Properties

Label 3249.2.a.bc.1.4
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,4,0,-8,0,0,0,10,0,0,0,0,-14,8,0,0,12,0,0,6,0,4,-10,0, 6,0,0,0,0,0,0,12,0,0,0,0,0,0,0,6,0,0,0,28,0,8,0,0,0,0,0,0,0,0,10,0,0,-20, 10,0,8,0,0,0,24,0,0,0,0,36,-10,0,0,-30,0,0,-24,0,30,4,0,48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 361)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.90211\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.90211 q^{2} +1.61803 q^{4} +3.23607 q^{5} +0.236068 q^{7} -0.726543 q^{8} +6.15537 q^{10} +1.38197 q^{11} -0.726543 q^{13} +0.449028 q^{14} -4.61803 q^{16} +6.47214 q^{17} +5.23607 q^{20} +2.62866 q^{22} +0.381966 q^{23} +5.47214 q^{25} -1.38197 q^{26} +0.381966 q^{28} +4.25325 q^{29} +1.90211 q^{31} -7.33094 q^{32} +12.3107 q^{34} +0.763932 q^{35} -6.60440 q^{37} -2.35114 q^{40} +2.17963 q^{41} +9.32624 q^{43} +2.23607 q^{44} +0.726543 q^{46} +11.4721 q^{47} -6.94427 q^{49} +10.4086 q^{50} -1.17557 q^{52} +4.97980 q^{53} +4.47214 q^{55} -0.171513 q^{56} +8.09017 q^{58} -8.78402 q^{59} -9.47214 q^{61} +3.61803 q^{62} -4.70820 q^{64} -2.35114 q^{65} +13.0373 q^{67} +10.4721 q^{68} +1.45309 q^{70} -10.1311 q^{71} +9.00000 q^{73} -12.5623 q^{74} +0.326238 q^{77} -4.70228 q^{79} -14.9443 q^{80} +4.14590 q^{82} +3.23607 q^{83} +20.9443 q^{85} +17.7396 q^{86} -1.00406 q^{88} -7.43694 q^{89} -0.171513 q^{91} +0.618034 q^{92} +21.8213 q^{94} -4.42477 q^{97} -13.2088 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 4 q^{5} - 8 q^{7} + 10 q^{11} - 14 q^{16} + 8 q^{17} + 12 q^{20} + 6 q^{23} + 4 q^{25} - 10 q^{26} + 6 q^{28} + 12 q^{35} + 6 q^{43} + 28 q^{47} + 8 q^{49} + 10 q^{58} - 20 q^{61} + 10 q^{62}+ \cdots - 2 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.90211 1.34500 0.672499 0.740098i \(-0.265221\pi\)
0.672499 + 0.740098i \(0.265221\pi\)
\(3\) 0 0
\(4\) 1.61803 0.809017
\(5\) 3.23607 1.44721 0.723607 0.690212i \(-0.242483\pi\)
0.723607 + 0.690212i \(0.242483\pi\)
\(6\) 0 0
\(7\) 0.236068 0.0892253 0.0446127 0.999004i \(-0.485795\pi\)
0.0446127 + 0.999004i \(0.485795\pi\)
\(8\) −0.726543 −0.256872
\(9\) 0 0
\(10\) 6.15537 1.94650
\(11\) 1.38197 0.416678 0.208339 0.978057i \(-0.433194\pi\)
0.208339 + 0.978057i \(0.433194\pi\)
\(12\) 0 0
\(13\) −0.726543 −0.201507 −0.100753 0.994911i \(-0.532125\pi\)
−0.100753 + 0.994911i \(0.532125\pi\)
\(14\) 0.449028 0.120008
\(15\) 0 0
\(16\) −4.61803 −1.15451
\(17\) 6.47214 1.56972 0.784862 0.619671i \(-0.212734\pi\)
0.784862 + 0.619671i \(0.212734\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 5.23607 1.17082
\(21\) 0 0
\(22\) 2.62866 0.560431
\(23\) 0.381966 0.0796454 0.0398227 0.999207i \(-0.487321\pi\)
0.0398227 + 0.999207i \(0.487321\pi\)
\(24\) 0 0
\(25\) 5.47214 1.09443
\(26\) −1.38197 −0.271026
\(27\) 0 0
\(28\) 0.381966 0.0721848
\(29\) 4.25325 0.789809 0.394905 0.918722i \(-0.370778\pi\)
0.394905 + 0.918722i \(0.370778\pi\)
\(30\) 0 0
\(31\) 1.90211 0.341630 0.170815 0.985303i \(-0.445360\pi\)
0.170815 + 0.985303i \(0.445360\pi\)
\(32\) −7.33094 −1.29594
\(33\) 0 0
\(34\) 12.3107 2.11127
\(35\) 0.763932 0.129128
\(36\) 0 0
\(37\) −6.60440 −1.08576 −0.542878 0.839812i \(-0.682665\pi\)
−0.542878 + 0.839812i \(0.682665\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −2.35114 −0.371748
\(41\) 2.17963 0.340401 0.170200 0.985409i \(-0.445559\pi\)
0.170200 + 0.985409i \(0.445559\pi\)
\(42\) 0 0
\(43\) 9.32624 1.42224 0.711119 0.703072i \(-0.248189\pi\)
0.711119 + 0.703072i \(0.248189\pi\)
\(44\) 2.23607 0.337100
\(45\) 0 0
\(46\) 0.726543 0.107123
\(47\) 11.4721 1.67338 0.836692 0.547674i \(-0.184487\pi\)
0.836692 + 0.547674i \(0.184487\pi\)
\(48\) 0 0
\(49\) −6.94427 −0.992039
\(50\) 10.4086 1.47200
\(51\) 0 0
\(52\) −1.17557 −0.163022
\(53\) 4.97980 0.684028 0.342014 0.939695i \(-0.388891\pi\)
0.342014 + 0.939695i \(0.388891\pi\)
\(54\) 0 0
\(55\) 4.47214 0.603023
\(56\) −0.171513 −0.0229194
\(57\) 0 0
\(58\) 8.09017 1.06229
\(59\) −8.78402 −1.14358 −0.571791 0.820399i \(-0.693751\pi\)
−0.571791 + 0.820399i \(0.693751\pi\)
\(60\) 0 0
\(61\) −9.47214 −1.21278 −0.606391 0.795166i \(-0.707384\pi\)
−0.606391 + 0.795166i \(0.707384\pi\)
\(62\) 3.61803 0.459491
\(63\) 0 0
\(64\) −4.70820 −0.588525
\(65\) −2.35114 −0.291623
\(66\) 0 0
\(67\) 13.0373 1.59276 0.796378 0.604799i \(-0.206746\pi\)
0.796378 + 0.604799i \(0.206746\pi\)
\(68\) 10.4721 1.26993
\(69\) 0 0
\(70\) 1.45309 0.173677
\(71\) −10.1311 −1.20234 −0.601171 0.799121i \(-0.705299\pi\)
−0.601171 + 0.799121i \(0.705299\pi\)
\(72\) 0 0
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) −12.5623 −1.46034
\(75\) 0 0
\(76\) 0 0
\(77\) 0.326238 0.0371783
\(78\) 0 0
\(79\) −4.70228 −0.529048 −0.264524 0.964379i \(-0.585215\pi\)
−0.264524 + 0.964379i \(0.585215\pi\)
\(80\) −14.9443 −1.67082
\(81\) 0 0
\(82\) 4.14590 0.457838
\(83\) 3.23607 0.355205 0.177602 0.984102i \(-0.443166\pi\)
0.177602 + 0.984102i \(0.443166\pi\)
\(84\) 0 0
\(85\) 20.9443 2.27173
\(86\) 17.7396 1.91291
\(87\) 0 0
\(88\) −1.00406 −0.107033
\(89\) −7.43694 −0.788314 −0.394157 0.919043i \(-0.628963\pi\)
−0.394157 + 0.919043i \(0.628963\pi\)
\(90\) 0 0
\(91\) −0.171513 −0.0179795
\(92\) 0.618034 0.0644345
\(93\) 0 0
\(94\) 21.8213 2.25070
\(95\) 0 0
\(96\) 0 0
\(97\) −4.42477 −0.449267 −0.224634 0.974443i \(-0.572118\pi\)
−0.224634 + 0.974443i \(0.572118\pi\)
\(98\) −13.2088 −1.33429
\(99\) 0 0
\(100\) 8.85410 0.885410
\(101\) −3.94427 −0.392470 −0.196235 0.980557i \(-0.562871\pi\)
−0.196235 + 0.980557i \(0.562871\pi\)
\(102\) 0 0
\(103\) 11.1352 1.09718 0.548590 0.836091i \(-0.315165\pi\)
0.548590 + 0.836091i \(0.315165\pi\)
\(104\) 0.527864 0.0517613
\(105\) 0 0
\(106\) 9.47214 0.920015
\(107\) −5.98385 −0.578481 −0.289240 0.957256i \(-0.593403\pi\)
−0.289240 + 0.957256i \(0.593403\pi\)
\(108\) 0 0
\(109\) −3.07768 −0.294789 −0.147394 0.989078i \(-0.547089\pi\)
−0.147394 + 0.989078i \(0.547089\pi\)
\(110\) 8.50651 0.811064
\(111\) 0 0
\(112\) −1.09017 −0.103011
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 1.23607 0.115264
\(116\) 6.88191 0.638969
\(117\) 0 0
\(118\) −16.7082 −1.53811
\(119\) 1.52786 0.140059
\(120\) 0 0
\(121\) −9.09017 −0.826379
\(122\) −18.0171 −1.63119
\(123\) 0 0
\(124\) 3.07768 0.276384
\(125\) 1.52786 0.136656
\(126\) 0 0
\(127\) 12.4822 1.10762 0.553810 0.832643i \(-0.313173\pi\)
0.553810 + 0.832643i \(0.313173\pi\)
\(128\) 5.70634 0.504374
\(129\) 0 0
\(130\) −4.47214 −0.392232
\(131\) −6.09017 −0.532101 −0.266050 0.963959i \(-0.585719\pi\)
−0.266050 + 0.963959i \(0.585719\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 24.7984 2.14225
\(135\) 0 0
\(136\) −4.70228 −0.403217
\(137\) −8.70820 −0.743992 −0.371996 0.928234i \(-0.621327\pi\)
−0.371996 + 0.928234i \(0.621327\pi\)
\(138\) 0 0
\(139\) −12.0902 −1.02547 −0.512737 0.858545i \(-0.671369\pi\)
−0.512737 + 0.858545i \(0.671369\pi\)
\(140\) 1.23607 0.104467
\(141\) 0 0
\(142\) −19.2705 −1.61715
\(143\) −1.00406 −0.0839635
\(144\) 0 0
\(145\) 13.7638 1.14302
\(146\) 17.1190 1.41678
\(147\) 0 0
\(148\) −10.6861 −0.878395
\(149\) −6.03444 −0.494361 −0.247180 0.968969i \(-0.579504\pi\)
−0.247180 + 0.968969i \(0.579504\pi\)
\(150\) 0 0
\(151\) −17.2905 −1.40708 −0.703542 0.710654i \(-0.748399\pi\)
−0.703542 + 0.710654i \(0.748399\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0.620541 0.0500047
\(155\) 6.15537 0.494411
\(156\) 0 0
\(157\) −4.56231 −0.364112 −0.182056 0.983288i \(-0.558275\pi\)
−0.182056 + 0.983288i \(0.558275\pi\)
\(158\) −8.94427 −0.711568
\(159\) 0 0
\(160\) −23.7234 −1.87550
\(161\) 0.0901699 0.00710639
\(162\) 0 0
\(163\) 15.4721 1.21187 0.605936 0.795514i \(-0.292799\pi\)
0.605936 + 0.795514i \(0.292799\pi\)
\(164\) 3.52671 0.275390
\(165\) 0 0
\(166\) 6.15537 0.477749
\(167\) −1.62460 −0.125715 −0.0628576 0.998023i \(-0.520021\pi\)
−0.0628576 + 0.998023i \(0.520021\pi\)
\(168\) 0 0
\(169\) −12.4721 −0.959395
\(170\) 39.8384 3.05546
\(171\) 0 0
\(172\) 15.0902 1.15061
\(173\) 16.6700 1.26740 0.633698 0.773581i \(-0.281536\pi\)
0.633698 + 0.773581i \(0.281536\pi\)
\(174\) 0 0
\(175\) 1.29180 0.0976506
\(176\) −6.38197 −0.481059
\(177\) 0 0
\(178\) −14.1459 −1.06028
\(179\) 8.67802 0.648626 0.324313 0.945950i \(-0.394867\pi\)
0.324313 + 0.945950i \(0.394867\pi\)
\(180\) 0 0
\(181\) −5.81234 −0.432028 −0.216014 0.976390i \(-0.569306\pi\)
−0.216014 + 0.976390i \(0.569306\pi\)
\(182\) −0.326238 −0.0241824
\(183\) 0 0
\(184\) −0.277515 −0.0204586
\(185\) −21.3723 −1.57132
\(186\) 0 0
\(187\) 8.94427 0.654070
\(188\) 18.5623 1.35380
\(189\) 0 0
\(190\) 0 0
\(191\) 17.0000 1.23008 0.615038 0.788497i \(-0.289140\pi\)
0.615038 + 0.788497i \(0.289140\pi\)
\(192\) 0 0
\(193\) 8.50651 0.612312 0.306156 0.951981i \(-0.400957\pi\)
0.306156 + 0.951981i \(0.400957\pi\)
\(194\) −8.41641 −0.604263
\(195\) 0 0
\(196\) −11.2361 −0.802576
\(197\) −11.4721 −0.817356 −0.408678 0.912679i \(-0.634010\pi\)
−0.408678 + 0.912679i \(0.634010\pi\)
\(198\) 0 0
\(199\) −1.05573 −0.0748386 −0.0374193 0.999300i \(-0.511914\pi\)
−0.0374193 + 0.999300i \(0.511914\pi\)
\(200\) −3.97574 −0.281127
\(201\) 0 0
\(202\) −7.50245 −0.527871
\(203\) 1.00406 0.0704710
\(204\) 0 0
\(205\) 7.05342 0.492632
\(206\) 21.1803 1.47570
\(207\) 0 0
\(208\) 3.35520 0.232641
\(209\) 0 0
\(210\) 0 0
\(211\) 0.620541 0.0427198 0.0213599 0.999772i \(-0.493200\pi\)
0.0213599 + 0.999772i \(0.493200\pi\)
\(212\) 8.05748 0.553390
\(213\) 0 0
\(214\) −11.3820 −0.778055
\(215\) 30.1803 2.05828
\(216\) 0 0
\(217\) 0.449028 0.0304820
\(218\) −5.85410 −0.396490
\(219\) 0 0
\(220\) 7.23607 0.487856
\(221\) −4.70228 −0.316310
\(222\) 0 0
\(223\) −16.2865 −1.09062 −0.545311 0.838233i \(-0.683589\pi\)
−0.545311 + 0.838233i \(0.683589\pi\)
\(224\) −1.73060 −0.115631
\(225\) 0 0
\(226\) 0 0
\(227\) −15.7314 −1.04413 −0.522066 0.852905i \(-0.674839\pi\)
−0.522066 + 0.852905i \(0.674839\pi\)
\(228\) 0 0
\(229\) −7.09017 −0.468532 −0.234266 0.972173i \(-0.575269\pi\)
−0.234266 + 0.972173i \(0.575269\pi\)
\(230\) 2.35114 0.155030
\(231\) 0 0
\(232\) −3.09017 −0.202880
\(233\) −4.52786 −0.296630 −0.148315 0.988940i \(-0.547385\pi\)
−0.148315 + 0.988940i \(0.547385\pi\)
\(234\) 0 0
\(235\) 37.1246 2.42174
\(236\) −14.2128 −0.925178
\(237\) 0 0
\(238\) 2.90617 0.188379
\(239\) 9.14590 0.591599 0.295799 0.955250i \(-0.404414\pi\)
0.295799 + 0.955250i \(0.404414\pi\)
\(240\) 0 0
\(241\) −27.1441 −1.74851 −0.874253 0.485470i \(-0.838648\pi\)
−0.874253 + 0.485470i \(0.838648\pi\)
\(242\) −17.2905 −1.11148
\(243\) 0 0
\(244\) −15.3262 −0.981162
\(245\) −22.4721 −1.43569
\(246\) 0 0
\(247\) 0 0
\(248\) −1.38197 −0.0877549
\(249\) 0 0
\(250\) 2.90617 0.183802
\(251\) 16.4164 1.03619 0.518097 0.855322i \(-0.326641\pi\)
0.518097 + 0.855322i \(0.326641\pi\)
\(252\) 0 0
\(253\) 0.527864 0.0331865
\(254\) 23.7426 1.48975
\(255\) 0 0
\(256\) 20.2705 1.26691
\(257\) 10.8576 0.677282 0.338641 0.940916i \(-0.390033\pi\)
0.338641 + 0.940916i \(0.390033\pi\)
\(258\) 0 0
\(259\) −1.55909 −0.0968769
\(260\) −3.80423 −0.235928
\(261\) 0 0
\(262\) −11.5842 −0.715674
\(263\) 23.8885 1.47303 0.736515 0.676421i \(-0.236470\pi\)
0.736515 + 0.676421i \(0.236470\pi\)
\(264\) 0 0
\(265\) 16.1150 0.989934
\(266\) 0 0
\(267\) 0 0
\(268\) 21.0948 1.28857
\(269\) −25.7970 −1.57287 −0.786437 0.617671i \(-0.788076\pi\)
−0.786437 + 0.617671i \(0.788076\pi\)
\(270\) 0 0
\(271\) −19.2705 −1.17060 −0.585300 0.810817i \(-0.699023\pi\)
−0.585300 + 0.810817i \(0.699023\pi\)
\(272\) −29.8885 −1.81226
\(273\) 0 0
\(274\) −16.5640 −1.00067
\(275\) 7.56231 0.456024
\(276\) 0 0
\(277\) −14.7639 −0.887079 −0.443539 0.896255i \(-0.646277\pi\)
−0.443539 + 0.896255i \(0.646277\pi\)
\(278\) −22.9969 −1.37926
\(279\) 0 0
\(280\) −0.555029 −0.0331693
\(281\) 15.6659 0.934551 0.467276 0.884112i \(-0.345236\pi\)
0.467276 + 0.884112i \(0.345236\pi\)
\(282\) 0 0
\(283\) −12.0902 −0.718686 −0.359343 0.933206i \(-0.616999\pi\)
−0.359343 + 0.933206i \(0.616999\pi\)
\(284\) −16.3925 −0.972714
\(285\) 0 0
\(286\) −1.90983 −0.112931
\(287\) 0.514540 0.0303724
\(288\) 0 0
\(289\) 24.8885 1.46403
\(290\) 26.1803 1.53736
\(291\) 0 0
\(292\) 14.5623 0.852194
\(293\) 15.2824 0.892808 0.446404 0.894831i \(-0.352704\pi\)
0.446404 + 0.894831i \(0.352704\pi\)
\(294\) 0 0
\(295\) −28.4257 −1.65501
\(296\) 4.79837 0.278900
\(297\) 0 0
\(298\) −11.4782 −0.664914
\(299\) −0.277515 −0.0160491
\(300\) 0 0
\(301\) 2.20163 0.126900
\(302\) −32.8885 −1.89252
\(303\) 0 0
\(304\) 0 0
\(305\) −30.6525 −1.75516
\(306\) 0 0
\(307\) −27.6336 −1.57714 −0.788568 0.614948i \(-0.789177\pi\)
−0.788568 + 0.614948i \(0.789177\pi\)
\(308\) 0.527864 0.0300778
\(309\) 0 0
\(310\) 11.7082 0.664981
\(311\) 14.4721 0.820640 0.410320 0.911942i \(-0.365417\pi\)
0.410320 + 0.911942i \(0.365417\pi\)
\(312\) 0 0
\(313\) 5.38197 0.304207 0.152103 0.988365i \(-0.451395\pi\)
0.152103 + 0.988365i \(0.451395\pi\)
\(314\) −8.67802 −0.489729
\(315\) 0 0
\(316\) −7.60845 −0.428009
\(317\) −31.3319 −1.75977 −0.879886 0.475184i \(-0.842381\pi\)
−0.879886 + 0.475184i \(0.842381\pi\)
\(318\) 0 0
\(319\) 5.87785 0.329097
\(320\) −15.2361 −0.851722
\(321\) 0 0
\(322\) 0.171513 0.00955807
\(323\) 0 0
\(324\) 0 0
\(325\) −3.97574 −0.220534
\(326\) 29.4298 1.62996
\(327\) 0 0
\(328\) −1.58359 −0.0874392
\(329\) 2.70820 0.149308
\(330\) 0 0
\(331\) 20.2622 1.11371 0.556856 0.830609i \(-0.312008\pi\)
0.556856 + 0.830609i \(0.312008\pi\)
\(332\) 5.23607 0.287367
\(333\) 0 0
\(334\) −3.09017 −0.169087
\(335\) 42.1895 2.30506
\(336\) 0 0
\(337\) −0.555029 −0.0302344 −0.0151172 0.999886i \(-0.504812\pi\)
−0.0151172 + 0.999886i \(0.504812\pi\)
\(338\) −23.7234 −1.29038
\(339\) 0 0
\(340\) 33.8885 1.83786
\(341\) 2.62866 0.142350
\(342\) 0 0
\(343\) −3.29180 −0.177740
\(344\) −6.77591 −0.365333
\(345\) 0 0
\(346\) 31.7082 1.70464
\(347\) −28.8328 −1.54783 −0.773913 0.633292i \(-0.781703\pi\)
−0.773913 + 0.633292i \(0.781703\pi\)
\(348\) 0 0
\(349\) 13.6180 0.728957 0.364478 0.931212i \(-0.381247\pi\)
0.364478 + 0.931212i \(0.381247\pi\)
\(350\) 2.45714 0.131340
\(351\) 0 0
\(352\) −10.1311 −0.539990
\(353\) −25.3820 −1.35095 −0.675473 0.737385i \(-0.736060\pi\)
−0.675473 + 0.737385i \(0.736060\pi\)
\(354\) 0 0
\(355\) −32.7849 −1.74004
\(356\) −12.0332 −0.637759
\(357\) 0 0
\(358\) 16.5066 0.872400
\(359\) 35.3820 1.86739 0.933694 0.358071i \(-0.116565\pi\)
0.933694 + 0.358071i \(0.116565\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −11.0557 −0.581076
\(363\) 0 0
\(364\) −0.277515 −0.0145457
\(365\) 29.1246 1.52445
\(366\) 0 0
\(367\) 12.5279 0.653949 0.326975 0.945033i \(-0.393971\pi\)
0.326975 + 0.945033i \(0.393971\pi\)
\(368\) −1.76393 −0.0919513
\(369\) 0 0
\(370\) −40.6525 −2.11342
\(371\) 1.17557 0.0610326
\(372\) 0 0
\(373\) −36.7607 −1.90340 −0.951698 0.307035i \(-0.900663\pi\)
−0.951698 + 0.307035i \(0.900663\pi\)
\(374\) 17.0130 0.879722
\(375\) 0 0
\(376\) −8.33499 −0.429845
\(377\) −3.09017 −0.159152
\(378\) 0 0
\(379\) −21.3723 −1.09782 −0.548910 0.835882i \(-0.684957\pi\)
−0.548910 + 0.835882i \(0.684957\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 32.3359 1.65445
\(383\) 11.3067 0.577744 0.288872 0.957368i \(-0.406720\pi\)
0.288872 + 0.957368i \(0.406720\pi\)
\(384\) 0 0
\(385\) 1.05573 0.0538049
\(386\) 16.1803 0.823558
\(387\) 0 0
\(388\) −7.15942 −0.363465
\(389\) −1.90983 −0.0968322 −0.0484161 0.998827i \(-0.515417\pi\)
−0.0484161 + 0.998827i \(0.515417\pi\)
\(390\) 0 0
\(391\) 2.47214 0.125021
\(392\) 5.04531 0.254827
\(393\) 0 0
\(394\) −21.8213 −1.09934
\(395\) −15.2169 −0.765646
\(396\) 0 0
\(397\) 1.29180 0.0648334 0.0324167 0.999474i \(-0.489680\pi\)
0.0324167 + 0.999474i \(0.489680\pi\)
\(398\) −2.00811 −0.100658
\(399\) 0 0
\(400\) −25.2705 −1.26353
\(401\) −4.70228 −0.234821 −0.117410 0.993083i \(-0.537459\pi\)
−0.117410 + 0.993083i \(0.537459\pi\)
\(402\) 0 0
\(403\) −1.38197 −0.0688406
\(404\) −6.38197 −0.317515
\(405\) 0 0
\(406\) 1.90983 0.0947833
\(407\) −9.12705 −0.452411
\(408\) 0 0
\(409\) −24.0664 −1.19001 −0.595004 0.803722i \(-0.702850\pi\)
−0.595004 + 0.803722i \(0.702850\pi\)
\(410\) 13.4164 0.662589
\(411\) 0 0
\(412\) 18.0171 0.887637
\(413\) −2.07363 −0.102036
\(414\) 0 0
\(415\) 10.4721 0.514057
\(416\) 5.32624 0.261140
\(417\) 0 0
\(418\) 0 0
\(419\) 6.58359 0.321630 0.160815 0.986985i \(-0.448588\pi\)
0.160815 + 0.986985i \(0.448588\pi\)
\(420\) 0 0
\(421\) 32.4014 1.57915 0.789575 0.613655i \(-0.210301\pi\)
0.789575 + 0.613655i \(0.210301\pi\)
\(422\) 1.18034 0.0574580
\(423\) 0 0
\(424\) −3.61803 −0.175707
\(425\) 35.4164 1.71795
\(426\) 0 0
\(427\) −2.23607 −0.108211
\(428\) −9.68208 −0.468001
\(429\) 0 0
\(430\) 57.4064 2.76838
\(431\) −12.4822 −0.601249 −0.300624 0.953743i \(-0.597195\pi\)
−0.300624 + 0.953743i \(0.597195\pi\)
\(432\) 0 0
\(433\) 18.9151 0.909003 0.454502 0.890746i \(-0.349817\pi\)
0.454502 + 0.890746i \(0.349817\pi\)
\(434\) 0.854102 0.0409982
\(435\) 0 0
\(436\) −4.97980 −0.238489
\(437\) 0 0
\(438\) 0 0
\(439\) −5.98385 −0.285594 −0.142797 0.989752i \(-0.545610\pi\)
−0.142797 + 0.989752i \(0.545610\pi\)
\(440\) −3.24920 −0.154899
\(441\) 0 0
\(442\) −8.94427 −0.425436
\(443\) −15.1803 −0.721240 −0.360620 0.932713i \(-0.617435\pi\)
−0.360620 + 0.932713i \(0.617435\pi\)
\(444\) 0 0
\(445\) −24.0664 −1.14086
\(446\) −30.9787 −1.46688
\(447\) 0 0
\(448\) −1.11146 −0.0525114
\(449\) −24.2380 −1.14386 −0.571930 0.820303i \(-0.693805\pi\)
−0.571930 + 0.820303i \(0.693805\pi\)
\(450\) 0 0
\(451\) 3.01217 0.141838
\(452\) 0 0
\(453\) 0 0
\(454\) −29.9230 −1.40436
\(455\) −0.555029 −0.0260202
\(456\) 0 0
\(457\) 6.29180 0.294318 0.147159 0.989113i \(-0.452987\pi\)
0.147159 + 0.989113i \(0.452987\pi\)
\(458\) −13.4863 −0.630174
\(459\) 0 0
\(460\) 2.00000 0.0932505
\(461\) 11.8197 0.550496 0.275248 0.961373i \(-0.411240\pi\)
0.275248 + 0.961373i \(0.411240\pi\)
\(462\) 0 0
\(463\) 10.1459 0.471520 0.235760 0.971811i \(-0.424242\pi\)
0.235760 + 0.971811i \(0.424242\pi\)
\(464\) −19.6417 −0.911842
\(465\) 0 0
\(466\) −8.61251 −0.398967
\(467\) −4.23607 −0.196022 −0.0980109 0.995185i \(-0.531248\pi\)
−0.0980109 + 0.995185i \(0.531248\pi\)
\(468\) 0 0
\(469\) 3.07768 0.142114
\(470\) 70.6152 3.25724
\(471\) 0 0
\(472\) 6.38197 0.293754
\(473\) 12.8885 0.592616
\(474\) 0 0
\(475\) 0 0
\(476\) 2.47214 0.113310
\(477\) 0 0
\(478\) 17.3965 0.795699
\(479\) 15.9098 0.726939 0.363469 0.931606i \(-0.381592\pi\)
0.363469 + 0.931606i \(0.381592\pi\)
\(480\) 0 0
\(481\) 4.79837 0.218787
\(482\) −51.6312 −2.35174
\(483\) 0 0
\(484\) −14.7082 −0.668555
\(485\) −14.3188 −0.650185
\(486\) 0 0
\(487\) 16.6700 0.755389 0.377695 0.925930i \(-0.376717\pi\)
0.377695 + 0.925930i \(0.376717\pi\)
\(488\) 6.88191 0.311529
\(489\) 0 0
\(490\) −42.7445 −1.93100
\(491\) −17.2705 −0.779407 −0.389704 0.920940i \(-0.627423\pi\)
−0.389704 + 0.920940i \(0.627423\pi\)
\(492\) 0 0
\(493\) 27.5276 1.23978
\(494\) 0 0
\(495\) 0 0
\(496\) −8.78402 −0.394414
\(497\) −2.39163 −0.107279
\(498\) 0 0
\(499\) 30.4721 1.36412 0.682060 0.731296i \(-0.261084\pi\)
0.682060 + 0.731296i \(0.261084\pi\)
\(500\) 2.47214 0.110557
\(501\) 0 0
\(502\) 31.2259 1.39368
\(503\) −20.5967 −0.918364 −0.459182 0.888342i \(-0.651857\pi\)
−0.459182 + 0.888342i \(0.651857\pi\)
\(504\) 0 0
\(505\) −12.7639 −0.567988
\(506\) 1.00406 0.0446358
\(507\) 0 0
\(508\) 20.1967 0.896084
\(509\) 18.1886 0.806195 0.403097 0.915157i \(-0.367934\pi\)
0.403097 + 0.915157i \(0.367934\pi\)
\(510\) 0 0
\(511\) 2.12461 0.0939873
\(512\) 27.1441 1.19961
\(513\) 0 0
\(514\) 20.6525 0.910942
\(515\) 36.0341 1.58785
\(516\) 0 0
\(517\) 15.8541 0.697263
\(518\) −2.96556 −0.130299
\(519\) 0 0
\(520\) 1.70820 0.0749097
\(521\) −21.8213 −0.956008 −0.478004 0.878358i \(-0.658640\pi\)
−0.478004 + 0.878358i \(0.658640\pi\)
\(522\) 0 0
\(523\) 34.4095 1.50462 0.752312 0.658807i \(-0.228938\pi\)
0.752312 + 0.658807i \(0.228938\pi\)
\(524\) −9.85410 −0.430478
\(525\) 0 0
\(526\) 45.4387 1.98122
\(527\) 12.3107 0.536264
\(528\) 0 0
\(529\) −22.8541 −0.993657
\(530\) 30.6525 1.33146
\(531\) 0 0
\(532\) 0 0
\(533\) −1.58359 −0.0685930
\(534\) 0 0
\(535\) −19.3642 −0.837186
\(536\) −9.47214 −0.409134
\(537\) 0 0
\(538\) −49.0689 −2.11551
\(539\) −9.59675 −0.413361
\(540\) 0 0
\(541\) 6.70820 0.288408 0.144204 0.989548i \(-0.453938\pi\)
0.144204 + 0.989548i \(0.453938\pi\)
\(542\) −36.6547 −1.57445
\(543\) 0 0
\(544\) −47.4468 −2.03427
\(545\) −9.95959 −0.426622
\(546\) 0 0
\(547\) −20.7112 −0.885549 −0.442774 0.896633i \(-0.646006\pi\)
−0.442774 + 0.896633i \(0.646006\pi\)
\(548\) −14.0902 −0.601902
\(549\) 0 0
\(550\) 14.3844 0.613351
\(551\) 0 0
\(552\) 0 0
\(553\) −1.11006 −0.0472045
\(554\) −28.0827 −1.19312
\(555\) 0 0
\(556\) −19.5623 −0.829627
\(557\) 39.3607 1.66777 0.833883 0.551942i \(-0.186113\pi\)
0.833883 + 0.551942i \(0.186113\pi\)
\(558\) 0 0
\(559\) −6.77591 −0.286590
\(560\) −3.52786 −0.149079
\(561\) 0 0
\(562\) 29.7984 1.25697
\(563\) −21.7153 −0.915191 −0.457595 0.889161i \(-0.651289\pi\)
−0.457595 + 0.889161i \(0.651289\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −22.9969 −0.966631
\(567\) 0 0
\(568\) 7.36068 0.308847
\(569\) −25.4540 −1.06709 −0.533544 0.845772i \(-0.679140\pi\)
−0.533544 + 0.845772i \(0.679140\pi\)
\(570\) 0 0
\(571\) −46.1033 −1.92936 −0.964682 0.263417i \(-0.915150\pi\)
−0.964682 + 0.263417i \(0.915150\pi\)
\(572\) −1.62460 −0.0679279
\(573\) 0 0
\(574\) 0.978714 0.0408507
\(575\) 2.09017 0.0871661
\(576\) 0 0
\(577\) −15.2918 −0.636606 −0.318303 0.947989i \(-0.603113\pi\)
−0.318303 + 0.947989i \(0.603113\pi\)
\(578\) 47.3408 1.96912
\(579\) 0 0
\(580\) 22.2703 0.924725
\(581\) 0.763932 0.0316932
\(582\) 0 0
\(583\) 6.88191 0.285020
\(584\) −6.53888 −0.270581
\(585\) 0 0
\(586\) 29.0689 1.20082
\(587\) −16.8197 −0.694222 −0.347111 0.937824i \(-0.612837\pi\)
−0.347111 + 0.937824i \(0.612837\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −54.0689 −2.22598
\(591\) 0 0
\(592\) 30.4993 1.25351
\(593\) −17.2918 −0.710089 −0.355044 0.934849i \(-0.615534\pi\)
−0.355044 + 0.934849i \(0.615534\pi\)
\(594\) 0 0
\(595\) 4.94427 0.202695
\(596\) −9.76393 −0.399946
\(597\) 0 0
\(598\) −0.527864 −0.0215860
\(599\) −4.87380 −0.199138 −0.0995689 0.995031i \(-0.531746\pi\)
−0.0995689 + 0.995031i \(0.531746\pi\)
\(600\) 0 0
\(601\) −9.74759 −0.397613 −0.198806 0.980039i \(-0.563706\pi\)
−0.198806 + 0.980039i \(0.563706\pi\)
\(602\) 4.18774 0.170680
\(603\) 0 0
\(604\) −27.9767 −1.13835
\(605\) −29.4164 −1.19595
\(606\) 0 0
\(607\) −27.9767 −1.13554 −0.567769 0.823188i \(-0.692193\pi\)
−0.567769 + 0.823188i \(0.692193\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −58.3045 −2.36068
\(611\) −8.33499 −0.337198
\(612\) 0 0
\(613\) −33.4721 −1.35193 −0.675963 0.736935i \(-0.736272\pi\)
−0.675963 + 0.736935i \(0.736272\pi\)
\(614\) −52.5623 −2.12124
\(615\) 0 0
\(616\) −0.237026 −0.00955004
\(617\) 16.2705 0.655026 0.327513 0.944847i \(-0.393789\pi\)
0.327513 + 0.944847i \(0.393789\pi\)
\(618\) 0 0
\(619\) −34.7771 −1.39781 −0.698905 0.715215i \(-0.746329\pi\)
−0.698905 + 0.715215i \(0.746329\pi\)
\(620\) 9.95959 0.399987
\(621\) 0 0
\(622\) 27.5276 1.10376
\(623\) −1.75562 −0.0703376
\(624\) 0 0
\(625\) −22.4164 −0.896656
\(626\) 10.2371 0.409157
\(627\) 0 0
\(628\) −7.38197 −0.294573
\(629\) −42.7445 −1.70434
\(630\) 0 0
\(631\) −25.0000 −0.995234 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(632\) 3.41641 0.135897
\(633\) 0 0
\(634\) −59.5967 −2.36689
\(635\) 40.3934 1.60296
\(636\) 0 0
\(637\) 5.04531 0.199902
\(638\) 11.1803 0.442634
\(639\) 0 0
\(640\) 18.4661 0.729937
\(641\) 46.7858 1.84793 0.923964 0.382480i \(-0.124930\pi\)
0.923964 + 0.382480i \(0.124930\pi\)
\(642\) 0 0
\(643\) −5.70820 −0.225110 −0.112555 0.993646i \(-0.535903\pi\)
−0.112555 + 0.993646i \(0.535903\pi\)
\(644\) 0.145898 0.00574919
\(645\) 0 0
\(646\) 0 0
\(647\) −8.12461 −0.319411 −0.159706 0.987165i \(-0.551055\pi\)
−0.159706 + 0.987165i \(0.551055\pi\)
\(648\) 0 0
\(649\) −12.1392 −0.476506
\(650\) −7.56231 −0.296618
\(651\) 0 0
\(652\) 25.0344 0.980424
\(653\) 22.7426 0.889989 0.444994 0.895533i \(-0.353206\pi\)
0.444994 + 0.895533i \(0.353206\pi\)
\(654\) 0 0
\(655\) −19.7082 −0.770063
\(656\) −10.0656 −0.392995
\(657\) 0 0
\(658\) 5.15131 0.200819
\(659\) 37.8303 1.47366 0.736829 0.676079i \(-0.236322\pi\)
0.736829 + 0.676079i \(0.236322\pi\)
\(660\) 0 0
\(661\) 33.6830 1.31012 0.655059 0.755578i \(-0.272644\pi\)
0.655059 + 0.755578i \(0.272644\pi\)
\(662\) 38.5410 1.49794
\(663\) 0 0
\(664\) −2.35114 −0.0912420
\(665\) 0 0
\(666\) 0 0
\(667\) 1.62460 0.0629047
\(668\) −2.62866 −0.101706
\(669\) 0 0
\(670\) 80.2492 3.10030
\(671\) −13.0902 −0.505340
\(672\) 0 0
\(673\) 9.57608 0.369131 0.184565 0.982820i \(-0.440912\pi\)
0.184565 + 0.982820i \(0.440912\pi\)
\(674\) −1.05573 −0.0406651
\(675\) 0 0
\(676\) −20.1803 −0.776167
\(677\) −15.1109 −0.580759 −0.290380 0.956912i \(-0.593782\pi\)
−0.290380 + 0.956912i \(0.593782\pi\)
\(678\) 0 0
\(679\) −1.04455 −0.0400860
\(680\) −15.2169 −0.583542
\(681\) 0 0
\(682\) 5.00000 0.191460
\(683\) −40.2219 −1.53905 −0.769524 0.638618i \(-0.779506\pi\)
−0.769524 + 0.638618i \(0.779506\pi\)
\(684\) 0 0
\(685\) −28.1803 −1.07672
\(686\) −6.26137 −0.239060
\(687\) 0 0
\(688\) −43.0689 −1.64199
\(689\) −3.61803 −0.137836
\(690\) 0 0
\(691\) −16.3050 −0.620270 −0.310135 0.950693i \(-0.600374\pi\)
−0.310135 + 0.950693i \(0.600374\pi\)
\(692\) 26.9726 1.02534
\(693\) 0 0
\(694\) −54.8433 −2.08182
\(695\) −39.1246 −1.48408
\(696\) 0 0
\(697\) 14.1068 0.534335
\(698\) 25.9030 0.980445
\(699\) 0 0
\(700\) 2.09017 0.0790010
\(701\) −8.74265 −0.330205 −0.165103 0.986276i \(-0.552796\pi\)
−0.165103 + 0.986276i \(0.552796\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −6.50658 −0.245226
\(705\) 0 0
\(706\) −48.2794 −1.81702
\(707\) −0.931116 −0.0350182
\(708\) 0 0
\(709\) −13.4164 −0.503864 −0.251932 0.967745i \(-0.581066\pi\)
−0.251932 + 0.967745i \(0.581066\pi\)
\(710\) −62.3607 −2.34035
\(711\) 0 0
\(712\) 5.40325 0.202495
\(713\) 0.726543 0.0272092
\(714\) 0 0
\(715\) −3.24920 −0.121513
\(716\) 14.0413 0.524749
\(717\) 0 0
\(718\) 67.3005 2.51163
\(719\) −14.6180 −0.545161 −0.272580 0.962133i \(-0.587877\pi\)
−0.272580 + 0.962133i \(0.587877\pi\)
\(720\) 0 0
\(721\) 2.62866 0.0978962
\(722\) 0 0
\(723\) 0 0
\(724\) −9.40456 −0.349518
\(725\) 23.2744 0.864389
\(726\) 0 0
\(727\) −36.9443 −1.37019 −0.685094 0.728455i \(-0.740239\pi\)
−0.685094 + 0.728455i \(0.740239\pi\)
\(728\) 0.124612 0.00461842
\(729\) 0 0
\(730\) 55.3983 2.05038
\(731\) 60.3607 2.23252
\(732\) 0 0
\(733\) 12.8197 0.473505 0.236752 0.971570i \(-0.423917\pi\)
0.236752 + 0.971570i \(0.423917\pi\)
\(734\) 23.8294 0.879560
\(735\) 0 0
\(736\) −2.80017 −0.103216
\(737\) 18.0171 0.663667
\(738\) 0 0
\(739\) 19.4721 0.716294 0.358147 0.933665i \(-0.383409\pi\)
0.358147 + 0.933665i \(0.383409\pi\)
\(740\) −34.5811 −1.27123
\(741\) 0 0
\(742\) 2.23607 0.0820886
\(743\) −36.7607 −1.34862 −0.674309 0.738449i \(-0.735559\pi\)
−0.674309 + 0.738449i \(0.735559\pi\)
\(744\) 0 0
\(745\) −19.5279 −0.715446
\(746\) −69.9230 −2.56006
\(747\) 0 0
\(748\) 14.4721 0.529154
\(749\) −1.41260 −0.0516151
\(750\) 0 0
\(751\) 12.0737 0.440576 0.220288 0.975435i \(-0.429300\pi\)
0.220288 + 0.975435i \(0.429300\pi\)
\(752\) −52.9787 −1.93193
\(753\) 0 0
\(754\) −5.87785 −0.214059
\(755\) −55.9533 −2.03635
\(756\) 0 0
\(757\) −37.2705 −1.35462 −0.677310 0.735698i \(-0.736854\pi\)
−0.677310 + 0.735698i \(0.736854\pi\)
\(758\) −40.6525 −1.47656
\(759\) 0 0
\(760\) 0 0
\(761\) 23.9443 0.867979 0.433990 0.900918i \(-0.357105\pi\)
0.433990 + 0.900918i \(0.357105\pi\)
\(762\) 0 0
\(763\) −0.726543 −0.0263026
\(764\) 27.5066 0.995153
\(765\) 0 0
\(766\) 21.5066 0.777064
\(767\) 6.38197 0.230439
\(768\) 0 0
\(769\) 33.1591 1.19575 0.597873 0.801591i \(-0.296013\pi\)
0.597873 + 0.801591i \(0.296013\pi\)
\(770\) 2.00811 0.0723674
\(771\) 0 0
\(772\) 13.7638 0.495371
\(773\) 12.3762 0.445143 0.222571 0.974916i \(-0.428555\pi\)
0.222571 + 0.974916i \(0.428555\pi\)
\(774\) 0 0
\(775\) 10.4086 0.373889
\(776\) 3.21478 0.115404
\(777\) 0 0
\(778\) −3.63271 −0.130239
\(779\) 0 0
\(780\) 0 0
\(781\) −14.0008 −0.500990
\(782\) 4.70228 0.168153
\(783\) 0 0
\(784\) 32.0689 1.14532
\(785\) −14.7639 −0.526947
\(786\) 0 0
\(787\) −19.3642 −0.690258 −0.345129 0.938555i \(-0.612165\pi\)
−0.345129 + 0.938555i \(0.612165\pi\)
\(788\) −18.5623 −0.661255
\(789\) 0 0
\(790\) −28.9443 −1.02979
\(791\) 0 0
\(792\) 0 0
\(793\) 6.88191 0.244384
\(794\) 2.45714 0.0872007
\(795\) 0 0
\(796\) −1.70820 −0.0605457
\(797\) −13.2088 −0.467879 −0.233940 0.972251i \(-0.575162\pi\)
−0.233940 + 0.972251i \(0.575162\pi\)
\(798\) 0 0
\(799\) 74.2492 2.62675
\(800\) −40.1159 −1.41831
\(801\) 0 0
\(802\) −8.94427 −0.315833
\(803\) 12.4377 0.438917
\(804\) 0 0
\(805\) 0.291796 0.0102845
\(806\) −2.62866 −0.0925904
\(807\) 0 0
\(808\) 2.86568 0.100814
\(809\) 34.2705 1.20489 0.602443 0.798162i \(-0.294194\pi\)
0.602443 + 0.798162i \(0.294194\pi\)
\(810\) 0 0
\(811\) 22.2048 0.779717 0.389858 0.920875i \(-0.372524\pi\)
0.389858 + 0.920875i \(0.372524\pi\)
\(812\) 1.62460 0.0570122
\(813\) 0 0
\(814\) −17.3607 −0.608492
\(815\) 50.0689 1.75384
\(816\) 0 0
\(817\) 0 0
\(818\) −45.7771 −1.60056
\(819\) 0 0
\(820\) 11.4127 0.398548
\(821\) −10.0344 −0.350204 −0.175102 0.984550i \(-0.556026\pi\)
−0.175102 + 0.984550i \(0.556026\pi\)
\(822\) 0 0
\(823\) 50.7214 1.76804 0.884018 0.467453i \(-0.154828\pi\)
0.884018 + 0.467453i \(0.154828\pi\)
\(824\) −8.09017 −0.281834
\(825\) 0 0
\(826\) −3.94427 −0.137239
\(827\) 29.7073 1.03302 0.516511 0.856280i \(-0.327230\pi\)
0.516511 + 0.856280i \(0.327230\pi\)
\(828\) 0 0
\(829\) 15.1109 0.524823 0.262412 0.964956i \(-0.415482\pi\)
0.262412 + 0.964956i \(0.415482\pi\)
\(830\) 19.9192 0.691405
\(831\) 0 0
\(832\) 3.42071 0.118592
\(833\) −44.9443 −1.55723
\(834\) 0 0
\(835\) −5.25731 −0.181937
\(836\) 0 0
\(837\) 0 0
\(838\) 12.5227 0.432591
\(839\) 16.9475 0.585093 0.292546 0.956251i \(-0.405497\pi\)
0.292546 + 0.956251i \(0.405497\pi\)
\(840\) 0 0
\(841\) −10.9098 −0.376201
\(842\) 61.6312 2.12395
\(843\) 0 0
\(844\) 1.00406 0.0345611
\(845\) −40.3607 −1.38845
\(846\) 0 0
\(847\) −2.14590 −0.0737339
\(848\) −22.9969 −0.789716
\(849\) 0 0
\(850\) 67.3660 2.31064
\(851\) −2.52265 −0.0864755
\(852\) 0 0
\(853\) 40.3050 1.38002 0.690008 0.723802i \(-0.257607\pi\)
0.690008 + 0.723802i \(0.257607\pi\)
\(854\) −4.25325 −0.145543
\(855\) 0 0
\(856\) 4.34752 0.148595
\(857\) 55.3328 1.89013 0.945066 0.326879i \(-0.105997\pi\)
0.945066 + 0.326879i \(0.105997\pi\)
\(858\) 0 0
\(859\) 38.9443 1.32876 0.664381 0.747394i \(-0.268695\pi\)
0.664381 + 0.747394i \(0.268695\pi\)
\(860\) 48.8328 1.66519
\(861\) 0 0
\(862\) −23.7426 −0.808678
\(863\) 32.5729 1.10880 0.554398 0.832252i \(-0.312949\pi\)
0.554398 + 0.832252i \(0.312949\pi\)
\(864\) 0 0
\(865\) 53.9452 1.83419
\(866\) 35.9787 1.22261
\(867\) 0 0
\(868\) 0.726543 0.0246605
\(869\) −6.49839 −0.220443
\(870\) 0 0
\(871\) −9.47214 −0.320951
\(872\) 2.23607 0.0757228
\(873\) 0 0
\(874\) 0 0
\(875\) 0.360680 0.0121932
\(876\) 0 0
\(877\) −9.74759 −0.329153 −0.164576 0.986364i \(-0.552626\pi\)
−0.164576 + 0.986364i \(0.552626\pi\)
\(878\) −11.3820 −0.384123
\(879\) 0 0
\(880\) −20.6525 −0.696195
\(881\) −40.5755 −1.36702 −0.683511 0.729940i \(-0.739548\pi\)
−0.683511 + 0.729940i \(0.739548\pi\)
\(882\) 0 0
\(883\) 13.9656 0.469978 0.234989 0.971998i \(-0.424495\pi\)
0.234989 + 0.971998i \(0.424495\pi\)
\(884\) −7.60845 −0.255900
\(885\) 0 0
\(886\) −28.8747 −0.970065
\(887\) 16.4580 0.552605 0.276303 0.961071i \(-0.410891\pi\)
0.276303 + 0.961071i \(0.410891\pi\)
\(888\) 0 0
\(889\) 2.94666 0.0988278
\(890\) −45.7771 −1.53445
\(891\) 0 0
\(892\) −26.3521 −0.882332
\(893\) 0 0
\(894\) 0 0
\(895\) 28.0827 0.938700
\(896\) 1.34708 0.0450029
\(897\) 0 0
\(898\) −46.1033 −1.53849
\(899\) 8.09017 0.269822
\(900\) 0 0
\(901\) 32.2299 1.07373
\(902\) 5.72949 0.190771
\(903\) 0 0
\(904\) 0 0
\(905\) −18.8091 −0.625237
\(906\) 0 0
\(907\) 28.9807 0.962289 0.481145 0.876641i \(-0.340221\pi\)
0.481145 + 0.876641i \(0.340221\pi\)
\(908\) −25.4540 −0.844721
\(909\) 0 0
\(910\) −1.05573 −0.0349970
\(911\) −25.4540 −0.843329 −0.421665 0.906752i \(-0.638554\pi\)
−0.421665 + 0.906752i \(0.638554\pi\)
\(912\) 0 0
\(913\) 4.47214 0.148006
\(914\) 11.9677 0.395857
\(915\) 0 0
\(916\) −11.4721 −0.379050
\(917\) −1.43769 −0.0474768
\(918\) 0 0
\(919\) −47.3607 −1.56228 −0.781142 0.624353i \(-0.785363\pi\)
−0.781142 + 0.624353i \(0.785363\pi\)
\(920\) −0.898056 −0.0296080
\(921\) 0 0
\(922\) 22.4823 0.740416
\(923\) 7.36068 0.242280
\(924\) 0 0
\(925\) −36.1401 −1.18828
\(926\) 19.2986 0.634193
\(927\) 0 0
\(928\) −31.1803 −1.02354
\(929\) −16.5066 −0.541563 −0.270782 0.962641i \(-0.587282\pi\)
−0.270782 + 0.962641i \(0.587282\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −7.32624 −0.239979
\(933\) 0 0
\(934\) −8.05748 −0.263649
\(935\) 28.9443 0.946579
\(936\) 0 0
\(937\) −17.2016 −0.561953 −0.280976 0.959715i \(-0.590658\pi\)
−0.280976 + 0.959715i \(0.590658\pi\)
\(938\) 5.85410 0.191143
\(939\) 0 0
\(940\) 60.0689 1.95923
\(941\) −27.8052 −0.906422 −0.453211 0.891403i \(-0.649722\pi\)
−0.453211 + 0.891403i \(0.649722\pi\)
\(942\) 0 0
\(943\) 0.832544 0.0271114
\(944\) 40.5649 1.32028
\(945\) 0 0
\(946\) 24.5155 0.797067
\(947\) 28.1803 0.915738 0.457869 0.889020i \(-0.348613\pi\)
0.457869 + 0.889020i \(0.348613\pi\)
\(948\) 0 0
\(949\) −6.53888 −0.212261
\(950\) 0 0
\(951\) 0 0
\(952\) −1.11006 −0.0359772
\(953\) 20.4337 0.661913 0.330957 0.943646i \(-0.392629\pi\)
0.330957 + 0.943646i \(0.392629\pi\)
\(954\) 0 0
\(955\) 55.0132 1.78018
\(956\) 14.7984 0.478614
\(957\) 0 0
\(958\) 30.2623 0.977730
\(959\) −2.05573 −0.0663829
\(960\) 0 0
\(961\) −27.3820 −0.883289
\(962\) 9.12705 0.294268
\(963\) 0 0
\(964\) −43.9201 −1.41457
\(965\) 27.5276 0.886146
\(966\) 0 0
\(967\) 20.2918 0.652540 0.326270 0.945277i \(-0.394208\pi\)
0.326270 + 0.945277i \(0.394208\pi\)
\(968\) 6.60440 0.212273
\(969\) 0 0
\(970\) −27.2361 −0.874497
\(971\) 44.6467 1.43278 0.716390 0.697700i \(-0.245793\pi\)
0.716390 + 0.697700i \(0.245793\pi\)
\(972\) 0 0
\(973\) −2.85410 −0.0914983
\(974\) 31.7082 1.01600
\(975\) 0 0
\(976\) 43.7426 1.40017
\(977\) −9.57608 −0.306366 −0.153183 0.988198i \(-0.548952\pi\)
−0.153183 + 0.988198i \(0.548952\pi\)
\(978\) 0 0
\(979\) −10.2776 −0.328473
\(980\) −36.3607 −1.16150
\(981\) 0 0
\(982\) −32.8505 −1.04830
\(983\) 39.2178 1.25085 0.625427 0.780282i \(-0.284925\pi\)
0.625427 + 0.780282i \(0.284925\pi\)
\(984\) 0 0
\(985\) −37.1246 −1.18289
\(986\) 52.3607 1.66750
\(987\) 0 0
\(988\) 0 0
\(989\) 3.56231 0.113275
\(990\) 0 0
\(991\) 55.3328 1.75770 0.878852 0.477094i \(-0.158310\pi\)
0.878852 + 0.477094i \(0.158310\pi\)
\(992\) −13.9443 −0.442731
\(993\) 0 0
\(994\) −4.54915 −0.144290
\(995\) −3.41641 −0.108307
\(996\) 0 0
\(997\) −33.1246 −1.04907 −0.524533 0.851390i \(-0.675760\pi\)
−0.524533 + 0.851390i \(0.675760\pi\)
\(998\) 57.9614 1.83474
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.bc.1.4 4
3.2 odd 2 361.2.a.i.1.1 4
12.11 even 2 5776.2.a.bu.1.1 4
15.14 odd 2 9025.2.a.bj.1.4 4
19.18 odd 2 inner 3249.2.a.bc.1.1 4
57.2 even 18 361.2.e.m.99.1 24
57.5 odd 18 361.2.e.m.234.1 24
57.8 even 6 361.2.c.j.292.1 8
57.11 odd 6 361.2.c.j.292.4 8
57.14 even 18 361.2.e.m.234.4 24
57.17 odd 18 361.2.e.m.99.4 24
57.23 odd 18 361.2.e.m.54.1 24
57.26 odd 6 361.2.c.j.68.4 8
57.29 even 18 361.2.e.m.62.1 24
57.32 even 18 361.2.e.m.245.4 24
57.35 odd 18 361.2.e.m.28.1 24
57.41 even 18 361.2.e.m.28.4 24
57.44 odd 18 361.2.e.m.245.1 24
57.47 odd 18 361.2.e.m.62.4 24
57.50 even 6 361.2.c.j.68.1 8
57.53 even 18 361.2.e.m.54.4 24
57.56 even 2 361.2.a.i.1.4 yes 4
228.227 odd 2 5776.2.a.bu.1.4 4
285.284 even 2 9025.2.a.bj.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
361.2.a.i.1.1 4 3.2 odd 2
361.2.a.i.1.4 yes 4 57.56 even 2
361.2.c.j.68.1 8 57.50 even 6
361.2.c.j.68.4 8 57.26 odd 6
361.2.c.j.292.1 8 57.8 even 6
361.2.c.j.292.4 8 57.11 odd 6
361.2.e.m.28.1 24 57.35 odd 18
361.2.e.m.28.4 24 57.41 even 18
361.2.e.m.54.1 24 57.23 odd 18
361.2.e.m.54.4 24 57.53 even 18
361.2.e.m.62.1 24 57.29 even 18
361.2.e.m.62.4 24 57.47 odd 18
361.2.e.m.99.1 24 57.2 even 18
361.2.e.m.99.4 24 57.17 odd 18
361.2.e.m.234.1 24 57.5 odd 18
361.2.e.m.234.4 24 57.14 even 18
361.2.e.m.245.1 24 57.44 odd 18
361.2.e.m.245.4 24 57.32 even 18
3249.2.a.bc.1.1 4 19.18 odd 2 inner
3249.2.a.bc.1.4 4 1.1 even 1 trivial
5776.2.a.bu.1.1 4 12.11 even 2
5776.2.a.bu.1.4 4 228.227 odd 2
9025.2.a.bj.1.1 4 285.284 even 2
9025.2.a.bj.1.4 4 15.14 odd 2