Properties

Label 360.8.a.l.1.2
Level $360$
Weight $8$
Character 360.1
Self dual yes
Analytic conductor $112.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [360,8,Mod(1,360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("360.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 360.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,250,0,844] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.458609174\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{46}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6.78233\) of defining polynomial
Character \(\chi\) \(=\) 360.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+125.000 q^{5} +1344.40 q^{7} -4381.83 q^{11} -3760.14 q^{13} -3848.55 q^{17} +38959.0 q^{19} -59312.5 q^{23} +15625.0 q^{25} -207630. q^{29} -286080. q^{31} +168050. q^{35} -453930. q^{37} -5982.93 q^{41} -216595. q^{43} +406755. q^{47} +983860. q^{49} +1.38096e6 q^{53} -547729. q^{55} +1.88711e6 q^{59} -2.77012e6 q^{61} -470018. q^{65} +3.24935e6 q^{67} +571258. q^{71} +2.07058e6 q^{73} -5.89092e6 q^{77} -1.92993e6 q^{79} -6.83187e6 q^{83} -481068. q^{85} +3.55603e6 q^{89} -5.05512e6 q^{91} +4.86988e6 q^{95} -1.26173e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 250 q^{5} + 844 q^{7} - 4640 q^{11} + 6804 q^{13} - 38516 q^{17} + 39720 q^{19} - 46244 q^{23} + 31250 q^{25} - 186940 q^{29} - 327128 q^{31} + 105500 q^{35} + 67060 q^{37} + 162964 q^{41} - 1123468 q^{43}+ \cdots - 9119804 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 125.000 0.447214
\(6\) 0 0
\(7\) 1344.40 1.48144 0.740720 0.671813i \(-0.234484\pi\)
0.740720 + 0.671813i \(0.234484\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4381.83 −0.992615 −0.496308 0.868147i \(-0.665311\pi\)
−0.496308 + 0.868147i \(0.665311\pi\)
\(12\) 0 0
\(13\) −3760.14 −0.474682 −0.237341 0.971426i \(-0.576276\pi\)
−0.237341 + 0.971426i \(0.576276\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3848.55 −0.189988 −0.0949939 0.995478i \(-0.530283\pi\)
−0.0949939 + 0.995478i \(0.530283\pi\)
\(18\) 0 0
\(19\) 38959.0 1.30308 0.651539 0.758615i \(-0.274124\pi\)
0.651539 + 0.758615i \(0.274124\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −59312.5 −1.01648 −0.508240 0.861215i \(-0.669704\pi\)
−0.508240 + 0.861215i \(0.669704\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −207630. −1.58087 −0.790437 0.612543i \(-0.790147\pi\)
−0.790437 + 0.612543i \(0.790147\pi\)
\(30\) 0 0
\(31\) −286080. −1.72473 −0.862366 0.506286i \(-0.831018\pi\)
−0.862366 + 0.506286i \(0.831018\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 168050. 0.662521
\(36\) 0 0
\(37\) −453930. −1.47327 −0.736635 0.676290i \(-0.763587\pi\)
−0.736635 + 0.676290i \(0.763587\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5982.93 −0.0135572 −0.00677860 0.999977i \(-0.502158\pi\)
−0.00677860 + 0.999977i \(0.502158\pi\)
\(42\) 0 0
\(43\) −216595. −0.415440 −0.207720 0.978188i \(-0.566604\pi\)
−0.207720 + 0.978188i \(0.566604\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 406755. 0.571466 0.285733 0.958309i \(-0.407763\pi\)
0.285733 + 0.958309i \(0.407763\pi\)
\(48\) 0 0
\(49\) 983860. 1.19467
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.38096e6 1.27414 0.637070 0.770806i \(-0.280146\pi\)
0.637070 + 0.770806i \(0.280146\pi\)
\(54\) 0 0
\(55\) −547729. −0.443911
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.88711e6 1.19623 0.598116 0.801410i \(-0.295916\pi\)
0.598116 + 0.801410i \(0.295916\pi\)
\(60\) 0 0
\(61\) −2.77012e6 −1.56258 −0.781292 0.624166i \(-0.785439\pi\)
−0.781292 + 0.624166i \(0.785439\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −470018. −0.212284
\(66\) 0 0
\(67\) 3.24935e6 1.31988 0.659941 0.751317i \(-0.270581\pi\)
0.659941 + 0.751317i \(0.270581\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 571258. 0.189421 0.0947105 0.995505i \(-0.469807\pi\)
0.0947105 + 0.995505i \(0.469807\pi\)
\(72\) 0 0
\(73\) 2.07058e6 0.622962 0.311481 0.950252i \(-0.399175\pi\)
0.311481 + 0.950252i \(0.399175\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.89092e6 −1.47050
\(78\) 0 0
\(79\) −1.92993e6 −0.440399 −0.220199 0.975455i \(-0.570671\pi\)
−0.220199 + 0.975455i \(0.570671\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.83187e6 −1.31149 −0.655747 0.754980i \(-0.727646\pi\)
−0.655747 + 0.754980i \(0.727646\pi\)
\(84\) 0 0
\(85\) −481068. −0.0849651
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.55603e6 0.534688 0.267344 0.963601i \(-0.413854\pi\)
0.267344 + 0.963601i \(0.413854\pi\)
\(90\) 0 0
\(91\) −5.05512e6 −0.703213
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.86988e6 0.582755
\(96\) 0 0
\(97\) −1.26173e7 −1.40367 −0.701836 0.712338i \(-0.747636\pi\)
−0.701836 + 0.712338i \(0.747636\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.61157e6 0.928260 0.464130 0.885767i \(-0.346367\pi\)
0.464130 + 0.885767i \(0.346367\pi\)
\(102\) 0 0
\(103\) −7.89879e6 −0.712247 −0.356123 0.934439i \(-0.615902\pi\)
−0.356123 + 0.934439i \(0.615902\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.12283e7 −1.67522 −0.837610 0.546268i \(-0.816048\pi\)
−0.837610 + 0.546268i \(0.816048\pi\)
\(108\) 0 0
\(109\) 2.42928e7 1.79674 0.898369 0.439241i \(-0.144753\pi\)
0.898369 + 0.439241i \(0.144753\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.00007e7 −1.30398 −0.651989 0.758228i \(-0.726065\pi\)
−0.651989 + 0.758228i \(0.726065\pi\)
\(114\) 0 0
\(115\) −7.41406e6 −0.454584
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.17397e6 −0.281456
\(120\) 0 0
\(121\) −286752. −0.0147149
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.95312e6 0.0894427
\(126\) 0 0
\(127\) −3.36067e7 −1.45584 −0.727918 0.685664i \(-0.759512\pi\)
−0.727918 + 0.685664i \(0.759512\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.39131e6 0.209529 0.104765 0.994497i \(-0.466591\pi\)
0.104765 + 0.994497i \(0.466591\pi\)
\(132\) 0 0
\(133\) 5.23764e7 1.93043
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.80031e7 −0.930432 −0.465216 0.885197i \(-0.654023\pi\)
−0.465216 + 0.885197i \(0.654023\pi\)
\(138\) 0 0
\(139\) 3.18588e7 1.00618 0.503092 0.864233i \(-0.332196\pi\)
0.503092 + 0.864233i \(0.332196\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.64763e7 0.471176
\(144\) 0 0
\(145\) −2.59538e7 −0.706989
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.66511e7 −1.65065 −0.825325 0.564657i \(-0.809008\pi\)
−0.825325 + 0.564657i \(0.809008\pi\)
\(150\) 0 0
\(151\) −2.37628e7 −0.561666 −0.280833 0.959757i \(-0.590611\pi\)
−0.280833 + 0.959757i \(0.590611\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.57600e7 −0.771324
\(156\) 0 0
\(157\) 1.19191e7 0.245806 0.122903 0.992419i \(-0.460780\pi\)
0.122903 + 0.992419i \(0.460780\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.97396e7 −1.50586
\(162\) 0 0
\(163\) −6.13425e7 −1.10944 −0.554721 0.832036i \(-0.687175\pi\)
−0.554721 + 0.832036i \(0.687175\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.44216e7 −1.07034 −0.535172 0.844743i \(-0.679753\pi\)
−0.535172 + 0.844743i \(0.679753\pi\)
\(168\) 0 0
\(169\) −4.86099e7 −0.774677
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.67708e7 0.246260 0.123130 0.992391i \(-0.460707\pi\)
0.123130 + 0.992391i \(0.460707\pi\)
\(174\) 0 0
\(175\) 2.10062e7 0.296288
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.75477e7 0.880288 0.440144 0.897927i \(-0.354927\pi\)
0.440144 + 0.897927i \(0.354927\pi\)
\(180\) 0 0
\(181\) −7.02414e7 −0.880477 −0.440238 0.897881i \(-0.645106\pi\)
−0.440238 + 0.897881i \(0.645106\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.67412e7 −0.658867
\(186\) 0 0
\(187\) 1.68637e7 0.188585
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.03750e7 0.419272 0.209636 0.977779i \(-0.432772\pi\)
0.209636 + 0.977779i \(0.432772\pi\)
\(192\) 0 0
\(193\) 3.48873e7 0.349315 0.174657 0.984629i \(-0.444118\pi\)
0.174657 + 0.984629i \(0.444118\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.29401e8 1.20588 0.602941 0.797786i \(-0.293995\pi\)
0.602941 + 0.797786i \(0.293995\pi\)
\(198\) 0 0
\(199\) −1.20451e8 −1.08349 −0.541746 0.840542i \(-0.682237\pi\)
−0.541746 + 0.840542i \(0.682237\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.79137e8 −2.34197
\(204\) 0 0
\(205\) −747866. −0.00606297
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.70712e8 −1.29346
\(210\) 0 0
\(211\) 8.00773e7 0.586841 0.293421 0.955983i \(-0.405206\pi\)
0.293421 + 0.955983i \(0.405206\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.70743e7 −0.185790
\(216\) 0 0
\(217\) −3.84605e8 −2.55509
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.44711e7 0.0901837
\(222\) 0 0
\(223\) 3.09401e6 0.0186833 0.00934167 0.999956i \(-0.497026\pi\)
0.00934167 + 0.999956i \(0.497026\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.59329e7 −0.544349 −0.272174 0.962248i \(-0.587743\pi\)
−0.272174 + 0.962248i \(0.587743\pi\)
\(228\) 0 0
\(229\) 1.03824e8 0.571314 0.285657 0.958332i \(-0.407788\pi\)
0.285657 + 0.958332i \(0.407788\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.36559e8 0.707255 0.353628 0.935386i \(-0.384948\pi\)
0.353628 + 0.935386i \(0.384948\pi\)
\(234\) 0 0
\(235\) 5.08443e7 0.255567
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.60216e8 0.759125 0.379562 0.925166i \(-0.376075\pi\)
0.379562 + 0.925166i \(0.376075\pi\)
\(240\) 0 0
\(241\) 1.93437e8 0.890183 0.445092 0.895485i \(-0.353171\pi\)
0.445092 + 0.895485i \(0.353171\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.22982e8 0.534271
\(246\) 0 0
\(247\) −1.46491e8 −0.618547
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.20551e8 −1.67865 −0.839326 0.543628i \(-0.817050\pi\)
−0.839326 + 0.543628i \(0.817050\pi\)
\(252\) 0 0
\(253\) 2.59897e8 1.00897
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.74041e8 1.37453 0.687264 0.726408i \(-0.258812\pi\)
0.687264 + 0.726408i \(0.258812\pi\)
\(258\) 0 0
\(259\) −6.10262e8 −2.18256
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.64114e8 −0.895253 −0.447626 0.894221i \(-0.647731\pi\)
−0.447626 + 0.894221i \(0.647731\pi\)
\(264\) 0 0
\(265\) 1.72621e8 0.569812
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.09451e8 −1.28253 −0.641267 0.767318i \(-0.721591\pi\)
−0.641267 + 0.767318i \(0.721591\pi\)
\(270\) 0 0
\(271\) −4.20454e8 −1.28329 −0.641647 0.767000i \(-0.721749\pi\)
−0.641647 + 0.767000i \(0.721749\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.84661e7 −0.198523
\(276\) 0 0
\(277\) 5.93342e8 1.67736 0.838679 0.544626i \(-0.183328\pi\)
0.838679 + 0.544626i \(0.183328\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.93331e8 1.32638 0.663188 0.748453i \(-0.269203\pi\)
0.663188 + 0.748453i \(0.269203\pi\)
\(282\) 0 0
\(283\) −3.01738e8 −0.791365 −0.395683 0.918387i \(-0.629492\pi\)
−0.395683 + 0.918387i \(0.629492\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.04343e6 −0.0200842
\(288\) 0 0
\(289\) −3.95527e8 −0.963905
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.08855e8 −0.717328 −0.358664 0.933467i \(-0.616768\pi\)
−0.358664 + 0.933467i \(0.616768\pi\)
\(294\) 0 0
\(295\) 2.35889e8 0.534971
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.23023e8 0.482504
\(300\) 0 0
\(301\) −2.91189e8 −0.615450
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.46264e8 −0.698809
\(306\) 0 0
\(307\) 4.53878e8 0.895272 0.447636 0.894216i \(-0.352266\pi\)
0.447636 + 0.894216i \(0.352266\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.85507e8 −0.915239 −0.457619 0.889148i \(-0.651298\pi\)
−0.457619 + 0.889148i \(0.651298\pi\)
\(312\) 0 0
\(313\) 3.18061e8 0.586281 0.293141 0.956069i \(-0.405300\pi\)
0.293141 + 0.956069i \(0.405300\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.85248e8 −0.679255 −0.339627 0.940560i \(-0.610301\pi\)
−0.339627 + 0.940560i \(0.610301\pi\)
\(318\) 0 0
\(319\) 9.09800e8 1.56920
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.49936e8 −0.247569
\(324\) 0 0
\(325\) −5.87522e7 −0.0949363
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.46840e8 0.846592
\(330\) 0 0
\(331\) −7.93180e8 −1.20219 −0.601096 0.799177i \(-0.705269\pi\)
−0.601096 + 0.799177i \(0.705269\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.06169e8 0.590269
\(336\) 0 0
\(337\) 9.20184e8 1.30969 0.654847 0.755761i \(-0.272733\pi\)
0.654847 + 0.755761i \(0.272733\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.25355e9 1.71200
\(342\) 0 0
\(343\) 2.15530e8 0.288388
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.26003e8 0.418859 0.209430 0.977824i \(-0.432839\pi\)
0.209430 + 0.977824i \(0.432839\pi\)
\(348\) 0 0
\(349\) 4.40162e8 0.554273 0.277136 0.960831i \(-0.410615\pi\)
0.277136 + 0.960831i \(0.410615\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.14414e8 −0.259443 −0.129721 0.991550i \(-0.541408\pi\)
−0.129721 + 0.991550i \(0.541408\pi\)
\(354\) 0 0
\(355\) 7.14073e7 0.0847117
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.01055e8 −0.685621 −0.342810 0.939405i \(-0.611379\pi\)
−0.342810 + 0.939405i \(0.611379\pi\)
\(360\) 0 0
\(361\) 6.23935e8 0.698014
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.58822e8 0.278597
\(366\) 0 0
\(367\) −2.28125e8 −0.240903 −0.120452 0.992719i \(-0.538434\pi\)
−0.120452 + 0.992719i \(0.538434\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.85656e9 1.88756
\(372\) 0 0
\(373\) 1.09122e9 1.08876 0.544381 0.838838i \(-0.316765\pi\)
0.544381 + 0.838838i \(0.316765\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.80719e8 0.750412
\(378\) 0 0
\(379\) −2.92161e8 −0.275667 −0.137834 0.990455i \(-0.544014\pi\)
−0.137834 + 0.990455i \(0.544014\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.58727e8 −0.599114 −0.299557 0.954078i \(-0.596839\pi\)
−0.299557 + 0.954078i \(0.596839\pi\)
\(384\) 0 0
\(385\) −7.36365e8 −0.657628
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.79238e8 0.154385 0.0771927 0.997016i \(-0.475404\pi\)
0.0771927 + 0.997016i \(0.475404\pi\)
\(390\) 0 0
\(391\) 2.28267e8 0.193119
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.41241e8 −0.196952
\(396\) 0 0
\(397\) 2.98717e8 0.239603 0.119802 0.992798i \(-0.461774\pi\)
0.119802 + 0.992798i \(0.461774\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.70861e9 1.32323 0.661617 0.749842i \(-0.269871\pi\)
0.661617 + 0.749842i \(0.269871\pi\)
\(402\) 0 0
\(403\) 1.07570e9 0.818698
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.98904e9 1.46239
\(408\) 0 0
\(409\) −9.66030e8 −0.698166 −0.349083 0.937092i \(-0.613507\pi\)
−0.349083 + 0.937092i \(0.613507\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.53703e9 1.77215
\(414\) 0 0
\(415\) −8.53984e8 −0.586518
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.38808e7 −0.00921862 −0.00460931 0.999989i \(-0.501467\pi\)
−0.00460931 + 0.999989i \(0.501467\pi\)
\(420\) 0 0
\(421\) −3.27466e8 −0.213884 −0.106942 0.994265i \(-0.534106\pi\)
−0.106942 + 0.994265i \(0.534106\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.01335e7 −0.0379975
\(426\) 0 0
\(427\) −3.72413e9 −2.31488
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.79809e7 −0.0168341 −0.00841707 0.999965i \(-0.502679\pi\)
−0.00841707 + 0.999965i \(0.502679\pi\)
\(432\) 0 0
\(433\) 1.37019e9 0.811098 0.405549 0.914073i \(-0.367080\pi\)
0.405549 + 0.914073i \(0.367080\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.31076e9 −1.32455
\(438\) 0 0
\(439\) −2.52455e9 −1.42416 −0.712079 0.702099i \(-0.752246\pi\)
−0.712079 + 0.702099i \(0.752246\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.36683e9 0.746969 0.373485 0.927636i \(-0.378163\pi\)
0.373485 + 0.927636i \(0.378163\pi\)
\(444\) 0 0
\(445\) 4.44504e8 0.239120
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.85383e8 0.148787 0.0743937 0.997229i \(-0.476298\pi\)
0.0743937 + 0.997229i \(0.476298\pi\)
\(450\) 0 0
\(451\) 2.62162e7 0.0134571
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.31890e8 −0.314486
\(456\) 0 0
\(457\) 2.55438e9 1.25193 0.625964 0.779852i \(-0.284706\pi\)
0.625964 + 0.779852i \(0.284706\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.81572e9 −1.33855 −0.669277 0.743013i \(-0.733396\pi\)
−0.669277 + 0.743013i \(0.733396\pi\)
\(462\) 0 0
\(463\) 4.29378e8 0.201051 0.100526 0.994934i \(-0.467948\pi\)
0.100526 + 0.994934i \(0.467948\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.02740e9 −0.466800 −0.233400 0.972381i \(-0.574985\pi\)
−0.233400 + 0.972381i \(0.574985\pi\)
\(468\) 0 0
\(469\) 4.36842e9 1.95533
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.49081e8 0.412372
\(474\) 0 0
\(475\) 6.08735e8 0.260616
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.23612e9 0.513908 0.256954 0.966424i \(-0.417281\pi\)
0.256954 + 0.966424i \(0.417281\pi\)
\(480\) 0 0
\(481\) 1.70684e9 0.699334
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.57716e9 −0.627741
\(486\) 0 0
\(487\) −3.53667e9 −1.38753 −0.693767 0.720200i \(-0.744050\pi\)
−0.693767 + 0.720200i \(0.744050\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.64544e8 0.177109 0.0885546 0.996071i \(-0.471775\pi\)
0.0885546 + 0.996071i \(0.471775\pi\)
\(492\) 0 0
\(493\) 7.99074e8 0.300347
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.67998e8 0.280616
\(498\) 0 0
\(499\) −9.22783e8 −0.332467 −0.166233 0.986086i \(-0.553160\pi\)
−0.166233 + 0.986086i \(0.553160\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.71743e9 0.952072 0.476036 0.879426i \(-0.342073\pi\)
0.476036 + 0.879426i \(0.342073\pi\)
\(504\) 0 0
\(505\) 1.20145e9 0.415130
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.75201e9 1.26111 0.630553 0.776146i \(-0.282828\pi\)
0.630553 + 0.776146i \(0.282828\pi\)
\(510\) 0 0
\(511\) 2.78368e9 0.922881
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.87349e8 −0.318526
\(516\) 0 0
\(517\) −1.78233e9 −0.567245
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.80618e9 1.79870 0.899349 0.437231i \(-0.144041\pi\)
0.899349 + 0.437231i \(0.144041\pi\)
\(522\) 0 0
\(523\) 3.82763e9 1.16997 0.584983 0.811045i \(-0.301101\pi\)
0.584983 + 0.811045i \(0.301101\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.10099e9 0.327678
\(528\) 0 0
\(529\) 1.13149e8 0.0332319
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.24966e7 0.00643536
\(534\) 0 0
\(535\) −2.65354e9 −0.749181
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.31111e9 −1.18585
\(540\) 0 0
\(541\) 1.27166e9 0.345286 0.172643 0.984984i \(-0.444769\pi\)
0.172643 + 0.984984i \(0.444769\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.03660e9 0.803526
\(546\) 0 0
\(547\) −1.67963e8 −0.0438792 −0.0219396 0.999759i \(-0.506984\pi\)
−0.0219396 + 0.999759i \(0.506984\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.08907e9 −2.06000
\(552\) 0 0
\(553\) −2.59459e9 −0.652425
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.43415e9 0.351644 0.175822 0.984422i \(-0.443742\pi\)
0.175822 + 0.984422i \(0.443742\pi\)
\(558\) 0 0
\(559\) 8.14427e8 0.197202
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.27203e9 −0.772748 −0.386374 0.922342i \(-0.626273\pi\)
−0.386374 + 0.922342i \(0.626273\pi\)
\(564\) 0 0
\(565\) −2.50009e9 −0.583157
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.11773e9 −0.937054 −0.468527 0.883449i \(-0.655215\pi\)
−0.468527 + 0.883449i \(0.655215\pi\)
\(570\) 0 0
\(571\) 5.65009e9 1.27007 0.635037 0.772481i \(-0.280985\pi\)
0.635037 + 0.772481i \(0.280985\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9.26758e8 −0.203296
\(576\) 0 0
\(577\) 3.08235e9 0.667986 0.333993 0.942576i \(-0.391604\pi\)
0.333993 + 0.942576i \(0.391604\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.18475e9 −1.94290
\(582\) 0 0
\(583\) −6.05115e9 −1.26473
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.66057e9 0.746990 0.373495 0.927632i \(-0.378159\pi\)
0.373495 + 0.927632i \(0.378159\pi\)
\(588\) 0 0
\(589\) −1.11454e10 −2.24746
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.95365e9 −1.36937 −0.684686 0.728838i \(-0.740061\pi\)
−0.684686 + 0.728838i \(0.740061\pi\)
\(594\) 0 0
\(595\) −6.46747e8 −0.125871
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.50491e9 −0.856431 −0.428216 0.903677i \(-0.640858\pi\)
−0.428216 + 0.903677i \(0.640858\pi\)
\(600\) 0 0
\(601\) −9.17562e9 −1.72415 −0.862075 0.506781i \(-0.830835\pi\)
−0.862075 + 0.506781i \(0.830835\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.58440e7 −0.00658070
\(606\) 0 0
\(607\) 4.68250e9 0.849801 0.424900 0.905240i \(-0.360309\pi\)
0.424900 + 0.905240i \(0.360309\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.52945e9 −0.271264
\(612\) 0 0
\(613\) 7.11746e9 1.24800 0.623998 0.781426i \(-0.285507\pi\)
0.623998 + 0.781426i \(0.285507\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.75577e9 −0.986518 −0.493259 0.869882i \(-0.664195\pi\)
−0.493259 + 0.869882i \(0.664195\pi\)
\(618\) 0 0
\(619\) −3.50085e9 −0.593276 −0.296638 0.954990i \(-0.595865\pi\)
−0.296638 + 0.954990i \(0.595865\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.78072e9 0.792109
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.74697e9 0.279903
\(630\) 0 0
\(631\) 7.67576e9 1.21624 0.608119 0.793846i \(-0.291924\pi\)
0.608119 + 0.793846i \(0.291924\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.20084e9 −0.651070
\(636\) 0 0
\(637\) −3.69945e9 −0.567087
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.44253e9 −0.516268 −0.258134 0.966109i \(-0.583108\pi\)
−0.258134 + 0.966109i \(0.583108\pi\)
\(642\) 0 0
\(643\) 2.94778e9 0.437277 0.218638 0.975806i \(-0.429839\pi\)
0.218638 + 0.975806i \(0.429839\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.86842e9 −1.43246 −0.716230 0.697864i \(-0.754134\pi\)
−0.716230 + 0.697864i \(0.754134\pi\)
\(648\) 0 0
\(649\) −8.26900e9 −1.18740
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.25724e9 −0.317236 −0.158618 0.987340i \(-0.550704\pi\)
−0.158618 + 0.987340i \(0.550704\pi\)
\(654\) 0 0
\(655\) 6.73914e8 0.0937044
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.14817e9 −0.700735 −0.350368 0.936612i \(-0.613943\pi\)
−0.350368 + 0.936612i \(0.613943\pi\)
\(660\) 0 0
\(661\) 3.55066e9 0.478194 0.239097 0.970996i \(-0.423149\pi\)
0.239097 + 0.970996i \(0.423149\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.54705e9 0.863316
\(666\) 0 0
\(667\) 1.23151e10 1.60693
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.21382e10 1.55104
\(672\) 0 0
\(673\) −7.61740e9 −0.963284 −0.481642 0.876368i \(-0.659959\pi\)
−0.481642 + 0.876368i \(0.659959\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.23904e9 −0.648921 −0.324460 0.945899i \(-0.605183\pi\)
−0.324460 + 0.945899i \(0.605183\pi\)
\(678\) 0 0
\(679\) −1.69627e10 −2.07946
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.98470e9 1.07902 0.539512 0.841978i \(-0.318609\pi\)
0.539512 + 0.841978i \(0.318609\pi\)
\(684\) 0 0
\(685\) −3.50039e9 −0.416102
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.19262e9 −0.604810
\(690\) 0 0
\(691\) −4.25054e9 −0.490085 −0.245042 0.969512i \(-0.578802\pi\)
−0.245042 + 0.969512i \(0.578802\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.98235e9 0.449979
\(696\) 0 0
\(697\) 2.30256e7 0.00257570
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.84334e9 0.421402 0.210701 0.977551i \(-0.432425\pi\)
0.210701 + 0.977551i \(0.432425\pi\)
\(702\) 0 0
\(703\) −1.76847e10 −1.91979
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.29218e10 1.37516
\(708\) 0 0
\(709\) 1.20064e10 1.26518 0.632588 0.774489i \(-0.281993\pi\)
0.632588 + 0.774489i \(0.281993\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.69681e10 1.75316
\(714\) 0 0
\(715\) 2.05954e9 0.210716
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.87813e9 −0.690112 −0.345056 0.938582i \(-0.612140\pi\)
−0.345056 + 0.938582i \(0.612140\pi\)
\(720\) 0 0
\(721\) −1.06191e10 −1.05515
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.24422e9 −0.316175
\(726\) 0 0
\(727\) 1.20128e10 1.15951 0.579754 0.814791i \(-0.303149\pi\)
0.579754 + 0.814791i \(0.303149\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.33575e8 0.0789285
\(732\) 0 0
\(733\) 3.09361e9 0.290136 0.145068 0.989422i \(-0.453660\pi\)
0.145068 + 0.989422i \(0.453660\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.42381e10 −1.31014
\(738\) 0 0
\(739\) −2.02192e10 −1.84293 −0.921465 0.388461i \(-0.873007\pi\)
−0.921465 + 0.388461i \(0.873007\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.20781e9 −0.197470 −0.0987351 0.995114i \(-0.531480\pi\)
−0.0987351 + 0.995114i \(0.531480\pi\)
\(744\) 0 0
\(745\) −8.33138e9 −0.738194
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.85393e10 −2.48174
\(750\) 0 0
\(751\) 1.46597e10 1.26295 0.631476 0.775396i \(-0.282450\pi\)
0.631476 + 0.775396i \(0.282450\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.97035e9 −0.251185
\(756\) 0 0
\(757\) 8.01162e9 0.671251 0.335626 0.941995i \(-0.391052\pi\)
0.335626 + 0.941995i \(0.391052\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.63492e10 1.34478 0.672390 0.740197i \(-0.265268\pi\)
0.672390 + 0.740197i \(0.265268\pi\)
\(762\) 0 0
\(763\) 3.26592e10 2.66176
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.09580e9 −0.567829
\(768\) 0 0
\(769\) −8.77857e9 −0.696116 −0.348058 0.937473i \(-0.613159\pi\)
−0.348058 + 0.937473i \(0.613159\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.03519e9 0.625703 0.312851 0.949802i \(-0.398716\pi\)
0.312851 + 0.949802i \(0.398716\pi\)
\(774\) 0 0
\(775\) −4.47000e9 −0.344946
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.33089e8 −0.0176661
\(780\) 0 0
\(781\) −2.50316e9 −0.188022
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.48988e9 0.109928
\(786\) 0 0
\(787\) −9.89014e9 −0.723254 −0.361627 0.932323i \(-0.617779\pi\)
−0.361627 + 0.932323i \(0.617779\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.68889e10 −1.93177
\(792\) 0 0
\(793\) 1.04160e10 0.741730
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.22521e10 1.55692 0.778460 0.627694i \(-0.216001\pi\)
0.778460 + 0.627694i \(0.216001\pi\)
\(798\) 0 0
\(799\) −1.56541e9 −0.108571
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.07291e9 −0.618361
\(804\) 0 0
\(805\) −9.96744e9 −0.673439
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.40746e10 −1.59860 −0.799300 0.600932i \(-0.794796\pi\)
−0.799300 + 0.600932i \(0.794796\pi\)
\(810\) 0 0
\(811\) 7.05679e9 0.464552 0.232276 0.972650i \(-0.425383\pi\)
0.232276 + 0.972650i \(0.425383\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −7.66781e9 −0.496158
\(816\) 0 0
\(817\) −8.43833e9 −0.541351
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.39901e9 −0.277430 −0.138715 0.990332i \(-0.544297\pi\)
−0.138715 + 0.990332i \(0.544297\pi\)
\(822\) 0 0
\(823\) 2.19932e10 1.37528 0.687638 0.726054i \(-0.258648\pi\)
0.687638 + 0.726054i \(0.258648\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.85930e9 0.360227 0.180114 0.983646i \(-0.442353\pi\)
0.180114 + 0.983646i \(0.442353\pi\)
\(828\) 0 0
\(829\) −1.44100e10 −0.878464 −0.439232 0.898374i \(-0.644749\pi\)
−0.439232 + 0.898374i \(0.644749\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.78643e9 −0.226972
\(834\) 0 0
\(835\) −8.05270e9 −0.478673
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.46206e10 1.43923 0.719617 0.694371i \(-0.244317\pi\)
0.719617 + 0.694371i \(0.244317\pi\)
\(840\) 0 0
\(841\) 2.58604e10 1.49917
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −6.07623e9 −0.346446
\(846\) 0 0
\(847\) −3.85508e8 −0.0217992
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.69237e10 1.49755
\(852\) 0 0
\(853\) −5.02066e9 −0.276974 −0.138487 0.990364i \(-0.544224\pi\)
−0.138487 + 0.990364i \(0.544224\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.48488e9 −0.189127 −0.0945637 0.995519i \(-0.530146\pi\)
−0.0945637 + 0.995519i \(0.530146\pi\)
\(858\) 0 0
\(859\) 3.27339e10 1.76206 0.881031 0.473058i \(-0.156850\pi\)
0.881031 + 0.473058i \(0.156850\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.17065e10 1.67923 0.839617 0.543179i \(-0.182780\pi\)
0.839617 + 0.543179i \(0.182780\pi\)
\(864\) 0 0
\(865\) 2.09635e9 0.110131
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 8.45661e9 0.437147
\(870\) 0 0
\(871\) −1.22180e10 −0.626524
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.62578e9 0.132504
\(876\) 0 0
\(877\) 3.24939e9 0.162668 0.0813342 0.996687i \(-0.474082\pi\)
0.0813342 + 0.996687i \(0.474082\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.79940e10 −1.37927 −0.689636 0.724157i \(-0.742229\pi\)
−0.689636 + 0.724157i \(0.742229\pi\)
\(882\) 0 0
\(883\) 1.41470e10 0.691515 0.345758 0.938324i \(-0.387622\pi\)
0.345758 + 0.938324i \(0.387622\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.73596e9 −0.179750 −0.0898751 0.995953i \(-0.528647\pi\)
−0.0898751 + 0.995953i \(0.528647\pi\)
\(888\) 0 0
\(889\) −4.51807e10 −2.15674
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.58468e10 0.744665
\(894\) 0 0
\(895\) 8.44346e9 0.393677
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.93988e10 2.72659
\(900\) 0 0
\(901\) −5.31471e9 −0.242071
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.78017e9 −0.393761
\(906\) 0 0
\(907\) −1.23717e10 −0.550557 −0.275278 0.961365i \(-0.588770\pi\)
−0.275278 + 0.961365i \(0.588770\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.09259e9 −0.223164 −0.111582 0.993755i \(-0.535592\pi\)
−0.111582 + 0.993755i \(0.535592\pi\)
\(912\) 0 0
\(913\) 2.99361e10 1.30181
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.24806e9 0.310405
\(918\) 0 0
\(919\) 7.85605e8 0.0333887 0.0166944 0.999861i \(-0.494686\pi\)
0.0166944 + 0.999861i \(0.494686\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.14801e9 −0.0899147
\(924\) 0 0
\(925\) −7.09265e9 −0.294654
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.71717e9 0.397635 0.198818 0.980036i \(-0.436290\pi\)
0.198818 + 0.980036i \(0.436290\pi\)
\(930\) 0 0
\(931\) 3.83302e10 1.55675
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.10796e9 0.0843376
\(936\) 0 0
\(937\) −1.27672e10 −0.506998 −0.253499 0.967336i \(-0.581582\pi\)
−0.253499 + 0.967336i \(0.581582\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.35922e10 0.923008 0.461504 0.887138i \(-0.347310\pi\)
0.461504 + 0.887138i \(0.347310\pi\)
\(942\) 0 0
\(943\) 3.54862e8 0.0137806
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.88895e9 0.340115 0.170057 0.985434i \(-0.445605\pi\)
0.170057 + 0.985434i \(0.445605\pi\)
\(948\) 0 0
\(949\) −7.78566e9 −0.295708
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.08612e10 0.406491 0.203245 0.979128i \(-0.434851\pi\)
0.203245 + 0.979128i \(0.434851\pi\)
\(954\) 0 0
\(955\) 5.04688e9 0.187504
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.76473e10 −1.37838
\(960\) 0 0
\(961\) 5.43292e10 1.97470
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.36092e9 0.156218
\(966\) 0 0
\(967\) −2.24979e10 −0.800109 −0.400054 0.916491i \(-0.631009\pi\)
−0.400054 + 0.916491i \(0.631009\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.57613e10 1.60410 0.802049 0.597258i \(-0.203743\pi\)
0.802049 + 0.597258i \(0.203743\pi\)
\(972\) 0 0
\(973\) 4.28308e10 1.49060
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.40739e10 −0.825879 −0.412939 0.910759i \(-0.635498\pi\)
−0.412939 + 0.910759i \(0.635498\pi\)
\(978\) 0 0
\(979\) −1.55819e10 −0.530740
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.95466e10 0.656346 0.328173 0.944618i \(-0.393567\pi\)
0.328173 + 0.944618i \(0.393567\pi\)
\(984\) 0 0
\(985\) 1.61751e10 0.539287
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.28468e10 0.422287
\(990\) 0 0
\(991\) 5.15969e10 1.68409 0.842046 0.539406i \(-0.181351\pi\)
0.842046 + 0.539406i \(0.181351\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.50564e10 −0.484553
\(996\) 0 0
\(997\) −5.82401e9 −0.186118 −0.0930591 0.995661i \(-0.529665\pi\)
−0.0930591 + 0.995661i \(0.529665\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.8.a.l.1.2 2
3.2 odd 2 40.8.a.b.1.2 2
12.11 even 2 80.8.a.h.1.1 2
15.2 even 4 200.8.c.h.49.1 4
15.8 even 4 200.8.c.h.49.4 4
15.14 odd 2 200.8.a.m.1.1 2
24.5 odd 2 320.8.a.o.1.1 2
24.11 even 2 320.8.a.q.1.2 2
60.23 odd 4 400.8.c.q.49.1 4
60.47 odd 4 400.8.c.q.49.4 4
60.59 even 2 400.8.a.z.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.8.a.b.1.2 2 3.2 odd 2
80.8.a.h.1.1 2 12.11 even 2
200.8.a.m.1.1 2 15.14 odd 2
200.8.c.h.49.1 4 15.2 even 4
200.8.c.h.49.4 4 15.8 even 4
320.8.a.o.1.1 2 24.5 odd 2
320.8.a.q.1.2 2 24.11 even 2
360.8.a.l.1.2 2 1.1 even 1 trivial
400.8.a.z.1.2 2 60.59 even 2
400.8.c.q.49.1 4 60.23 odd 4
400.8.c.q.49.4 4 60.47 odd 4