\(72\) −0.224514 + 0.388870i −0.0264592 + 0.0458287i
\(73\) −4.50000 7.79423i −0.526685 0.912245i −0.999517 0.0310925i \(-0.990101\pi\)
0.472831 0.881153i \(-0.343232\pi\)
\(74\) −6.28115 10.8793i −0.730169 1.26469i
\(75\) 10.4086 1.20188
\(76\) 0 0
\(77\) −0.326238 −0.0371783
\(78\) −1.31433 2.27648i −0.148818 0.257761i
\(79\) 2.35114 + 4.07230i 0.264524 + 0.458169i 0.967439 0.253105i \(-0.0814518\pi\)
−0.702915 + 0.711274i \(0.748118\pi\)
\(80\) −7.47214 + 12.9421i −0.835410 + 1.44697i
\(81\) 5.23607 + 9.06914i 0.581785 + 1.00768i
\(82\) −2.07295 + 3.59045i −0.228919 + 0.396499i
\(83\) −3.23607 −0.355205 −0.177602 0.984102i \(-0.556834\pi\)
−0.177602 + 0.984102i \(0.556834\pi\)
\(84\) 0.726543 0.0792723
\(85\) −10.4721 + 18.1383i −1.13586 + 1.96737i
\(86\) 8.86978 15.3629i 0.956453 1.65663i
\(87\) −8.09017 −0.867357
\(88\) −1.00406 −0.107033
\(89\) −3.71847 + 6.44058i −0.394157 + 0.682700i −0.992993 0.118172i \(-0.962297\pi\)
0.598836 + 0.800872i \(0.295630\pi\)
\(90\) −1.90211 3.29456i −0.200500 0.347277i
\(91\) 0.0857567 0.148535i 0.00898975 0.0155707i
\(92\) 0.309017 + 0.535233i 0.0322172 + 0.0558019i
\(93\) −1.80902 3.13331i −0.187586 0.324909i
\(94\) 21.8213 2.25070
\(95\) 0 0
\(96\) 13.9443 1.42318
\(97\) 2.21238 + 3.83196i 0.224634 + 0.389077i 0.956209 0.292683i \(-0.0945482\pi\)
−0.731576 + 0.681760i \(0.761215\pi\)
\(98\) −6.60440 11.4391i −0.667145 1.15553i
\(99\) 0.427051 0.739674i 0.0429202 0.0743400i
\(100\) −4.42705 7.66788i −0.442705 0.766788i
\(101\) −1.97214 + 3.41584i −0.196235 + 0.339889i −0.947305 0.320334i \(-0.896205\pi\)
0.751070 + 0.660223i \(0.229538\pi\)
\(102\) 23.4164 2.31857
\(103\) 11.1352 1.09718 0.548590 0.836091i \(-0.315165\pi\)
0.548590 + 0.836091i \(0.315165\pi\)
\(104\) 0.263932 0.457144i 0.0258807 0.0448266i
\(105\) 0.726543 1.25841i 0.0709033 0.122808i
\(106\) 9.47214 0.920015
\(107\) 5.98385 0.578481 0.289240 0.957256i \(-0.406597\pi\)
0.289240 + 0.957256i \(0.406597\pi\)
\(108\) 3.66547 6.34878i 0.352710 0.610911i
\(109\) 1.53884 + 2.66535i 0.147394 + 0.255294i 0.930264 0.366892i \(-0.119578\pi\)
−0.782869 + 0.622186i \(0.786245\pi\)
\(110\) 4.25325 7.36685i 0.405532 0.702402i
\(111\) 6.28115 + 10.8793i 0.596181 + 1.03262i
\(112\) 0.545085 + 0.944115i 0.0515057 + 0.0892105i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 1.23607 0.115264
\(116\) 3.44095 + 5.95991i 0.319485 + 0.553364i
\(117\) 0.224514 + 0.388870i 0.0207563 + 0.0359510i
\(118\) 8.35410 14.4697i 0.769057 1.33205i
\(119\) 0.763932 + 1.32317i 0.0700295 + 0.121295i
\(120\) 2.23607 3.87298i 0.204124 0.353553i
\(121\) −9.09017 −0.826379
\(122\) 18.0171 1.63119
\(123\) 2.07295 3.59045i 0.186912 0.323740i
\(124\) −1.53884 + 2.66535i −0.138192 + 0.239356i
\(125\) −1.52786 −0.136656
\(126\) −0.277515 −0.0247230
\(127\) −6.24112 + 10.8099i −0.553810 + 0.959227i 0.444185 + 0.895935i \(0.353493\pi\)
−0.997995 + 0.0632922i \(0.979840\pi\)
\(128\) 2.85317 + 4.94183i 0.252187 + 0.436801i
\(129\) −8.86978 + 15.3629i −0.780941 + 1.35263i
\(130\) 2.23607 + 3.87298i 0.196116 + 0.339683i
\(131\) −3.04508 5.27424i −0.266050 0.460813i 0.701788 0.712386i \(-0.252385\pi\)
−0.967838 + 0.251573i \(0.919052\pi\)
\(132\) −4.25325 −0.370198
\(133\) 0 0
\(134\) −24.7984 −2.14225
\(135\) −7.33094 12.6976i −0.630947 1.09283i
\(136\) 2.35114 + 4.07230i 0.201609 + 0.349196i
\(137\) −4.35410 + 7.54153i −0.371996 + 0.644316i −0.989873 0.141959i \(-0.954660\pi\)
0.617876 + 0.786275i \(0.287993\pi\)
\(138\) −0.690983 1.19682i −0.0588204 0.101880i
\(139\) 6.04508 10.4704i 0.512737 0.888087i −0.487153 0.873316i \(-0.661965\pi\)
0.999891 0.0147709i \(-0.00470189\pi\)
\(140\) −1.23607 −0.104467
\(141\) −21.8213 −1.83768
\(142\) 9.63525 16.6888i 0.808573 1.40049i
\(143\) −0.502029 + 0.869539i −0.0419817 + 0.0727145i
\(144\) −2.85410 −0.237842
\(145\) 13.7638 1.14302
\(146\) 8.55951 14.8255i 0.708390 1.22697i
\(147\) 6.60440 + 11.4391i 0.544721 + 0.943485i
\(148\) 5.34307 9.25446i 0.439197 0.760712i
\(149\) −3.01722 5.22598i −0.247180 0.428129i 0.715562 0.698549i \(-0.246171\pi\)
−0.962742 + 0.270420i \(0.912837\pi\)
\(150\) 9.89919 + 17.1459i 0.808265 + 1.39996i
\(151\) −17.2905 −1.40708 −0.703542 0.710654i \(-0.748399\pi\)
−0.703542 + 0.710654i \(0.748399\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) −0.310271 0.537405i −0.0250023 0.0433053i
\(155\) 3.07768 + 5.33070i 0.247205 + 0.428172i
\(156\) 1.11803 1.93649i 0.0895144 0.155043i
\(157\) 2.28115 + 3.95107i 0.182056 + 0.315330i 0.942580 0.333979i \(-0.108392\pi\)
−0.760525 + 0.649309i \(0.775058\pi\)
\(158\) −4.47214 + 7.74597i −0.355784 + 0.616236i
\(159\) −9.47214 −0.751189
\(160\) −23.7234 −1.87550
\(161\) 0.0450850 0.0780895i 0.00355319 0.00615431i
\(162\) −9.95959 + 17.2505i −0.782500 + 1.35533i
\(163\) 15.4721 1.21187 0.605936 0.795514i \(-0.292799\pi\)
0.605936 + 0.795514i \(0.292799\pi\)
\(164\) −3.52671 −0.275390
\(165\) −4.25325 + 7.36685i −0.331115 + 0.573509i
\(166\) −3.07768 5.33070i −0.238875 0.413743i
\(167\) −0.812299 + 1.40694i −0.0628576 + 0.108873i −0.895742 0.444575i \(-0.853355\pi\)
0.832884 + 0.553448i \(0.186688\pi\)
\(168\) −0.163119 0.282530i −0.0125849 0.0217977i
\(169\) 6.23607 + 10.8012i 0.479698 + 0.830861i
\(170\) −39.8384 −3.05546
\(171\) 0 0
\(172\) 15.0902 1.15061
\(173\) 8.33499 + 14.4366i 0.633698 + 1.09760i 0.986789 + 0.162008i \(0.0517971\pi\)
−0.353092 + 0.935589i \(0.614870\pi\)
\(174\) −7.69421 13.3268i −0.583296 1.01030i
\(175\) −0.645898 + 1.11873i −0.0488253 + 0.0845679i
\(176\) −3.19098 5.52694i −0.240529 0.416609i
\(177\) −8.35410 + 14.4697i −0.627933 + 1.08761i
\(178\) −14.1459 −1.06028
\(179\) −8.67802 −0.648626 −0.324313 0.945950i \(-0.605133\pi\)
−0.324313 + 0.945950i \(0.605133\pi\)
\(180\) 1.61803 2.80252i 0.120601 0.208887i
\(181\) 2.90617 5.03363i 0.216014 0.374147i −0.737572 0.675269i \(-0.764028\pi\)
0.953586 + 0.301122i \(0.0973610\pi\)
\(182\) 0.326238 0.0241824
\(183\) −18.0171 −1.33186
\(184\) 0.138757 0.240335i 0.0102293 0.0177177i
\(185\) −10.6861 18.5089i −0.785660 1.36080i
\(186\) 3.44095 5.95991i 0.252303 0.437002i
\(187\) −4.47214 7.74597i −0.327035 0.566441i
\(188\) 9.28115 + 16.0754i 0.676898 + 1.17242i
\(189\) −1.06957 −0.0777997
\(190\) 0 0
\(191\) −17.0000 −1.23008 −0.615038 0.788497i \(-0.710860\pi\)
−0.615038 + 0.788497i \(0.710860\pi\)
\(192\) 4.47777 + 7.75572i 0.323155 + 0.559721i
\(193\) −4.25325 7.36685i −0.306156 0.530278i 0.671362 0.741129i \(-0.265710\pi\)
−0.977518 + 0.210852i \(0.932376\pi\)
\(194\) −4.20820 + 7.28882i −0.302131 + 0.523307i
\(195\) −2.23607 3.87298i −0.160128 0.277350i
\(196\) 5.61803 9.73072i 0.401288 0.695051i
\(197\) 11.4721 0.817356 0.408678 0.912679i \(-0.365990\pi\)
0.408678 + 0.912679i \(0.365990\pi\)
\(198\) 1.62460 0.115455
\(199\) 0.527864 0.914287i 0.0374193 0.0648121i −0.846709 0.532056i \(-0.821420\pi\)
0.884129 + 0.467244i \(0.154753\pi\)
\(200\) −1.98787 + 3.44309i −0.140564 + 0.243463i
\(201\) 24.7984 1.74914
\(202\) −7.50245 −0.527871
\(203\) 0.502029 0.869539i 0.0352355 0.0610297i
\(204\) 9.95959 + 17.2505i 0.697311 + 1.20778i
\(205\) −3.52671 + 6.10844i −0.246316 + 0.426632i
\(206\) 10.5902 + 18.3427i 0.737852 + 1.27800i
\(207\) 0.118034 + 0.204441i 0.00820393 + 0.0142096i
\(208\) 3.35520 0.232641
\(209\) 0 0
\(210\) 2.76393 0.190729
\(211\) −0.310271 0.537405i −0.0213599 0.0369965i 0.855148 0.518384i \(-0.173466\pi\)
−0.876508 + 0.481388i \(0.840133\pi\)
\(212\) 4.02874 + 6.97798i 0.276695 + 0.479250i
\(213\) −9.63525 + 16.6888i −0.660197 + 1.14349i
\(214\) 5.69098 + 9.85707i 0.389028 + 0.673816i
\(215\) 15.0902 26.1369i 1.02914 1.78252i
\(216\) −3.29180 −0.223978
\(217\) 0.449028 0.0304820
\(218\) −2.92705 + 5.06980i −0.198245 + 0.343370i
\(219\) −8.55951 + 14.8255i −0.578398 + 1.00181i
\(220\) 7.23607 0.487856
\(221\) 4.70228 0.316310
\(222\) −11.9475 + 20.6936i −0.801861 + 1.38886i
\(223\) 8.14324 + 14.1045i 0.545311 + 0.944507i 0.998587 + 0.0531368i \(0.0169220\pi\)
−0.453276 + 0.891370i \(0.649745\pi\)
\(224\) −0.865300 + 1.49874i −0.0578153 + 0.100139i
\(225\) −1.69098 2.92887i −0.112732 0.195258i
\(226\) 0 0
\(227\) 15.7314 1.04413 0.522066 0.852905i \(-0.325161\pi\)
0.522066 + 0.852905i \(0.325161\pi\)
\(228\) 0 0
\(229\) −7.09017 −0.468532 −0.234266 0.972173i \(-0.575269\pi\)
−0.234266 + 0.972173i \(0.575269\pi\)
\(230\) 1.17557 + 2.03615i 0.0775148 + 0.134260i
\(231\) 0.310271 + 0.537405i 0.0204143 + 0.0353586i
\(232\) 1.54508 2.67617i 0.101440 0.175699i
\(233\) −2.26393 3.92125i −0.148315 0.256889i 0.782290 0.622915i \(-0.214052\pi\)
−0.930605 + 0.366025i \(0.880718\pi\)
\(234\) −0.427051 + 0.739674i −0.0279172 + 0.0483540i
\(235\) 37.1246 2.42174
\(236\) 14.2128 0.925178
\(237\) 4.47214 7.74597i 0.290496 0.503155i
\(238\) −1.45309 + 2.51682i −0.0941895 + 0.163141i
\(239\) −9.14590 −0.591599 −0.295799 0.955250i \(-0.595586\pi\)
−0.295799 + 0.955250i \(0.595586\pi\)
\(240\) 28.4257 1.83487
\(241\) 13.5721 23.5075i 0.874253 1.51425i 0.0166973 0.999861i \(-0.494685\pi\)
0.857556 0.514391i \(-0.171982\pi\)
\(242\) −8.64527 14.9740i −0.555739 0.962568i
\(243\) 3.16344 5.47924i 0.202935 0.351493i
\(244\) 7.66312 + 13.2729i 0.490581 + 0.849711i
\(245\) −11.2361 19.4614i −0.717846 1.24335i
\(246\) 7.88597 0.502791
\(247\) 0 0
\(248\) 1.38197 0.0877549
\(249\) 3.07768 + 5.33070i 0.195040 + 0.337820i
\(250\) −1.45309 2.51682i −0.0919012 0.159177i
\(251\) 8.20820 14.2170i 0.518097 0.897371i −0.481682 0.876346i \(-0.659974\pi\)
0.999779 0.0210245i \(-0.00669280\pi\)
\(252\) −0.118034 0.204441i −0.00743544 0.0128786i
\(253\) −0.263932 + 0.457144i −0.0165933 + 0.0287404i
\(254\) −23.7426 −1.48975
\(255\) 39.8384 2.49478
\(256\) −10.1353 + 17.5548i −0.633453 + 1.09717i
\(257\) 5.42882 9.40300i 0.338641 0.586543i −0.645537 0.763729i \(-0.723366\pi\)
0.984177 + 0.177186i \(0.0566995\pi\)
\(258\) −33.7426 −2.10073
\(259\) −1.55909 −0.0968769
\(260\) −1.90211 + 3.29456i −0.117964 + 0.204320i
\(261\) 1.31433 + 2.27648i 0.0813548 + 0.140911i
\(262\) 5.79210 10.0322i 0.357837 0.619792i
\(263\) 11.9443 + 20.6881i 0.736515 + 1.27568i 0.954055 + 0.299631i \(0.0968634\pi\)
−0.217540 + 0.976051i \(0.569803\pi\)
\(264\) 0.954915 + 1.65396i 0.0587710 + 0.101794i
\(265\) 16.1150 0.989934
\(266\) 0 0
\(267\) 14.1459 0.865715
\(268\) −10.5474 18.2686i −0.644284 1.11593i
\(269\) −12.8985 22.3409i −0.786437 1.36215i −0.928137 0.372239i \(-0.878590\pi\)
0.141700 0.989910i \(-0.454743\pi\)
\(270\) 13.9443 24.1522i 0.848621 1.46986i
\(271\) 9.63525 + 16.6888i 0.585300 + 1.01377i 0.994838 + 0.101476i \(0.0323566\pi\)
−0.409538 + 0.912293i \(0.634310\pi\)
\(272\) −14.9443 + 25.8842i −0.906130 + 1.56946i
\(273\) −0.326238 −0.0197448
\(274\) −16.5640 −1.00067
\(275\) 3.78115 6.54915i 0.228012 0.394929i
\(276\) 0.587785 1.01807i 0.0353805 0.0612808i
\(277\) −14.7639 −0.887079 −0.443539 0.896255i \(-0.646277\pi\)
−0.443539 + 0.896255i \(0.646277\pi\)
\(278\) 22.9969 1.37926
\(279\) −0.587785 + 1.01807i −0.0351898 + 0.0609505i
\(280\) 0.277515 + 0.480669i 0.0165847 + 0.0287255i
\(281\) 7.83297 13.5671i 0.467276 0.809345i −0.532025 0.846728i \(-0.678569\pi\)
0.999301 + 0.0373833i \(0.0119023\pi\)
\(282\) −20.7533 35.9458i −1.23584 2.14054i
\(283\) 6.04508 + 10.4704i 0.359343 + 0.622400i 0.987851 0.155403i \(-0.0496675\pi\)
−0.628508 + 0.777803i \(0.716334\pi\)
\(284\) 16.3925 0.972714
\(285\) 0 0
\(286\) −1.90983 −0.112931
\(287\) 0.257270 + 0.445605i 0.0151862 + 0.0263032i
\(288\) −2.26538 3.92376i −0.133489 0.231210i
\(289\) −12.4443 + 21.5541i −0.732016 + 1.26789i
\(290\) 13.0902 + 22.6728i 0.768681 + 1.33139i
\(291\) 4.20820 7.28882i 0.246689 0.427278i
\(292\) 14.5623 0.852194
\(293\) −15.2824 −0.892808 −0.446404 0.894831i \(-0.647296\pi\)
−0.446404 + 0.894831i \(0.647296\pi\)
\(294\) −12.5623 + 21.7586i −0.732649 + 1.26898i
\(295\) 14.2128 24.6174i 0.827504 1.43328i
\(296\) −4.79837 −0.278900
\(297\) 6.26137 0.363321
\(298\) 5.73910 9.94040i 0.332457 0.575832i
\(299\) −0.138757 0.240335i −0.00802454 0.0138989i
\(300\) −8.42075 + 14.5852i −0.486172 + 0.842075i
\(301\) −1.10081 1.90666i −0.0634498 0.109898i
\(302\) −16.4443 28.4823i −0.946262 1.63897i
\(303\) 7.50245 0.431005
\(304\) 0 0
\(305\) 30.6525 1.75516
\(306\) −3.80423 6.58911i −0.217473 0.376675i
\(307\) 13.8168 + 23.9314i 0.788568 + 1.36584i 0.926844 + 0.375445i \(0.122510\pi\)
−0.138277 + 0.990394i \(0.544156\pi\)
\(308\) 0.263932 0.457144i 0.0150389 0.0260482i
\(309\) −10.5902 18.3427i −0.602454 1.04348i
\(310\) −5.85410 + 10.1396i −0.332491 + 0.575891i
\(311\) −14.4721 −0.820640 −0.410320 0.911942i \(-0.634583\pi\)
−0.410320 + 0.911942i \(0.634583\pi\)
\(312\) −1.00406 −0.0568435
\(313\) −2.69098 + 4.66092i −0.152103 + 0.263451i −0.932001 0.362457i \(-0.881938\pi\)
0.779897 + 0.625908i \(0.215271\pi\)
\(314\) −4.33901 + 7.51539i −0.244865 + 0.424118i
\(315\) −0.472136 −0.0266018
\(316\) −7.60845 −0.428009
\(317\) −15.6659 + 27.1342i −0.879886 + 1.52401i −0.0284217 + 0.999596i \(0.509048\pi\)
−0.851465 + 0.524412i \(0.824285\pi\)
\(318\) −9.00854 15.6032i −0.505174 0.874986i
\(319\) −2.93893 + 5.09037i −0.164548 + 0.285006i
\(320\) −7.61803 13.1948i −0.425861 0.737613i
\(321\) −5.69098 9.85707i −0.317640 0.550168i
\(322\) 0.171513 0.00955807
\(323\) 0 0
\(324\) −16.9443 −0.941348
\(325\) 1.98787 + 3.44309i 0.110267 + 0.190988i
\(326\) 14.7149 + 25.4869i 0.814982 + 1.41159i
\(327\) 2.92705 5.06980i 0.161866 0.280361i
\(328\) 0.791796 + 1.37143i 0.0437196 + 0.0757246i
\(329\) 1.35410 2.34537i 0.0746541 0.129305i
\(330\) −16.1803 −0.890698
\(331\) 20.2622 1.11371 0.556856 0.830609i \(-0.312008\pi\)
0.556856 + 0.830609i \(0.312008\pi\)
\(332\) 2.61803 4.53457i 0.143683 0.248867i
\(333\) 2.04087 3.53489i 0.111839 0.193711i
\(334\) −3.09017 −0.169087
\(335\) −42.1895 −2.30506
\(336\) 1.03681 1.79581i 0.0565628 0.0979696i
\(337\) 0.277515 + 0.480669i 0.0151172 + 0.0261837i 0.873485 0.486851i \(-0.161855\pi\)
−0.858368 + 0.513035i \(0.828521\pi\)
\(338\) −11.8617 + 20.5451i −0.645192 + 1.11750i
\(339\) 0 0
\(340\) −16.9443 29.3483i −0.918932 1.59164i
\(341\) −2.62866 −0.142350
\(342\) 0 0
\(343\) −3.29180 −0.177740
\(344\) −3.38795 5.86811i −0.182666 0.316387i
\(345\) −1.17557 2.03615i −0.0632906 0.109623i
\(346\) −15.8541 + 27.4601i −0.852322 + 1.47626i
\(347\) −14.4164 24.9700i −0.773913 1.34046i −0.935403 0.353583i \(-0.884963\pi\)
0.161490 0.986874i \(-0.448370\pi\)
\(348\) 6.54508 11.3364i 0.350853 0.607696i
\(349\) 13.6180 0.728957 0.364478 0.931212i \(-0.381247\pi\)
0.364478 + 0.931212i \(0.381247\pi\)
\(350\) −2.45714 −0.131340
\(351\) −1.64590 + 2.85078i −0.0878515 + 0.152163i
\(352\) 5.06555 8.77380i 0.269995 0.467645i
\(353\) 25.3820 1.35095 0.675473 0.737385i \(-0.263940\pi\)
0.675473 + 0.737385i \(0.263940\pi\)
\(354\) −31.7809 −1.68914
\(355\) 16.3925 28.3926i 0.870022 1.50692i
\(356\) −6.01661 10.4211i −0.318880 0.552316i
\(357\) 1.45309 2.51682i 0.0769054 0.133204i
\(358\) −8.25329 14.2951i −0.436200 0.755520i
\(359\) 17.6910 + 30.6417i 0.933694 + 1.61721i 0.776946 + 0.629568i \(0.216768\pi\)
0.156749 + 0.987639i \(0.449899\pi\)
\(360\) −1.45309 −0.0765843
\(361\) 0 0
\(362\) 11.0557 0.581076
\(363\) 8.64527 + 14.9740i 0.453759 + 0.785933i
\(364\) 0.138757 + 0.240335i 0.00727286 + 0.0125970i
\(365\) 14.5623 25.2227i 0.762226 1.32021i
\(366\) −17.1353 29.6791i −0.895674 1.55135i
\(367\) −6.26393 + 10.8494i −0.326975 + 0.566337i −0.981910 0.189348i \(-0.939362\pi\)
0.654935 + 0.755685i \(0.272696\pi\)
\(368\) 1.76393 0.0919513
\(369\) −1.34708 −0.0701264
\(370\) 20.3262 35.2061i 1.05671 1.83028i
\(371\) 0.587785 1.01807i 0.0305163 0.0528558i
\(372\) 5.85410 0.303521
\(373\) −36.7607 −1.90340 −0.951698 0.307035i \(-0.900663\pi\)
−0.951698 + 0.307035i \(0.900663\pi\)
\(374\) 8.50651 14.7337i 0.439861 0.761862i
\(375\) 1.45309 + 2.51682i 0.0750370 + 0.129968i
\(376\) 4.16750 7.21832i 0.214922 0.372256i
\(377\) −1.54508 2.67617i −0.0795759 0.137830i
\(378\) −1.01722 1.76188i −0.0523202 0.0906212i
\(379\) −21.3723 −1.09782 −0.548910 0.835882i \(-0.684957\pi\)
−0.548910 + 0.835882i \(0.684957\pi\)
\(380\) 0 0
\(381\) 23.7426 1.21637
\(382\) −16.1680 28.0037i −0.827225 1.43280i
\(383\) 5.65334 + 9.79187i 0.288872 + 0.500341i 0.973541 0.228513i \(-0.0733864\pi\)
−0.684669 + 0.728854i \(0.740053\pi\)
\(384\) 5.42705 9.39993i 0.276948 0.479688i
\(385\) −0.527864 0.914287i −0.0269024 0.0465964i
\(386\) 8.09017 14.0126i 0.411779 0.713222i
\(387\) 5.76393 0.292997
\(388\) −7.15942 −0.363465
\(389\) −0.954915 + 1.65396i −0.0484161 + 0.0838592i −0.889218 0.457484i \(-0.848751\pi\)
0.840802 + 0.541343i \(0.182084\pi\)
\(390\) 4.25325 7.36685i 0.215372 0.373035i
\(391\) 2.47214 0.125021
\(392\) −5.04531 −0.254827
\(393\) −5.79210 + 10.0322i −0.292173 + 0.506058i
\(394\) 10.9106 + 18.8978i 0.549671 + 0.952057i
\(395\) −7.60845 + 13.1782i −0.382823 + 0.663068i
\(396\) 0.690983 + 1.19682i 0.0347232 + 0.0601424i
\(397\) −0.645898 1.11873i −0.0324167 0.0561474i 0.849362 0.527811i \(-0.176987\pi\)
−0.881779 + 0.471664i \(0.843654\pi\)
\(398\) 2.00811 0.100658
\(399\) 0 0
\(400\) −25.2705 −1.26353
\(401\) −2.35114 4.07230i −0.117410 0.203361i 0.801330 0.598222i \(-0.204126\pi\)
−0.918741 + 0.394861i \(0.870793\pi\)
\(402\) 23.5847 + 40.8498i 1.17630 + 2.03740i
\(403\) 0.690983 1.19682i 0.0344203 0.0596177i
\(404\) −3.19098 5.52694i −0.158757 0.274976i
\(405\) −16.9443 + 29.3483i −0.841968 + 1.45833i
\(406\) 1.90983 0.0947833
\(407\) 9.12705 0.452411
\(408\) 4.47214 7.74597i 0.221404 0.383482i
\(409\) 12.0332 20.8421i 0.595004 1.03058i −0.398542 0.917150i \(-0.630484\pi\)
0.993546 0.113428i \(-0.0361830\pi\)
\(410\) −13.4164 −0.662589
\(411\) 16.5640 0.817041
\(412\) −9.00854 + 15.6032i −0.443819 + 0.768717i
\(413\) −1.03681 1.79581i −0.0510182 0.0883662i
\(414\) −0.224514 + 0.388870i −0.0110343 + 0.0191119i
\(415\) −5.23607 9.06914i −0.257028 0.445186i
\(416\) 2.66312 + 4.61266i 0.130570 + 0.226154i
\(417\) −22.9969 −1.12616
\(418\) 0 0
\(419\) −6.58359 −0.321630 −0.160815 0.986985i \(-0.551412\pi\)
−0.160815 + 0.986985i \(0.551412\pi\)
\(420\) 1.17557 + 2.03615i 0.0573620 + 0.0993538i
\(421\) −16.2007 28.0605i −0.789575 1.36758i −0.926228 0.376964i \(-0.876968\pi\)
0.136653 0.990619i \(-0.456365\pi\)
\(422\) 0.590170 1.02220i 0.0287290 0.0497601i
\(423\) 3.54508 + 6.14027i 0.172368 + 0.298550i
\(424\) 1.80902 3.13331i 0.0878536 0.152167i
\(425\) −35.4164 −1.71795
\(426\) −36.6547 −1.77593
\(427\) 1.11803 1.93649i 0.0541055 0.0937134i
\(428\) −4.84104 + 8.38493i −0.234000 + 0.405301i
\(429\) 1.90983 0.0922075
\(430\) 57.4064 2.76838
\(431\) −6.24112 + 10.8099i −0.300624 + 0.520697i −0.976278 0.216523i \(-0.930528\pi\)
0.675653 + 0.737220i \(0.263862\pi\)
\(432\) −10.4616 18.1201i −0.503335 0.871802i
\(433\) −9.45756 + 16.3810i −0.454502 + 0.787220i −0.998659 0.0517631i \(-0.983516\pi\)
0.544158 + 0.838983i \(0.316849\pi\)
\(434\) 0.427051 + 0.739674i 0.0204991 + 0.0355055i
\(435\) −13.0902 22.6728i −0.627626 1.08708i
\(436\) −4.97980 −0.238489
\(437\) 0 0
\(438\) −32.5623 −1.55589
\(439\) 2.99193 + 5.18217i 0.142797 + 0.247331i 0.928549 0.371210i \(-0.121057\pi\)
−0.785752 + 0.618542i \(0.787724\pi\)
\(440\) −1.62460 2.81389i −0.0774497 0.134147i
\(441\) 2.14590 3.71680i 0.102186 0.176991i
\(442\) 4.47214 + 7.74597i 0.212718 + 0.368438i
\(443\) −7.59017 + 13.1466i −0.360620 + 0.624612i −0.988063 0.154050i \(-0.950768\pi\)
0.627443 + 0.778662i \(0.284101\pi\)
\(444\) −20.3262 −0.964641
\(445\) −24.0664 −1.14086
\(446\) −15.4894 + 26.8284i −0.733442 + 1.27036i
\(447\) −5.73910 + 9.94040i −0.271450 + 0.470165i
\(448\) −1.11146 −0.0525114
\(449\) 24.2380 1.14386 0.571930 0.820303i \(-0.306195\pi\)
0.571930 + 0.820303i \(0.306195\pi\)
\(450\) 3.21644 5.57104i 0.151624 0.262621i
\(451\) −1.50609 2.60862i −0.0709188 0.122835i
\(452\) 0 0
\(453\) 16.4443 + 28.4823i 0.772619 + 1.33822i
\(454\) 14.9615 + 25.9141i 0.702178 + 1.21621i
\(455\) 0.555029 0.0260202
\(456\) 0 0
\(457\) 6.29180 0.294318 0.147159 0.989113i \(-0.452987\pi\)
0.147159 + 0.989113i \(0.452987\pi\)
\(458\) −6.74315 11.6795i −0.315087 0.545746i
\(459\) −14.6619 25.3951i −0.684358 1.18534i
\(460\) −1.00000 + 1.73205i −0.0466252 + 0.0807573i
\(461\) 5.90983 + 10.2361i 0.275248 + 0.476744i 0.970198 0.242315i \(-0.0779066\pi\)
−0.694949 + 0.719059i \(0.744573\pi\)
\(462\) −0.590170 + 1.02220i −0.0274572 + 0.0475572i
\(463\) 10.1459 0.471520 0.235760 0.971811i \(-0.424242\pi\)
0.235760 + 0.971811i \(0.424242\pi\)
\(464\) 19.6417 0.911842
\(465\) 5.85410 10.1396i 0.271477 0.470213i
\(466\) 4.30625 7.45865i 0.199483 0.345515i
\(467\) 4.23607 0.196022 0.0980109 0.995185i \(-0.468752\pi\)
0.0980109 + 0.995185i \(0.468752\pi\)
\(468\) −0.726543 −0.0335844
\(469\) −1.53884 + 2.66535i −0.0710571 + 0.123075i
\(470\) 35.3076 + 61.1546i 1.62862 + 2.82085i
\(471\) 4.33901 7.51539i 0.199931 0.346291i
\(472\) −3.19098 5.52694i −0.146877 0.254398i
\(473\) 6.44427 + 11.1618i 0.296308 + 0.513220i
\(474\) 17.0130 0.781434
\(475\) 0 0
\(476\) −2.47214 −0.113310
\(477\) 1.53884 + 2.66535i 0.0704587 + 0.122038i
\(478\) −8.69827 15.0658i −0.397849 0.689095i
\(479\) 7.95492 13.7783i 0.363469 0.629547i −0.625060 0.780577i \(-0.714925\pi\)
0.988529 + 0.151029i \(0.0482588\pi\)
\(480\) 22.5623 + 39.0791i 1.02982 + 1.78371i
\(481\) −2.39919 + 4.15551i −0.109394 + 0.189475i
\(482\) 51.6312 2.35174
\(483\) −0.171513 −0.00780413
\(484\) 7.35410 12.7377i 0.334277 0.578985i
\(485\) −7.15942 + 12.4005i −0.325093 + 0.563077i
\(486\) 12.0344 0.545893
\(487\) 16.6700 0.755389 0.377695 0.925930i \(-0.376717\pi\)
0.377695 + 0.925930i \(0.376717\pi\)
\(488\) 3.44095 5.95991i 0.155765 0.269792i
\(489\) −14.7149 25.4869i −0.665430 1.15256i
\(490\) 21.3723 37.0179i 0.965501 1.67230i
\(491\) −8.63525 14.9567i −0.389704 0.674986i 0.602706 0.797963i \(-0.294089\pi\)
−0.992410 + 0.122977i \(0.960756\pi\)
\(492\) 3.35410 + 5.80948i 0.151215 + 0.261911i
\(493\) 27.5276 1.23978
\(494\) 0 0
\(495\) 2.76393 0.124230
\(496\) 4.39201 + 7.60719i 0.197207 + 0.341573i
\(497\) −1.19581 2.07121i −0.0536396 0.0929066i
\(498\) −5.85410 + 10.1396i −0.262329 + 0.454366i
\(499\) −15.2361 26.3896i −0.682060 1.18136i −0.974351 0.225033i \(-0.927751\pi\)
0.292291 0.956329i \(-0.405582\pi\)
\(500\) 1.23607 2.14093i 0.0552786 0.0957454i
\(501\) 3.09017 0.138059
\(502\) 31.2259 1.39368
\(503\) −10.2984 + 17.8373i −0.459182 + 0.795326i −0.998918 0.0465081i \(-0.985191\pi\)
0.539736 + 0.841834i \(0.318524\pi\)
\(504\) −0.0530006 + 0.0917997i −0.00236083 + 0.00408908i
\(505\) −12.7639 −0.567988
\(506\) −1.00406 −0.0446358
\(507\) 11.8617 20.5451i 0.526797 0.912439i
\(508\) −10.0984 17.4909i −0.448042 0.776031i
\(509\) 9.09429 15.7518i 0.403097 0.698185i −0.591001 0.806671i \(-0.701267\pi\)
0.994098 + 0.108486i \(0.0346002\pi\)
\(510\) 37.8885 + 65.6249i 1.67773 + 2.90592i
\(511\) −1.06231 1.83997i −0.0469936 0.0813954i
\(512\) −27.1441 −1.19961
\(513\) 0 0
\(514\) 20.6525 0.910942
\(515\) 18.0171 + 31.2065i 0.793927 + 1.37512i
\(516\) −14.3516 24.8577i −0.631794 1.09430i
\(517\) −7.92705 + 13.7301i −0.348631 + 0.603847i
\(518\) −1.48278 2.56825i −0.0651496 0.112842i
\(519\) 15.8541 27.4601i 0.695918 1.20537i
\(520\) 1.70820 0.0749097
\(521\) 21.8213 0.956008 0.478004 0.878358i \(-0.341360\pi\)
0.478004 + 0.878358i \(0.341360\pi\)
\(522\) −2.50000 + 4.33013i −0.109422 + 0.189525i
\(523\) −17.2048 + 29.7995i −0.752312 + 1.30304i 0.194387 + 0.980925i \(0.437728\pi\)
−0.946699 + 0.322118i \(0.895605\pi\)
\(524\) 9.85410 0.430478
\(525\) 2.45714 0.107238
\(526\) −22.7194 + 39.3511i −0.990611 + 1.71579i
\(527\) 6.15537 + 10.6614i 0.268132 + 0.464418i
\(528\) −6.06961 + 10.5129i −0.264146 + 0.457514i
\(529\) 11.4271 + 19.7922i 0.496828 + 0.860532i
\(530\) 15.3262 + 26.5458i 0.665729 + 1.15308i
\(531\) 5.42882 0.235591
\(532\) 0 0
\(533\) 1.58359 0.0685930
\(534\) 13.4535 + 23.3022i 0.582192 + 1.00839i
\(535\) 9.68208 + 16.7699i 0.418593 + 0.725024i
\(536\) −4.73607 + 8.20311i −0.204567 + 0.354320i
\(537\) 8.25329 + 14.2951i 0.356156 + 0.616880i
\(538\) 24.5344 42.4949i 1.05775 1.83209i
\(539\) 9.59675 0.413361
\(540\) 23.7234 1.02089
\(541\) −3.35410 + 5.80948i −0.144204 + 0.249769i −0.929076 0.369890i \(-0.879396\pi\)
0.784872 + 0.619658i \(0.212729\pi\)
\(542\) −18.3273 + 31.7439i −0.787227 + 1.36352i
\(543\) −11.0557 −0.474447
\(544\) −47.4468 −2.03427
\(545\) −4.97980 + 8.62526i −0.213311 + 0.369466i
\(546\) −0.310271 0.537405i −0.0132784 0.0229988i
\(547\) 10.3556 17.9365i 0.442774 0.766908i −0.555120 0.831770i \(-0.687328\pi\)
0.997894 + 0.0648627i \(0.0206609\pi\)
\(548\) −7.04508 12.2024i −0.300951 0.521263i
\(549\) 2.92705 + 5.06980i 0.124923 + 0.216374i
\(550\) 14.3844 0.613351
\(551\) 0 0
\(552\) −0.527864 −0.0224674
\(553\) 0.555029 + 0.961339i 0.0236022 + 0.0408803i
\(554\) −14.0413 24.3203i −0.596559 1.03327i
\(555\) −20.3262 + 35.2061i −0.862801 + 1.49441i
\(556\) 9.78115 + 16.9415i 0.414813 + 0.718478i
\(557\) 19.6803 34.0873i 0.833883 1.44433i −0.0610541 0.998134i \(-0.519446\pi\)
0.894937 0.446193i \(-0.147220\pi\)
\(558\) −2.23607 −0.0946603
\(559\) −6.77591 −0.286590
\(560\) −1.76393 + 3.05522i −0.0745397 + 0.129107i
\(561\) −8.50651 + 14.7337i −0.359145 + 0.622057i
\(562\) 29.7984 1.25697
\(563\) 21.7153 0.915191 0.457595 0.889161i \(-0.348711\pi\)
0.457595 + 0.889161i \(0.348711\pi\)
\(564\) 17.6538 30.5773i 0.743359 1.28754i
\(565\) 0 0
\(566\) −11.4984 + 19.9159i −0.483315 + 0.837127i
\(567\) 1.23607 + 2.14093i 0.0519100 + 0.0899107i
\(568\) −3.68034 6.37454i −0.154424 0.267470i
\(569\) 25.4540 1.06709 0.533544 0.845772i \(-0.320860\pi\)
0.533544 + 0.845772i \(0.320860\pi\)
\(570\) 0 0
\(571\) −46.1033 −1.92936 −0.964682 0.263417i \(-0.915150\pi\)
−0.964682 + 0.263417i \(0.915150\pi\)
\(572\) −0.812299 1.40694i −0.0339639 0.0588273i
\(573\) 16.1680 + 28.0037i 0.675426 + 1.16987i
\(574\) −0.489357 + 0.847591i −0.0204254 + 0.0353778i
\(575\) 1.04508 + 1.81014i 0.0435831 + 0.0754881i
\(576\) 1.45492 2.51999i 0.0606215 0.104999i
\(577\) −15.2918 −0.636606 −0.318303 0.947989i \(-0.603113\pi\)
−0.318303 + 0.947989i \(0.603113\pi\)
\(578\) −47.3408 −1.96912
\(579\) −8.09017 + 14.0126i −0.336216 + 0.582343i
\(580\) −11.1352 + 19.2867i −0.462363 + 0.800835i
\(581\) −0.763932 −0.0316932
\(582\) 16.0090 0.663593
\(583\) −3.44095 + 5.95991i −0.142510 + 0.246834i
\(584\) −3.26944 5.66284i −0.135290 0.234330i
\(585\) −0.726543 + 1.25841i −0.0300388 + 0.0520288i
\(586\) −14.5344 25.1744i −0.600412 1.03994i
\(587\) −8.40983 14.5663i −0.347111 0.601214i 0.638624 0.769519i \(-0.279504\pi\)
−0.985735 + 0.168305i \(0.946171\pi\)
\(588\) −21.3723 −0.881378
\(589\) 0 0
\(590\) 54.0689 2.22598
\(591\) −10.9106 18.8978i −0.448804 0.777352i
\(592\) −15.2497 26.4132i −0.626757 1.08558i
\(593\) −8.64590 + 14.9751i −0.355044 + 0.614955i −0.987126 0.159947i \(-0.948868\pi\)
0.632081 + 0.774902i \(0.282201\pi\)
\(594\) 5.95492 + 10.3142i 0.244333 + 0.423197i
\(595\) −2.47214 + 4.28187i −0.101348 + 0.175539i
\(596\) 9.76393 0.399946
\(597\) −2.00811 −0.0821866
\(598\) 0.263932 0.457144i 0.0107930 0.0186940i
\(599\) −2.43690 + 4.22083i −0.0995689 + 0.172458i −0.911506 0.411286i \(-0.865080\pi\)
0.811937 + 0.583745i \(0.198413\pi\)
\(600\) 7.56231 0.308730
\(601\) −9.74759 −0.397613 −0.198806 0.980039i \(-0.563706\pi\)
−0.198806 + 0.980039i \(0.563706\pi\)
\(602\) 2.09387 3.62669i 0.0853398 0.147813i
\(603\) −4.02874 6.97798i −0.164063 0.284165i
\(604\) 13.9883 24.2285i 0.569177 0.985844i
\(605\) −14.7082 25.4754i −0.597974 1.03572i
\(606\) 7.13525 + 12.3586i 0.289850 + 0.502035i
\(607\) −27.9767 −1.13554 −0.567769 0.823188i \(-0.692193\pi\)
−0.567769 + 0.823188i \(0.692193\pi\)
\(608\) 0 0
\(609\) −1.90983 −0.0773902
\(610\) 29.1522 + 50.4932i 1.18034 + 2.04441i
\(611\) −4.16750 7.21832i −0.168599 0.292022i
\(612\) 3.23607 5.60503i 0.130810 0.226570i
\(613\) 16.7361 + 28.9877i 0.675963 + 1.17080i 0.976186 + 0.216934i \(0.0696056\pi\)
−0.300223 + 0.953869i \(0.597061\pi\)
\(614\) −26.2812 + 45.5203i −1.06062 + 1.83705i
\(615\) 13.4164 0.541002
\(616\) −0.237026 −0.00955004
\(617\) 8.13525 14.0907i 0.327513 0.567269i −0.654505 0.756058i \(-0.727123\pi\)
0.982018 + 0.188789i \(0.0604561\pi\)
\(618\) 20.1437 34.8899i 0.810298 1.40348i
\(619\) −34.7771 −1.39781 −0.698905 0.715215i \(-0.746329\pi\)
−0.698905 + 0.715215i \(0.746329\pi\)
\(620\) −9.95959 −0.399987
\(621\) −0.865300 + 1.49874i −0.0347233 + 0.0601425i
\(622\) −13.7638 23.8396i −0.551879 0.955882i
\(623\) −0.877812 + 1.52041i −0.0351688 + 0.0609141i
\(624\) −3.19098 5.52694i −0.127742 0.221255i
\(625\) 11.2082 + 19.4132i 0.448328 + 0.776527i
\(626\) −10.2371 −0.409157
\(627\) 0 0
\(628\) −7.38197 −0.294573
\(629\) −21.3723 37.0179i −0.852168 1.47600i
\(630\) −0.449028 0.777739i −0.0178897 0.0309859i
\(631\) 12.5000 21.6506i 0.497617 0.861898i −0.502379 0.864647i \(-0.667542\pi\)
0.999996 + 0.00274930i \(0.000875132\pi\)
\(632\) 1.70820 + 2.95870i 0.0679487 + 0.117691i
\(633\) −0.590170 + 1.02220i −0.0234571 + 0.0406290i
\(634\) −59.5967 −2.36689
\(635\) −40.3934 −1.60296
\(636\) 7.66312 13.2729i 0.303862 0.526305i
\(637\) −2.52265 + 4.36937i −0.0999512 + 0.173121i
\(638\) −11.1803 −0.442634
\(639\) 6.26137 0.247696
\(640\) −9.23305 + 15.9921i −0.364968 + 0.632144i
\(641\) 23.3929 + 40.5177i 0.923964 + 1.60035i 0.793219 + 0.608936i \(0.208404\pi\)
0.130745 + 0.991416i \(0.458263\pi\)
\(642\) 10.8249 18.7493i 0.427224 0.739974i
\(643\) 2.85410 + 4.94345i 0.112555 + 0.194951i 0.916800 0.399347i \(-0.130763\pi\)
−0.804245 + 0.594298i \(0.797430\pi\)
\(644\) 0.0729490 + 0.126351i 0.00287459 + 0.00497894i
\(645\) −57.4064 −2.26038
\(646\) 0 0
\(647\) 8.12461 0.319411 0.159706 0.987165i \(-0.448945\pi\)
0.159706 + 0.987165i \(0.448945\pi\)
\(648\) 3.80423 + 6.58911i 0.149444 + 0.258845i
\(649\) 6.06961 + 10.5129i 0.238253 + 0.412666i
\(650\) −3.78115 + 6.54915i −0.148309 + 0.256879i
\(651\) −0.427051 0.739674i −0.0167374 0.0289901i
\(652\) −12.5172 + 21.6805i −0.490212 + 0.849072i
\(653\) −22.7426 −0.889989 −0.444994 0.895533i \(-0.646794\pi\)
−0.444994 + 0.895533i \(0.646794\pi\)
\(654\) 11.1352 0.435419
\(655\) 9.85410 17.0678i 0.385032 0.666894i
\(656\) −5.03280 + 8.71706i −0.196498 + 0.340344i
\(657\) 5.56231 0.217006
\(658\) 5.15131 0.200819
\(659\) 18.9151 32.7620i 0.736829 1.27622i −0.217087 0.976152i \(-0.569656\pi\)
0.953916 0.300073i \(-0.0970110\pi\)
\(660\) −6.88191 11.9198i −0.267878 0.463978i
\(661\) −16.8415 + 29.1703i −0.655059 + 1.13459i 0.326821 + 0.945086i \(0.394023\pi\)
−0.981879 + 0.189508i \(0.939311\pi\)
\(662\) 19.2705 + 33.3775i 0.748970 + 1.29725i
\(663\) −4.47214 7.74597i −0.173683 0.300828i
\(664\) −2.35114 −0.0912420
\(665\) 0 0
\(666\) 7.76393 0.300846
\(667\) −0.812299 1.40694i −0.0314524 0.0544771i
\(668\) −1.31433 2.27648i −0.0508529 0.0880798i
\(669\) 15.4894 26.8284i 0.598853 1.03724i
\(670\) −40.1246 69.4979i −1.55015 2.68494i
\(671\) −6.54508 + 11.3364i −0.252670 + 0.437638i
\(672\) 3.29180 0.126984
\(673\) 9.57608 0.369131 0.184565 0.982820i \(-0.440912\pi\)
0.184565 + 0.982820i \(0.440912\pi\)
\(674\) −0.527864 + 0.914287i −0.0203326 + 0.0352170i
\(675\) 12.3965 21.4714i 0.477141 0.826433i
\(676\) −20.1803 −0.776167
\(677\) 15.1109 0.580759 0.290380 0.956912i \(-0.406218\pi\)
0.290380 + 0.956912i \(0.406218\pi\)
\(678\) 0 0
\(679\) 0.522273 + 0.904603i 0.0200430 + 0.0347155i
\(680\) −7.60845 + 13.1782i −0.291771 + 0.505362i
\(681\) −14.9615 25.9141i −0.573326 0.993029i
\(682\) −2.50000 4.33013i −0.0957299 0.165809i
\(683\) 40.2219 1.53905 0.769524 0.638618i \(-0.220494\pi\)
0.769524 + 0.638618i \(0.220494\pi\)
\(684\) 0 0
\(685\) −28.1803 −1.07672
\(686\) −3.13068 5.42250i −0.119530 0.207032i
\(687\) 6.74315 + 11.6795i 0.257267 + 0.445600i
\(688\) 21.5344 37.2987i 0.820993 1.42200i
\(689\) −1.80902 3.13331i −0.0689181 0.119370i
\(690\) 2.23607 3.87298i 0.0851257 0.147442i
\(691\) −16.3050 −0.620270 −0.310135 0.950693i \(-0.600374\pi\)
−0.310135 + 0.950693i \(0.600374\pi\)
\(692\) −26.9726 −1.02534
\(693\) 0.100813 0.174613i 0.00382957 0.00663301i
\(694\) 27.4216 47.4957i 1.04091 1.80291i
\(695\) 39.1246 1.48408
\(696\) −5.87785 −0.222799
\(697\) −7.05342 + 12.2169i −0.267167 + 0.462748i
\(698\) 12.9515 + 22.4327i 0.490222 + 0.849090i
\(699\) −4.30625 + 7.45865i −0.162878 + 0.282112i
\(700\) −1.04508 1.81014i −0.0395005 0.0684169i
\(701\) −4.37132 7.57135i −0.165103 0.285966i 0.771589 0.636121i \(-0.219462\pi\)
−0.936692 + 0.350155i \(0.886129\pi\)
\(702\) −6.26137 −0.236320
\(703\) 0 0
\(704\) 6.50658 0.245226
\(705\) −35.3076 61.1546i −1.32976 2.30321i
\(706\) 24.1397 + 41.8112i 0.908509 + 1.57358i
\(707\) −0.465558 + 0.806370i −0.0175091 + 0.0303267i
\(708\) −13.5172 23.4125i −0.508008 0.879896i
\(709\) 6.70820 11.6190i 0.251932 0.436359i −0.712126 0.702052i \(-0.752267\pi\)
0.964058 + 0.265693i \(0.0856008\pi\)
\(710\) 62.3607 2.34035
\(711\) −2.90617 −0.108990
\(712\) −2.70163 + 4.67935i −0.101248 + 0.175366i
\(713\) 0.363271 0.629204i 0.0136046 0.0235639i
\(714\) 5.52786 0.206875
\(715\) −3.24920 −0.121513
\(716\) 7.02067 12.1602i 0.262375 0.454446i
\(717\) 8.69827 + 15.0658i 0.324843 + 0.562644i
\(718\) −33.6502 + 58.2839i −1.25582 + 2.17514i
\(719\) −7.30902 12.6596i −0.272580 0.472123i 0.696941 0.717128i \(-0.254544\pi\)
−0.969522 + 0.245005i \(0.921210\pi\)
\(720\) −4.61803 7.99867i −0.172104 0.298093i
\(721\) 2.62866 0.0978962
\(722\) 0 0
\(723\) −51.6312 −1.92018
\(724\) 4.70228 + 8.14459i 0.174759 + 0.302691i
\(725\) 11.6372 + 20.1562i 0.432194 + 0.748583i
\(726\) −16.4443 + 28.4823i −0.610304 + 1.05708i
\(727\) 18.4721 + 31.9947i 0.685094 + 1.18662i 0.973407 + 0.229081i \(0.0735720\pi\)
−0.288314 + 0.957536i \(0.593095\pi\)
\(728\) 0.0623059 0.107917i 0.00230921 0.00399967i
\(729\) 19.3820 0.717851
\(730\) 55.3983 2.05038
\(731\) 30.1803 52.2739i 1.11626 1.93342i
\(732\) 14.5761 25.2466i 0.538749 0.933140i
\(733\) 12.8197 0.473505 0.236752 0.971570i \(-0.423917\pi\)
0.236752 + 0.971570i \(0.423917\pi\)
\(734\) −23.8294 −0.879560
\(735\) −21.3723 + 37.0179i −0.788328 + 1.36542i
\(736\) 1.40008 + 2.42502i 0.0516078 + 0.0893873i
\(737\) 9.00854 15.6032i 0.331834 0.574753i
\(738\) −1.28115 2.21902i −0.0471599 0.0816833i
\(739\) −9.73607 16.8634i −0.358147 0.620329i 0.629504 0.776997i \(-0.283258\pi\)
−0.987651 + 0.156668i \(0.949925\pi\)
\(740\) 34.5811 1.27123
\(741\) 0 0
\(742\) 2.23607 0.0820886
\(743\) −18.3803 31.8357i −0.674309 1.16794i −0.976670 0.214745i \(-0.931108\pi\)
0.302361 0.953194i \(-0.402225\pi\)
\(744\) −1.31433 2.27648i −0.0481856 0.0834599i
\(745\) 9.76393 16.9116i 0.357723 0.619594i
\(746\) −34.9615 60.5551i −1.28003 2.21708i
\(747\) 1.00000 1.73205i 0.0365881 0.0633724i
\(748\) 14.4721 0.529154
\(749\) 1.41260 0.0516151
\(750\) −2.76393 + 4.78727i −0.100925 + 0.174806i
\(751\) −6.03685 + 10.4561i −0.220288 + 0.381550i −0.954895 0.296942i \(-0.904033\pi\)
0.734607 + 0.678492i \(0.237366\pi\)
\(752\) 52.9787 1.93193
\(753\) −31.2259 −1.13793
\(754\) 2.93893 5.09037i 0.107029 0.185380i
\(755\) −27.9767 48.4570i −1.01818 1.76353i
\(756\) 0.865300 1.49874i 0.0314706 0.0545088i
\(757\) 18.6353 + 32.2772i 0.677310 + 1.17314i 0.975788 + 0.218719i \(0.0701877\pi\)
−0.298478 + 0.954416i \(0.596479\pi\)
\(758\) −20.3262 35.2061i −0.738282 1.27874i
\(759\) 1.00406 0.0364450
\(760\) 0 0
\(761\) −23.9443 −0.867979 −0.433990 0.900918i \(-0.642895\pi\)
−0.433990 + 0.900918i \(0.642895\pi\)
\(762\) 22.5806 + 39.1107i 0.818009 + 1.41683i
\(763\) 0.363271 + 0.629204i 0.0131513 + 0.0227787i
\(764\) 13.7533 23.8214i 0.497577 0.861828i
\(765\) −6.47214 11.2101i −0.234001 0.405301i
\(766\) −10.7533 + 18.6252i −0.388532 + 0.672957i
\(767\) −6.38197 −0.230439
\(768\) 38.5568 1.39130
\(769\) −16.5795 + 28.7166i −0.597873 + 1.03555i 0.395261 + 0.918569i \(0.370654\pi\)
−0.993135 + 0.116978i \(0.962679\pi\)
\(770\) 1.00406 1.73908i 0.0361837 0.0626720i
\(771\) −20.6525 −0.743781
\(772\) 13.7638 0.495371
\(773\) 6.18812 10.7181i 0.222571 0.385505i −0.733017 0.680211i \(-0.761888\pi\)
0.955588 + 0.294706i \(0.0952216\pi\)
\(774\) 5.48183 + 9.49480i 0.197040 + 0.341284i
\(775\) −5.20431 + 9.01413i −0.186944 + 0.323797i
\(776\) 1.60739 + 2.78408i 0.0577020 + 0.0999427i
\(777\) 1.48278 + 2.56825i 0.0531944 + 0.0921354i
\(778\) −3.63271 −0.130239
\(779\) 0 0
\(780\) 7.23607 0.259093
\(781\) 7.00042 + 12.1251i 0.250495 + 0.433870i
\(782\) 2.35114 + 4.07230i 0.0840766 + 0.145625i
\(783\) −9.63525 + 16.6888i −0.344336 + 0.596407i
\(784\) −16.0344 27.7725i −0.572659 0.991874i
\(785\) −7.38197 + 12.7859i −0.263474 + 0.456350i
\(786\) −22.0344 −0.785943
\(787\) −19.3642 −0.690258 −0.345129 0.938555i \(-0.612165\pi\)
−0.345129 + 0.938555i \(0.612165\pi\)
\(788\) −9.28115 + 16.0754i −0.330627 + 0.572663i
\(789\) 22.7194 39.3511i 0.808830 1.40094i
\(790\) −28.9443 −1.02979
\(791\) 0 0
\(792\) 0.310271 0.537405i 0.0110250 0.0190958i
\(793\) −3.44095 5.95991i −0.122192 0.211643i
\(794\) 1.22857 2.12795i 0.0436004 0.0755180i
\(795\) −15.3262 26.5458i −0.543566 0.941483i
\(796\) 0.854102 + 1.47935i 0.0302728 + 0.0524341i
\(797\) 13.2088 0.467879 0.233940 0.972251i \(-0.424838\pi\)
0.233940 + 0.972251i \(0.424838\pi\)
\(798\) 0 0
\(799\) 74.2492 2.62675
\(800\) −20.0579 34.7414i −0.709155 1.22829i
\(801\) −2.29814 3.98050i −0.0812008 0.140644i
\(802\) 4.47214 7.74597i 0.157917 0.273520i
\(803\) 6.21885 + 10.7714i 0.219458 + 0.380113i
\(804\) −20.0623 + 34.7489i −0.707543 + 1.22550i
\(805\) 0.291796 0.0102845
\(806\) 2.62866 0.0925904
\(807\) −24.5344 + 42.4949i −0.863653 + 1.49589i
\(808\) −1.43284 + 2.48175i −0.0504072 + 0.0873078i
\(809\) −34.2705 −1.20489 −0.602443 0.798162i \(-0.705806\pi\)
−0.602443 + 0.798162i \(0.705806\pi\)
\(810\) −64.4598 −2.26489
\(811\) −11.1024 + 19.2299i −0.389858 + 0.675254i −0.992430 0.122810i \(-0.960809\pi\)
0.602572 + 0.798065i \(0.294143\pi\)
\(812\) 0.812299 + 1.40694i 0.0285061 + 0.0493740i
\(813\) 18.3273 31.7439i 0.642768 1.11331i
\(814\) 8.68034 + 15.0348i 0.304246 + 0.526969i
\(815\) 25.0344 + 43.3609i 0.876918 + 1.51887i
\(816\) 56.8514 1.99020
\(817\) 0 0
\(818\) 45.7771 1.60056
\(819\) 0.0530006 + 0.0917997i 0.00185199 + 0.00320774i
\(820\) −5.70634 9.88367i −0.199274 0.345153i
\(821\) −5.01722 + 8.69008i −0.175102 + 0.303286i −0.940197 0.340632i \(-0.889359\pi\)
0.765094 + 0.643918i \(0.222692\pi\)
\(822\) 15.7533 + 27.2855i 0.549459 + 0.951691i
\(823\) −25.3607 + 43.9260i −0.884018 + 1.53116i −0.0371824 + 0.999308i \(0.511838\pi\)
−0.846835 + 0.531855i \(0.821495\pi\)
\(824\) 8.09017 0.281834
\(825\) −14.3844 −0.500799
\(826\) 1.97214 3.41584i 0.0686194 0.118852i
\(827\) 14.8536 25.7272i 0.516511 0.894624i −0.483305 0.875452i \(-0.660564\pi\)
0.999816 0.0191719i \(-0.00610297\pi\)
\(828\) −0.381966 −0.0132742
\(829\) 15.1109 0.524823 0.262412 0.964956i \(-0.415482\pi\)
0.262412 + 0.964956i \(0.415482\pi\)
\(830\) 9.95959 17.2505i 0.345703 0.598774i
\(831\) 14.0413 + 24.3203i 0.487088 + 0.843662i
\(832\) −1.71036 + 2.96242i −0.0592959 + 0.102704i
\(833\) −22.4721 38.9229i −0.778613 1.34860i
\(834\) −21.8713 37.8822i −0.757342 1.31175i
\(835\) −5.25731 −0.181937
\(836\) 0 0
\(837\) −8.61803 −0.297883
\(838\) −6.26137 10.8450i −0.216295 0.374635i
\(839\) 8.47375 + 14.6770i 0.292546 + 0.506705i 0.974411 0.224773i \(-0.0721641\pi\)
−0.681865 + 0.731478i \(0.738831\pi\)
\(840\) 0.527864 0.914287i 0.0182130 0.0315459i
\(841\) 5.45492 + 9.44819i 0.188101 + 0.325800i
\(842\) 30.8156 53.3742i 1.06198 1.83940i
\(843\) −29.7984 −1.02631
\(844\) 1.00406 0.0345611
\(845\) −20.1803 + 34.9534i −0.694225 + 1.20243i
\(846\) −6.74315 + 11.6795i −0.231834 + 0.401549i
\(847\) −2.14590 −0.0737339
\(848\) 22.9969 0.789716
\(849\) 11.4984 19.9159i 0.394625 0.683511i
\(850\) −33.6830 58.3407i −1.15532 2.00107i
\(851\) −1.26133 + 2.18468i −0.0432377 + 0.0748900i
\(852\) −15.5902 27.0030i −0.534110 0.925106i
\(853\) −20.1525 34.9051i −0.690008 1.19513i −0.971835 0.235663i \(-0.924274\pi\)
0.281827 0.959465i \(-0.409060\pi\)
\(854\) 4.25325 0.145543
\(855\) 0 0
\(856\) 4.34752 0.148595
\(857\) 27.6664 + 47.9196i 0.945066 + 1.63690i 0.755619 + 0.655012i \(0.227336\pi\)
0.189447 + 0.981891i \(0.439330\pi\)
\(858\) 1.81636 + 3.14602i 0.0620094 + 0.107403i
\(859\) −19.4721 + 33.7267i −0.664381 + 1.15074i 0.315072 + 0.949068i \(0.397971\pi\)
−0.979453 + 0.201673i \(0.935362\pi\)
\(860\) 24.4164 + 42.2905i 0.832593 + 1.44209i
\(861\) 0.489357 0.847591i 0.0166772 0.0288858i
\(862\) −23.7426 −0.808678
\(863\) −32.5729 −1.10880 −0.554398 0.832252i \(-0.687051\pi\)
−0.554398 + 0.832252i \(0.687051\pi\)
\(864\) 16.6074 28.7648i 0.564995 0.978600i
\(865\) −26.9726 + 46.7179i −0.917096 + 1.58846i
\(866\) −35.9787 −1.22261
\(867\) 47.3408 1.60778
\(868\) −0.363271 + 0.629204i −0.0123302 + 0.0213566i
\(869\) −3.24920 5.62777i −0.110221 0.190909i
\(870\) 24.8990 43.1263i 0.844155 1.46212i
\(871\) 4.73607 + 8.20311i 0.160476 + 0.277952i
\(872\) 1.11803 + 1.93649i 0.0378614 + 0.0655779i
\(873\) −2.73466 −0.0925541
\(874\) 0 0
\(875\) −0.360680 −0.0121932
\(876\) −13.8496 23.9882i −0.467934 0.810485i
\(877\) 4.87380 + 8.44166i 0.164576 + 0.285055i 0.936505 0.350655i \(-0.114041\pi\)
−0.771928 + 0.635709i \(0.780708\pi\)
\(878\) −5.69098 + 9.85707i −0.192061 + 0.332660i
\(879\) 14.5344 + 25.1744i 0.490235 + 0.849111i
\(880\) 10.3262 17.8856i 0.348097 0.602922i
\(881\) 40.5755 1.36702 0.683511 0.729940i \(-0.260452\pi\)
0.683511 + 0.729940i \(0.260452\pi\)
\(882\) 8.16348 0.274879
\(883\) −6.98278 + 12.0945i −0.234989 + 0.407013i −0.959270 0.282492i \(-0.908839\pi\)
0.724280 + 0.689506i \(0.242172\pi\)
\(884\) −3.80423 + 6.58911i −0.127950 + 0.221616i
\(885\) −54.0689 −1.81751
\(886\) −28.8747 −0.970065
\(887\) 8.22899 14.2530i 0.276303 0.478570i −0.694160 0.719820i \(-0.744224\pi\)
0.970463 + 0.241250i \(0.0775575\pi\)
\(888\) 4.56352 + 7.90426i 0.153142 + 0.265249i
\(889\) −1.47333 + 2.55188i −0.0494139 + 0.0855874i
\(890\) −22.8885 39.6441i −0.767226 1.32887i
\(891\) −7.23607 12.5332i −0.242417 0.419879i
\(892\) −26.3521 −0.882332
\(893\) 0 0
\(894\) −21.8328 −0.730199
\(895\) −14.0413 24.3203i −0.469350 0.812938i
\(896\) 0.673542 + 1.16661i 0.0225015 + 0.0389737i
\(897\) −0.263932 + 0.457144i −0.00881243 + 0.0152636i
\(898\) 23.0517 + 39.9267i 0.769244 + 1.33237i
\(899\) 4.04508 7.00629i 0.134911 0.233673i
\(900\) 5.47214 0.182405
\(901\) 32.2299 1.07373
\(902\) 2.86475 4.96188i 0.0953856 0.165213i
\(903\) −2.09387 + 3.62669i −0.0696797 + 0.120689i
\(904\) 0 0
\(905\) 18.8091 0.625237
\(906\) −31.2789 + 54.1766i −1.03917 + 1.79990i
\(907\) −14.4904 25.0980i −0.481145 0.833367i 0.518621 0.855004i \(-0.326445\pi\)
−0.999766 + 0.0216372i \(0.993112\pi\)
\(908\) −12.7270 + 22.0438i −0.422361 + 0.731550i
\(909\) −1.21885 2.11111i −0.0404266 0.0700209i
\(910\) 0.527864 + 0.914287i 0.0174985 + 0.0303083i
\(911\) 25.4540 0.843329 0.421665 0.906752i \(-0.361446\pi\)
0.421665 + 0.906752i \(0.361446\pi\)
\(912\) 0 0
\(913\) 4.47214 0.148006
\(914\) 5.98385 + 10.3643i 0.197928 + 0.342822i
\(915\) −29.1522 50.4932i −0.963743 1.66925i
\(916\) 5.73607 9.93516i 0.189525 0.328267i
\(917\) −0.718847 1.24508i −0.0237384 0.0411162i
\(918\) 27.8885 48.3044i 0.920459 1.59428i
\(919\) −47.3607 −1.56228 −0.781142 0.624353i \(-0.785363\pi\)
−0.781142 + 0.624353i \(0.785363\pi\)
\(920\) 0.898056 0.0296080
\(921\) 26.2812 45.5203i 0.865993 1.49994i
\(922\) −11.2412 + 19.4703i −0.370208 + 0.641219i
\(923\) −7.36068 −0.242280
\(924\) −1.00406 −0.0330311
\(925\) 18.0701 31.2983i 0.594140 1.02908i
\(926\) 9.64932 + 16.7131i 0.317096 + 0.549227i
\(927\) −3.44095 + 5.95991i −0.113016 + 0.195749i
\(928\) 15.5902 + 27.0030i 0.511772 + 0.886416i
\(929\) −8.25329 14.2951i −0.270782 0.469008i 0.698281 0.715824i \(-0.253949\pi\)
−0.969062 + 0.246817i \(0.920615\pi\)
\(930\) 22.2703 0.730273
\(931\) 0 0
\(932\) 7.32624 0.239979
\(933\) 13.7638 + 23.8396i 0.450607 + 0.780475i
\(934\) 4.02874 + 6.97798i 0.131824 + 0.228327i
\(935\) 14.4721 25.0665i 0.473289 0.819761i
\(936\) 0.163119 + 0.282530i 0.00533171 + 0.00923479i
\(937\) 8.60081 14.8970i 0.280976 0.486665i −0.690649 0.723190i \(-0.742675\pi\)
0.971625 + 0.236525i \(0.0760084\pi\)
\(938\) −5.85410 −0.191143
\(939\) 10.2371 0.334075
\(940\) −30.0344 + 52.0212i −0.979615 + 1.69674i
\(941\) −13.9026 + 24.0800i −0.453211 + 0.784985i −0.998583 0.0532094i \(-0.983055\pi\)
0.545372 + 0.838194i \(0.316388\pi\)
\(942\) 16.5066 0.537813
\(943\) 0.832544 0.0271114
\(944\) 20.2825 35.1302i 0.660138 1.14339i
\(945\) −1.73060 2.99749i −0.0562964 0.0975082i
\(946\) −12.2577 + 21.2310i −0.398533 + 0.690280i
\(947\) 14.0902 + 24.4049i 0.457869 + 0.793052i 0.998848 0.0479836i \(-0.0152795\pi\)
−0.540979 + 0.841036i \(0.681946\pi\)
\(948\) 7.23607 + 12.5332i 0.235017 + 0.407061i
\(949\) −6.53888 −0.212261
\(950\) 0 0
\(951\) 59.5967 1.93256
\(952\) 0.555029 + 0.961339i 0.0179886 + 0.0311572i
\(953\) 10.2169 + 17.6961i 0.330957 + 0.573234i 0.982700 0.185206i \(-0.0592953\pi\)
−0.651743 + 0.758440i \(0.725962\pi\)
\(954\) −2.92705 + 5.06980i −0.0947668 + 0.164141i
\(955\) −27.5066 47.6428i −0.890092 1.54168i
\(956\) 7.39919 12.8158i 0.239307 0.414492i
\(957\) 11.1803 0.361409
\(958\) 30.2623 0.977730
\(959\) −1.02786 + 1.78031i −0.0331915 + 0.0574893i
\(960\) −14.4904 + 25.0980i −0.467674 + 0.810036i
\(961\) −27.3820 −0.883289
\(962\) −9.12705 −0.294268
\(963\) −1.84911 + 3.20276i −0.0595868 + 0.103207i
\(964\) 21.9601 + 38.0359i 0.707286 + 1.22505i
\(965\) 13.7638 23.8396i 0.443073 0.767425i
\(966\) −0.163119 0.282530i −0.00524827 0.00909026i
\(967\) −10.1459 17.5732i −0.326270 0.565116i 0.655498 0.755196i \(-0.272459\pi\)
−0.981769 + 0.190080i \(0.939125\pi\)
\(968\) −6.60440 −0.212273
\(969\) 0 0
\(970\) −27.2361 −0.874497
\(971\) 22.3233 + 38.6651i 0.716390 + 1.24082i 0.962421 + 0.271561i \(0.0875400\pi\)
−0.246031 + 0.969262i \(0.579127\pi\)
\(972\) 5.11855 + 8.86560i 0.164178 + 0.284364i
\(973\) 1.42705 2.47172i 0.0457492 0.0792399i
\(974\) 15.8541 + 27.4601i 0.507998 + 0.879879i
\(975\) 3.78115 6.54915i 0.121094 0.209741i
\(976\) 43.7426 1.40017
\(977\) 9.57608 0.306366 0.153183 0.988198i \(-0.451048\pi\)
0.153183 + 0.988198i \(0.451048\pi\)
\(978\) 27.9894 48.4790i 0.895001 1.55019i
\(979\) 5.13880 8.90066i 0.164237 0.284466i
\(980\) 36.3607 1.16150
\(981\) −1.90211 −0.0607298
\(982\) 16.4252 28.4493i 0.524150 0.907855i
\(983\) 19.6089 + 33.9636i 0.625427 + 1.08327i 0.988458 + 0.151495i \(0.0484086\pi\)
−0.363031 + 0.931777i \(0.618258\pi\)
\(984\) 1.50609 2.60862i 0.0480123 0.0831597i
\(985\) 18.5623 + 32.1509i 0.591444 + 1.02441i
\(986\) 26.1803 + 45.3457i 0.833752 + 1.44410i
\(987\) −5.15131 −0.163968
\(988\) 0 0
\(989\) −3.56231 −0.113275
\(990\) 2.62866 + 4.55296i 0.0835442 + 0.144703i
\(991\) −27.6664 47.9196i −0.878852 1.52222i −0.852602 0.522561i \(-0.824977\pi\)
−0.0262501 0.999655i \(-0.508357\pi\)
\(992\) −6.97214 + 12.0761i −0.221366 + 0.383416i
\(993\) −19.2705 33.3775i −0.611531 1.05920i
\(994\) 2.27458 3.93968i 0.0721451 0.124959i
\(995\) 3.41641 0.108307
\(996\) −9.95959 −0.315582
\(997\) 16.5623 28.6868i 0.524533 0.908519i −0.475058 0.879954i \(-0.657573\pi\)
0.999592 0.0285644i \(-0.00909357\pi\)
\(998\) 28.9807 50.1961i 0.917369 1.58893i
\(999\) 29.9230 0.946721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.2.c.j.292.4 8
19.2 odd 18 361.2.e.m.28.4 24
19.3 odd 18 361.2.e.m.234.4 24
19.4 even 9 361.2.e.m.245.1 24
19.5 even 9 361.2.e.m.99.4 24
19.6 even 9 361.2.e.m.62.4 24
19.7 even 3 361.2.a.i.1.1 4
19.8 odd 6 inner 361.2.c.j.68.1 8
19.9 even 9 361.2.e.m.54.1 24
19.10 odd 18 361.2.e.m.54.4 24
19.11 even 3 inner 361.2.c.j.68.4 8
19.12 odd 6 361.2.a.i.1.4 yes 4
19.13 odd 18 361.2.e.m.62.1 24
19.14 odd 18 361.2.e.m.99.1 24
19.15 odd 18 361.2.e.m.245.4 24
19.16 even 9 361.2.e.m.234.1 24
19.17 even 9 361.2.e.m.28.1 24
19.18 odd 2 inner 361.2.c.j.292.1 8
57.26 odd 6 3249.2.a.bc.1.4 4
57.50 even 6 3249.2.a.bc.1.1 4
76.7 odd 6 5776.2.a.bu.1.1 4
76.31 even 6 5776.2.a.bu.1.4 4
95.64 even 6 9025.2.a.bj.1.4 4
95.69 odd 6 9025.2.a.bj.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
361.2.a.i.1.1 4 19.7 even 3
361.2.a.i.1.4 yes 4 19.12 odd 6
361.2.c.j.68.1 8 19.8 odd 6 inner
361.2.c.j.68.4 8 19.11 even 3 inner
361.2.c.j.292.1 8 19.18 odd 2 inner
361.2.c.j.292.4 8 1.1 even 1 trivial
361.2.e.m.28.1 24 19.17 even 9
361.2.e.m.28.4 24 19.2 odd 18
361.2.e.m.54.1 24 19.9 even 9
361.2.e.m.54.4 24 19.10 odd 18
361.2.e.m.62.1 24 19.13 odd 18
361.2.e.m.62.4 24 19.6 even 9
361.2.e.m.99.1 24 19.14 odd 18
361.2.e.m.99.4 24 19.5 even 9
361.2.e.m.234.1 24 19.16 even 9
361.2.e.m.234.4 24 19.3 odd 18
361.2.e.m.245.1 24 19.4 even 9
361.2.e.m.245.4 24 19.15 odd 18
3249.2.a.bc.1.1 4 57.50 even 6
3249.2.a.bc.1.4 4 57.26 odd 6
5776.2.a.bu.1.1 4 76.7 odd 6
5776.2.a.bu.1.4 4 76.31 even 6
9025.2.a.bj.1.1 4 95.69 odd 6
9025.2.a.bj.1.4 4 95.64 even 6