Properties

Label 200.8.c.h.49.1
Level $200$
Weight $8$
Character 200.49
Analytic conductor $62.477$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,8,Mod(49,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-3044] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.4770050968\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{46})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(3.39116 - 3.39116i\) of defining polynomial
Character \(\chi\) \(=\) 200.49
Dual form 200.8.c.h.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-56.2586i q^{3} +1344.40i q^{7} -978.035 q^{9} +4381.83 q^{11} +3760.14i q^{13} +3848.55i q^{17} -38959.0 q^{19} +75633.9 q^{21} -59312.5i q^{23} -68014.8i q^{27} -207630. q^{29} -286080. q^{31} -246516. i q^{33} -453930. i q^{37} +211540. q^{39} +5982.93 q^{41} +216595. i q^{43} -406755. i q^{47} -983860. q^{49} +216514. q^{51} +1.38096e6i q^{53} +2.19178e6i q^{57} +1.88711e6 q^{59} -2.77012e6 q^{61} -1.31487e6i q^{63} +3.24935e6i q^{67} -3.33684e6 q^{69} -571258. q^{71} -2.07058e6i q^{73} +5.89092e6i q^{77} +1.92993e6 q^{79} -5.96538e6 q^{81} -6.83187e6i q^{83} +1.16810e7i q^{87} +3.55603e6 q^{89} -5.05512e6 q^{91} +1.60945e7i q^{93} -1.26173e7i q^{97} -4.28558e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3044 q^{9} + 9280 q^{11} - 79440 q^{19} + 203568 q^{21} - 373880 q^{29} - 654256 q^{31} + 1527216 q^{39} - 325928 q^{41} - 821428 q^{49} - 3190320 q^{51} - 2241552 q^{59} - 3711704 q^{61} - 8039568 q^{69}+ \cdots - 8852032 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 56.2586i − 1.20300i −0.798874 0.601499i \(-0.794570\pi\)
0.798874 0.601499i \(-0.205430\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1344.40i 1.48144i 0.671813 + 0.740720i \(0.265516\pi\)
−0.671813 + 0.740720i \(0.734484\pi\)
\(8\) 0 0
\(9\) −978.035 −0.447204
\(10\) 0 0
\(11\) 4381.83 0.992615 0.496308 0.868147i \(-0.334689\pi\)
0.496308 + 0.868147i \(0.334689\pi\)
\(12\) 0 0
\(13\) 3760.14i 0.474682i 0.971426 + 0.237341i \(0.0762758\pi\)
−0.971426 + 0.237341i \(0.923724\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3848.55i 0.189988i 0.995478 + 0.0949939i \(0.0302831\pi\)
−0.995478 + 0.0949939i \(0.969717\pi\)
\(18\) 0 0
\(19\) −38959.0 −1.30308 −0.651539 0.758615i \(-0.725876\pi\)
−0.651539 + 0.758615i \(0.725876\pi\)
\(20\) 0 0
\(21\) 75633.9 1.78217
\(22\) 0 0
\(23\) − 59312.5i − 1.01648i −0.861215 0.508240i \(-0.830296\pi\)
0.861215 0.508240i \(-0.169704\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 68014.8i − 0.665013i
\(28\) 0 0
\(29\) −207630. −1.58087 −0.790437 0.612543i \(-0.790147\pi\)
−0.790437 + 0.612543i \(0.790147\pi\)
\(30\) 0 0
\(31\) −286080. −1.72473 −0.862366 0.506286i \(-0.831018\pi\)
−0.862366 + 0.506286i \(0.831018\pi\)
\(32\) 0 0
\(33\) − 246516.i − 1.19411i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 453930.i − 1.47327i −0.676290 0.736635i \(-0.736413\pi\)
0.676290 0.736635i \(-0.263587\pi\)
\(38\) 0 0
\(39\) 211540. 0.571041
\(40\) 0 0
\(41\) 5982.93 0.0135572 0.00677860 0.999977i \(-0.497842\pi\)
0.00677860 + 0.999977i \(0.497842\pi\)
\(42\) 0 0
\(43\) 216595.i 0.415440i 0.978188 + 0.207720i \(0.0666043\pi\)
−0.978188 + 0.207720i \(0.933396\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 406755.i − 0.571466i −0.958309 0.285733i \(-0.907763\pi\)
0.958309 0.285733i \(-0.0922370\pi\)
\(48\) 0 0
\(49\) −983860. −1.19467
\(50\) 0 0
\(51\) 216514. 0.228555
\(52\) 0 0
\(53\) 1.38096e6i 1.27414i 0.770806 + 0.637070i \(0.219854\pi\)
−0.770806 + 0.637070i \(0.780146\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.19178e6i 1.56760i
\(58\) 0 0
\(59\) 1.88711e6 1.19623 0.598116 0.801410i \(-0.295916\pi\)
0.598116 + 0.801410i \(0.295916\pi\)
\(60\) 0 0
\(61\) −2.77012e6 −1.56258 −0.781292 0.624166i \(-0.785439\pi\)
−0.781292 + 0.624166i \(0.785439\pi\)
\(62\) 0 0
\(63\) − 1.31487e6i − 0.662506i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.24935e6i 1.31988i 0.751317 + 0.659941i \(0.229419\pi\)
−0.751317 + 0.659941i \(0.770581\pi\)
\(68\) 0 0
\(69\) −3.33684e6 −1.22282
\(70\) 0 0
\(71\) −571258. −0.189421 −0.0947105 0.995505i \(-0.530193\pi\)
−0.0947105 + 0.995505i \(0.530193\pi\)
\(72\) 0 0
\(73\) − 2.07058e6i − 0.622962i −0.950252 0.311481i \(-0.899175\pi\)
0.950252 0.311481i \(-0.100825\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.89092e6i 1.47050i
\(78\) 0 0
\(79\) 1.92993e6 0.440399 0.220199 0.975455i \(-0.429329\pi\)
0.220199 + 0.975455i \(0.429329\pi\)
\(80\) 0 0
\(81\) −5.96538e6 −1.24721
\(82\) 0 0
\(83\) − 6.83187e6i − 1.31149i −0.754980 0.655747i \(-0.772354\pi\)
0.754980 0.655747i \(-0.227646\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.16810e7i 1.90179i
\(88\) 0 0
\(89\) 3.55603e6 0.534688 0.267344 0.963601i \(-0.413854\pi\)
0.267344 + 0.963601i \(0.413854\pi\)
\(90\) 0 0
\(91\) −5.05512e6 −0.703213
\(92\) 0 0
\(93\) 1.60945e7i 2.07485i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1.26173e7i − 1.40367i −0.712338 0.701836i \(-0.752364\pi\)
0.712338 0.701836i \(-0.247636\pi\)
\(98\) 0 0
\(99\) −4.28558e6 −0.443901
\(100\) 0 0
\(101\) −9.61157e6 −0.928260 −0.464130 0.885767i \(-0.653633\pi\)
−0.464130 + 0.885767i \(0.653633\pi\)
\(102\) 0 0
\(103\) 7.89879e6i 0.712247i 0.934439 + 0.356123i \(0.115902\pi\)
−0.934439 + 0.356123i \(0.884098\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.12283e7i 1.67522i 0.546268 + 0.837610i \(0.316048\pi\)
−0.546268 + 0.837610i \(0.683952\pi\)
\(108\) 0 0
\(109\) −2.42928e7 −1.79674 −0.898369 0.439241i \(-0.855247\pi\)
−0.898369 + 0.439241i \(0.855247\pi\)
\(110\) 0 0
\(111\) −2.55375e7 −1.77234
\(112\) 0 0
\(113\) − 2.00007e7i − 1.30398i −0.758228 0.651989i \(-0.773935\pi\)
0.758228 0.651989i \(-0.226065\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 3.67755e6i − 0.212279i
\(118\) 0 0
\(119\) −5.17397e6 −0.281456
\(120\) 0 0
\(121\) −286752. −0.0147149
\(122\) 0 0
\(123\) − 336591.i − 0.0163093i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 3.36067e7i − 1.45584i −0.685664 0.727918i \(-0.740488\pi\)
0.685664 0.727918i \(-0.259512\pi\)
\(128\) 0 0
\(129\) 1.21853e7 0.499774
\(130\) 0 0
\(131\) −5.39131e6 −0.209529 −0.104765 0.994497i \(-0.533409\pi\)
−0.104765 + 0.994497i \(0.533409\pi\)
\(132\) 0 0
\(133\) − 5.23764e7i − 1.93043i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.80031e7i 0.930432i 0.885197 + 0.465216i \(0.154023\pi\)
−0.885197 + 0.465216i \(0.845977\pi\)
\(138\) 0 0
\(139\) −3.18588e7 −1.00618 −0.503092 0.864233i \(-0.667804\pi\)
−0.503092 + 0.864233i \(0.667804\pi\)
\(140\) 0 0
\(141\) −2.28835e7 −0.687472
\(142\) 0 0
\(143\) 1.64763e7i 0.471176i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.53506e7i 1.43718i
\(148\) 0 0
\(149\) −6.66511e7 −1.65065 −0.825325 0.564657i \(-0.809008\pi\)
−0.825325 + 0.564657i \(0.809008\pi\)
\(150\) 0 0
\(151\) −2.37628e7 −0.561666 −0.280833 0.959757i \(-0.590611\pi\)
−0.280833 + 0.959757i \(0.590611\pi\)
\(152\) 0 0
\(153\) − 3.76401e6i − 0.0849632i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.19191e7i 0.245806i 0.992419 + 0.122903i \(0.0392204\pi\)
−0.992419 + 0.122903i \(0.960780\pi\)
\(158\) 0 0
\(159\) 7.76912e7 1.53279
\(160\) 0 0
\(161\) 7.97396e7 1.50586
\(162\) 0 0
\(163\) 6.13425e7i 1.10944i 0.832036 + 0.554721i \(0.187175\pi\)
−0.832036 + 0.554721i \(0.812825\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.44216e7i 1.07034i 0.844743 + 0.535172i \(0.179753\pi\)
−0.844743 + 0.535172i \(0.820247\pi\)
\(168\) 0 0
\(169\) 4.86099e7 0.774677
\(170\) 0 0
\(171\) 3.81033e7 0.582742
\(172\) 0 0
\(173\) 1.67708e7i 0.246260i 0.992391 + 0.123130i \(0.0392931\pi\)
−0.992391 + 0.123130i \(0.960707\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 1.06166e8i − 1.43906i
\(178\) 0 0
\(179\) 6.75477e7 0.880288 0.440144 0.897927i \(-0.354927\pi\)
0.440144 + 0.897927i \(0.354927\pi\)
\(180\) 0 0
\(181\) −7.02414e7 −0.880477 −0.440238 0.897881i \(-0.645106\pi\)
−0.440238 + 0.897881i \(0.645106\pi\)
\(182\) 0 0
\(183\) 1.55843e8i 1.87979i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.68637e7i 0.188585i
\(188\) 0 0
\(189\) 9.14388e7 0.985177
\(190\) 0 0
\(191\) −4.03750e7 −0.419272 −0.209636 0.977779i \(-0.567228\pi\)
−0.209636 + 0.977779i \(0.567228\pi\)
\(192\) 0 0
\(193\) − 3.48873e7i − 0.349315i −0.984629 0.174657i \(-0.944118\pi\)
0.984629 0.174657i \(-0.0558818\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1.29401e8i − 1.20588i −0.797786 0.602941i \(-0.793995\pi\)
0.797786 0.602941i \(-0.206005\pi\)
\(198\) 0 0
\(199\) 1.20451e8 1.08349 0.541746 0.840542i \(-0.317763\pi\)
0.541746 + 0.840542i \(0.317763\pi\)
\(200\) 0 0
\(201\) 1.82804e8 1.58782
\(202\) 0 0
\(203\) − 2.79137e8i − 2.34197i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5.80097e7i 0.454574i
\(208\) 0 0
\(209\) −1.70712e8 −1.29346
\(210\) 0 0
\(211\) 8.00773e7 0.586841 0.293421 0.955983i \(-0.405206\pi\)
0.293421 + 0.955983i \(0.405206\pi\)
\(212\) 0 0
\(213\) 3.21382e7i 0.227873i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 3.84605e8i − 2.55509i
\(218\) 0 0
\(219\) −1.16488e8 −0.749421
\(220\) 0 0
\(221\) −1.44711e7 −0.0901837
\(222\) 0 0
\(223\) − 3.09401e6i − 0.0186833i −0.999956 0.00934167i \(-0.997026\pi\)
0.999956 0.00934167i \(-0.00297359\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.59329e7i 0.544349i 0.962248 + 0.272174i \(0.0877428\pi\)
−0.962248 + 0.272174i \(0.912257\pi\)
\(228\) 0 0
\(229\) −1.03824e8 −0.571314 −0.285657 0.958332i \(-0.592212\pi\)
−0.285657 + 0.958332i \(0.592212\pi\)
\(230\) 0 0
\(231\) 3.31415e8 1.76901
\(232\) 0 0
\(233\) 1.36559e8i 0.707255i 0.935386 + 0.353628i \(0.115052\pi\)
−0.935386 + 0.353628i \(0.884948\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 1.08575e8i − 0.529799i
\(238\) 0 0
\(239\) 1.60216e8 0.759125 0.379562 0.925166i \(-0.376075\pi\)
0.379562 + 0.925166i \(0.376075\pi\)
\(240\) 0 0
\(241\) 1.93437e8 0.890183 0.445092 0.895485i \(-0.353171\pi\)
0.445092 + 0.895485i \(0.353171\pi\)
\(242\) 0 0
\(243\) 1.86856e8i 0.835381i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 1.46491e8i − 0.618547i
\(248\) 0 0
\(249\) −3.84352e8 −1.57773
\(250\) 0 0
\(251\) 4.20551e8 1.67865 0.839326 0.543628i \(-0.182950\pi\)
0.839326 + 0.543628i \(0.182950\pi\)
\(252\) 0 0
\(253\) − 2.59897e8i − 1.00897i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 3.74041e8i − 1.37453i −0.726408 0.687264i \(-0.758812\pi\)
0.726408 0.687264i \(-0.241188\pi\)
\(258\) 0 0
\(259\) 6.10262e8 2.18256
\(260\) 0 0
\(261\) 2.03069e8 0.706973
\(262\) 0 0
\(263\) − 2.64114e8i − 0.895253i −0.894221 0.447626i \(-0.852269\pi\)
0.894221 0.447626i \(-0.147731\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 2.00058e8i − 0.643229i
\(268\) 0 0
\(269\) −4.09451e8 −1.28253 −0.641267 0.767318i \(-0.721591\pi\)
−0.641267 + 0.767318i \(0.721591\pi\)
\(270\) 0 0
\(271\) −4.20454e8 −1.28329 −0.641647 0.767000i \(-0.721749\pi\)
−0.641647 + 0.767000i \(0.721749\pi\)
\(272\) 0 0
\(273\) 2.84394e8i 0.845963i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.93342e8i 1.67736i 0.544626 + 0.838679i \(0.316672\pi\)
−0.544626 + 0.838679i \(0.683328\pi\)
\(278\) 0 0
\(279\) 2.79796e8 0.771307
\(280\) 0 0
\(281\) −4.93331e8 −1.32638 −0.663188 0.748453i \(-0.730797\pi\)
−0.663188 + 0.748453i \(0.730797\pi\)
\(282\) 0 0
\(283\) 3.01738e8i 0.791365i 0.918387 + 0.395683i \(0.129492\pi\)
−0.918387 + 0.395683i \(0.870508\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.04343e6i 0.0200842i
\(288\) 0 0
\(289\) 3.95527e8 0.963905
\(290\) 0 0
\(291\) −7.09833e8 −1.68861
\(292\) 0 0
\(293\) − 3.08855e8i − 0.717328i −0.933467 0.358664i \(-0.883232\pi\)
0.933467 0.358664i \(-0.116768\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 2.98029e8i − 0.660102i
\(298\) 0 0
\(299\) 2.23023e8 0.482504
\(300\) 0 0
\(301\) −2.91189e8 −0.615450
\(302\) 0 0
\(303\) 5.40734e8i 1.11669i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4.53878e8i 0.895272i 0.894216 + 0.447636i \(0.147734\pi\)
−0.894216 + 0.447636i \(0.852266\pi\)
\(308\) 0 0
\(309\) 4.44375e8 0.856831
\(310\) 0 0
\(311\) 4.85507e8 0.915239 0.457619 0.889148i \(-0.348702\pi\)
0.457619 + 0.889148i \(0.348702\pi\)
\(312\) 0 0
\(313\) − 3.18061e8i − 0.586281i −0.956069 0.293141i \(-0.905300\pi\)
0.956069 0.293141i \(-0.0947004\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.85248e8i 0.679255i 0.940560 + 0.339627i \(0.110301\pi\)
−0.940560 + 0.339627i \(0.889699\pi\)
\(318\) 0 0
\(319\) −9.09800e8 −1.56920
\(320\) 0 0
\(321\) 1.19428e9 2.01529
\(322\) 0 0
\(323\) − 1.49936e8i − 0.247569i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.36668e9i 2.16147i
\(328\) 0 0
\(329\) 5.46840e8 0.846592
\(330\) 0 0
\(331\) −7.93180e8 −1.20219 −0.601096 0.799177i \(-0.705269\pi\)
−0.601096 + 0.799177i \(0.705269\pi\)
\(332\) 0 0
\(333\) 4.43959e8i 0.658852i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.20184e8i 1.30969i 0.755761 + 0.654847i \(0.227267\pi\)
−0.755761 + 0.654847i \(0.772733\pi\)
\(338\) 0 0
\(339\) −1.12521e9 −1.56868
\(340\) 0 0
\(341\) −1.25355e9 −1.71200
\(342\) 0 0
\(343\) − 2.15530e8i − 0.288388i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 3.26003e8i − 0.418859i −0.977824 0.209430i \(-0.932839\pi\)
0.977824 0.209430i \(-0.0671607\pi\)
\(348\) 0 0
\(349\) −4.40162e8 −0.554273 −0.277136 0.960831i \(-0.589385\pi\)
−0.277136 + 0.960831i \(0.589385\pi\)
\(350\) 0 0
\(351\) 2.55745e8 0.315669
\(352\) 0 0
\(353\) − 2.14414e8i − 0.259443i −0.991550 0.129721i \(-0.958592\pi\)
0.991550 0.129721i \(-0.0414083\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.91081e8i 0.338590i
\(358\) 0 0
\(359\) −6.01055e8 −0.685621 −0.342810 0.939405i \(-0.611379\pi\)
−0.342810 + 0.939405i \(0.611379\pi\)
\(360\) 0 0
\(361\) 6.23935e8 0.698014
\(362\) 0 0
\(363\) 1.61323e7i 0.0177020i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 2.28125e8i − 0.240903i −0.992719 0.120452i \(-0.961566\pi\)
0.992719 0.120452i \(-0.0384343\pi\)
\(368\) 0 0
\(369\) −5.85151e6 −0.00606283
\(370\) 0 0
\(371\) −1.85656e9 −1.88756
\(372\) 0 0
\(373\) − 1.09122e9i − 1.08876i −0.838838 0.544381i \(-0.816765\pi\)
0.838838 0.544381i \(-0.183235\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 7.80719e8i − 0.750412i
\(378\) 0 0
\(379\) 2.92161e8 0.275667 0.137834 0.990455i \(-0.455986\pi\)
0.137834 + 0.990455i \(0.455986\pi\)
\(380\) 0 0
\(381\) −1.89067e9 −1.75137
\(382\) 0 0
\(383\) − 6.58727e8i − 0.599114i −0.954078 0.299557i \(-0.903161\pi\)
0.954078 0.299557i \(-0.0968389\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 2.11837e8i − 0.185786i
\(388\) 0 0
\(389\) 1.79238e8 0.154385 0.0771927 0.997016i \(-0.475404\pi\)
0.0771927 + 0.997016i \(0.475404\pi\)
\(390\) 0 0
\(391\) 2.28267e8 0.193119
\(392\) 0 0
\(393\) 3.03308e8i 0.252063i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.98717e8i 0.239603i 0.992798 + 0.119802i \(0.0382259\pi\)
−0.992798 + 0.119802i \(0.961774\pi\)
\(398\) 0 0
\(399\) −2.94663e9 −2.32231
\(400\) 0 0
\(401\) −1.70861e9 −1.32323 −0.661617 0.749842i \(-0.730129\pi\)
−0.661617 + 0.749842i \(0.730129\pi\)
\(402\) 0 0
\(403\) − 1.07570e9i − 0.818698i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 1.98904e9i − 1.46239i
\(408\) 0 0
\(409\) 9.66030e8 0.698166 0.349083 0.937092i \(-0.386493\pi\)
0.349083 + 0.937092i \(0.386493\pi\)
\(410\) 0 0
\(411\) 1.57542e9 1.11931
\(412\) 0 0
\(413\) 2.53703e9i 1.77215i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.79233e9i 1.21044i
\(418\) 0 0
\(419\) −1.38808e7 −0.00921862 −0.00460931 0.999989i \(-0.501467\pi\)
−0.00460931 + 0.999989i \(0.501467\pi\)
\(420\) 0 0
\(421\) −3.27466e8 −0.213884 −0.106942 0.994265i \(-0.534106\pi\)
−0.106942 + 0.994265i \(0.534106\pi\)
\(422\) 0 0
\(423\) 3.97820e8i 0.255562i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 3.72413e9i − 2.31488i
\(428\) 0 0
\(429\) 9.26934e8 0.566824
\(430\) 0 0
\(431\) 2.79809e7 0.0168341 0.00841707 0.999965i \(-0.497321\pi\)
0.00841707 + 0.999965i \(0.497321\pi\)
\(432\) 0 0
\(433\) − 1.37019e9i − 0.811098i −0.914073 0.405549i \(-0.867080\pi\)
0.914073 0.405549i \(-0.132920\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.31076e9i 1.32455i
\(438\) 0 0
\(439\) 2.52455e9 1.42416 0.712079 0.702099i \(-0.247754\pi\)
0.712079 + 0.702099i \(0.247754\pi\)
\(440\) 0 0
\(441\) 9.62249e8 0.534260
\(442\) 0 0
\(443\) 1.36683e9i 0.746969i 0.927636 + 0.373485i \(0.121837\pi\)
−0.927636 + 0.373485i \(0.878163\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.74970e9i 1.98573i
\(448\) 0 0
\(449\) 2.85383e8 0.148787 0.0743937 0.997229i \(-0.476298\pi\)
0.0743937 + 0.997229i \(0.476298\pi\)
\(450\) 0 0
\(451\) 2.62162e7 0.0134571
\(452\) 0 0
\(453\) 1.33686e9i 0.675683i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.55438e9i 1.25193i 0.779852 + 0.625964i \(0.215294\pi\)
−0.779852 + 0.625964i \(0.784706\pi\)
\(458\) 0 0
\(459\) 2.61758e8 0.126344
\(460\) 0 0
\(461\) 2.81572e9 1.33855 0.669277 0.743013i \(-0.266604\pi\)
0.669277 + 0.743013i \(0.266604\pi\)
\(462\) 0 0
\(463\) − 4.29378e8i − 0.201051i −0.994934 0.100526i \(-0.967948\pi\)
0.994934 0.100526i \(-0.0320524\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.02740e9i 0.466800i 0.972381 + 0.233400i \(0.0749852\pi\)
−0.972381 + 0.233400i \(0.925015\pi\)
\(468\) 0 0
\(469\) −4.36842e9 −1.95533
\(470\) 0 0
\(471\) 6.70550e8 0.295704
\(472\) 0 0
\(473\) 9.49081e8i 0.412372i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 1.35063e9i − 0.569800i
\(478\) 0 0
\(479\) 1.23612e9 0.513908 0.256954 0.966424i \(-0.417281\pi\)
0.256954 + 0.966424i \(0.417281\pi\)
\(480\) 0 0
\(481\) 1.70684e9 0.699334
\(482\) 0 0
\(483\) − 4.48604e9i − 1.81154i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 3.53667e9i − 1.38753i −0.720200 0.693767i \(-0.755950\pi\)
0.720200 0.693767i \(-0.244050\pi\)
\(488\) 0 0
\(489\) 3.45104e9 1.33466
\(490\) 0 0
\(491\) −4.64544e8 −0.177109 −0.0885546 0.996071i \(-0.528225\pi\)
−0.0885546 + 0.996071i \(0.528225\pi\)
\(492\) 0 0
\(493\) − 7.99074e8i − 0.300347i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 7.67998e8i − 0.280616i
\(498\) 0 0
\(499\) 9.22783e8 0.332467 0.166233 0.986086i \(-0.446840\pi\)
0.166233 + 0.986086i \(0.446840\pi\)
\(500\) 0 0
\(501\) 3.62427e9 1.28762
\(502\) 0 0
\(503\) 2.71743e9i 0.952072i 0.879426 + 0.476036i \(0.157927\pi\)
−0.879426 + 0.476036i \(0.842073\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2.73472e9i − 0.931935i
\(508\) 0 0
\(509\) 3.75201e9 1.26111 0.630553 0.776146i \(-0.282828\pi\)
0.630553 + 0.776146i \(0.282828\pi\)
\(510\) 0 0
\(511\) 2.78368e9 0.922881
\(512\) 0 0
\(513\) 2.64979e9i 0.866564i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 1.78233e9i − 0.567245i
\(518\) 0 0
\(519\) 9.43504e8 0.296250
\(520\) 0 0
\(521\) −5.80618e9 −1.79870 −0.899349 0.437231i \(-0.855959\pi\)
−0.899349 + 0.437231i \(0.855959\pi\)
\(522\) 0 0
\(523\) − 3.82763e9i − 1.16997i −0.811045 0.584983i \(-0.801101\pi\)
0.811045 0.584983i \(-0.198899\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1.10099e9i − 0.327678i
\(528\) 0 0
\(529\) −1.13149e8 −0.0332319
\(530\) 0 0
\(531\) −1.84566e9 −0.534959
\(532\) 0 0
\(533\) 2.24966e7i 0.00643536i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 3.80014e9i − 1.05898i
\(538\) 0 0
\(539\) −4.31111e9 −1.18585
\(540\) 0 0
\(541\) 1.27166e9 0.345286 0.172643 0.984984i \(-0.444769\pi\)
0.172643 + 0.984984i \(0.444769\pi\)
\(542\) 0 0
\(543\) 3.95168e9i 1.05921i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.67963e8i − 0.0438792i −0.999759 0.0219396i \(-0.993016\pi\)
0.999759 0.0219396i \(-0.00698415\pi\)
\(548\) 0 0
\(549\) 2.70927e9 0.698793
\(550\) 0 0
\(551\) 8.08907e9 2.06000
\(552\) 0 0
\(553\) 2.59459e9i 0.652425i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 1.43415e9i − 0.351644i −0.984422 0.175822i \(-0.943742\pi\)
0.984422 0.175822i \(-0.0562582\pi\)
\(558\) 0 0
\(559\) −8.14427e8 −0.197202
\(560\) 0 0
\(561\) 9.48727e8 0.226867
\(562\) 0 0
\(563\) − 3.27203e9i − 0.772748i −0.922342 0.386374i \(-0.873727\pi\)
0.922342 0.386374i \(-0.126273\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 8.01984e9i − 1.84767i
\(568\) 0 0
\(569\) −4.11773e9 −0.937054 −0.468527 0.883449i \(-0.655215\pi\)
−0.468527 + 0.883449i \(0.655215\pi\)
\(570\) 0 0
\(571\) 5.65009e9 1.27007 0.635037 0.772481i \(-0.280985\pi\)
0.635037 + 0.772481i \(0.280985\pi\)
\(572\) 0 0
\(573\) 2.27144e9i 0.504384i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 3.08235e9i 0.667986i 0.942576 + 0.333993i \(0.108396\pi\)
−0.942576 + 0.333993i \(0.891604\pi\)
\(578\) 0 0
\(579\) −1.96271e9 −0.420225
\(580\) 0 0
\(581\) 9.18475e9 1.94290
\(582\) 0 0
\(583\) 6.05115e9i 1.26473i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 3.66057e9i − 0.746990i −0.927632 0.373495i \(-0.878159\pi\)
0.927632 0.373495i \(-0.121841\pi\)
\(588\) 0 0
\(589\) 1.11454e10 2.24746
\(590\) 0 0
\(591\) −7.27991e9 −1.45067
\(592\) 0 0
\(593\) − 6.95365e9i − 1.36937i −0.728838 0.684686i \(-0.759939\pi\)
0.728838 0.684686i \(-0.240061\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 6.77643e9i − 1.30344i
\(598\) 0 0
\(599\) −4.50491e9 −0.856431 −0.428216 0.903677i \(-0.640858\pi\)
−0.428216 + 0.903677i \(0.640858\pi\)
\(600\) 0 0
\(601\) −9.17562e9 −1.72415 −0.862075 0.506781i \(-0.830835\pi\)
−0.862075 + 0.506781i \(0.830835\pi\)
\(602\) 0 0
\(603\) − 3.17798e9i − 0.590256i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.68250e9i 0.849801i 0.905240 + 0.424900i \(0.139691\pi\)
−0.905240 + 0.424900i \(0.860309\pi\)
\(608\) 0 0
\(609\) −1.57039e10 −2.81739
\(610\) 0 0
\(611\) 1.52945e9 0.271264
\(612\) 0 0
\(613\) − 7.11746e9i − 1.24800i −0.781426 0.623998i \(-0.785507\pi\)
0.781426 0.623998i \(-0.214493\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.75577e9i 0.986518i 0.869882 + 0.493259i \(0.164195\pi\)
−0.869882 + 0.493259i \(0.835805\pi\)
\(618\) 0 0
\(619\) 3.50085e9 0.593276 0.296638 0.954990i \(-0.404135\pi\)
0.296638 + 0.954990i \(0.404135\pi\)
\(620\) 0 0
\(621\) −4.03413e9 −0.675972
\(622\) 0 0
\(623\) 4.78072e9i 0.792109i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 9.60402e9i 1.55602i
\(628\) 0 0
\(629\) 1.74697e9 0.279903
\(630\) 0 0
\(631\) 7.67576e9 1.21624 0.608119 0.793846i \(-0.291924\pi\)
0.608119 + 0.793846i \(0.291924\pi\)
\(632\) 0 0
\(633\) − 4.50504e9i − 0.705969i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 3.69945e9i − 0.567087i
\(638\) 0 0
\(639\) 5.58710e8 0.0847098
\(640\) 0 0
\(641\) 3.44253e9 0.516268 0.258134 0.966109i \(-0.416892\pi\)
0.258134 + 0.966109i \(0.416892\pi\)
\(642\) 0 0
\(643\) − 2.94778e9i − 0.437277i −0.975806 0.218638i \(-0.929839\pi\)
0.975806 0.218638i \(-0.0701615\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.86842e9i 1.43246i 0.697864 + 0.716230i \(0.254134\pi\)
−0.697864 + 0.716230i \(0.745866\pi\)
\(648\) 0 0
\(649\) 8.26900e9 1.18740
\(650\) 0 0
\(651\) −2.16374e10 −3.07377
\(652\) 0 0
\(653\) − 2.25724e9i − 0.317236i −0.987340 0.158618i \(-0.949296\pi\)
0.987340 0.158618i \(-0.0507038\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.02510e9i 0.278591i
\(658\) 0 0
\(659\) −5.14817e9 −0.700735 −0.350368 0.936612i \(-0.613943\pi\)
−0.350368 + 0.936612i \(0.613943\pi\)
\(660\) 0 0
\(661\) 3.55066e9 0.478194 0.239097 0.970996i \(-0.423149\pi\)
0.239097 + 0.970996i \(0.423149\pi\)
\(662\) 0 0
\(663\) 8.14123e8i 0.108491i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.23151e10i 1.60693i
\(668\) 0 0
\(669\) −1.74065e8 −0.0224760
\(670\) 0 0
\(671\) −1.21382e10 −1.55104
\(672\) 0 0
\(673\) 7.61740e9i 0.963284i 0.876368 + 0.481642i \(0.159959\pi\)
−0.876368 + 0.481642i \(0.840041\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.23904e9i 0.648921i 0.945899 + 0.324460i \(0.105183\pi\)
−0.945899 + 0.324460i \(0.894817\pi\)
\(678\) 0 0
\(679\) 1.69627e10 2.07946
\(680\) 0 0
\(681\) 5.39706e9 0.654850
\(682\) 0 0
\(683\) 8.98470e9i 1.07902i 0.841978 + 0.539512i \(0.181391\pi\)
−0.841978 + 0.539512i \(0.818609\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5.84102e9i 0.687290i
\(688\) 0 0
\(689\) −5.19262e9 −0.604810
\(690\) 0 0
\(691\) −4.25054e9 −0.490085 −0.245042 0.969512i \(-0.578802\pi\)
−0.245042 + 0.969512i \(0.578802\pi\)
\(692\) 0 0
\(693\) − 5.76152e9i − 0.657614i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.30256e7i 0.00257570i
\(698\) 0 0
\(699\) 7.68265e9 0.850826
\(700\) 0 0
\(701\) −3.84334e9 −0.421402 −0.210701 0.977551i \(-0.567575\pi\)
−0.210701 + 0.977551i \(0.567575\pi\)
\(702\) 0 0
\(703\) 1.76847e10i 1.91979i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1.29218e10i − 1.37516i
\(708\) 0 0
\(709\) −1.20064e10 −1.26518 −0.632588 0.774489i \(-0.718007\pi\)
−0.632588 + 0.774489i \(0.718007\pi\)
\(710\) 0 0
\(711\) −1.88754e9 −0.196948
\(712\) 0 0
\(713\) 1.69681e10i 1.75316i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 9.01353e9i − 0.913225i
\(718\) 0 0
\(719\) −6.87813e9 −0.690112 −0.345056 0.938582i \(-0.612140\pi\)
−0.345056 + 0.938582i \(0.612140\pi\)
\(720\) 0 0
\(721\) −1.06191e10 −1.05515
\(722\) 0 0
\(723\) − 1.08825e10i − 1.07089i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.20128e10i 1.15951i 0.814791 + 0.579754i \(0.196851\pi\)
−0.814791 + 0.579754i \(0.803149\pi\)
\(728\) 0 0
\(729\) −2.53403e9 −0.242251
\(730\) 0 0
\(731\) −8.33575e8 −0.0789285
\(732\) 0 0
\(733\) − 3.09361e9i − 0.290136i −0.989422 0.145068i \(-0.953660\pi\)
0.989422 0.145068i \(-0.0463401\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.42381e10i 1.31014i
\(738\) 0 0
\(739\) 2.02192e10 1.84293 0.921465 0.388461i \(-0.126993\pi\)
0.921465 + 0.388461i \(0.126993\pi\)
\(740\) 0 0
\(741\) −8.24141e9 −0.744111
\(742\) 0 0
\(743\) − 2.20781e9i − 0.197470i −0.995114 0.0987351i \(-0.968520\pi\)
0.995114 0.0987351i \(-0.0314796\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.68181e9i 0.586505i
\(748\) 0 0
\(749\) −2.85393e10 −2.48174
\(750\) 0 0
\(751\) 1.46597e10 1.26295 0.631476 0.775396i \(-0.282450\pi\)
0.631476 + 0.775396i \(0.282450\pi\)
\(752\) 0 0
\(753\) − 2.36596e10i − 2.01942i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 8.01162e9i 0.671251i 0.941995 + 0.335626i \(0.108948\pi\)
−0.941995 + 0.335626i \(0.891052\pi\)
\(758\) 0 0
\(759\) −1.46215e10 −1.21379
\(760\) 0 0
\(761\) −1.63492e10 −1.34478 −0.672390 0.740197i \(-0.734732\pi\)
−0.672390 + 0.740197i \(0.734732\pi\)
\(762\) 0 0
\(763\) − 3.26592e10i − 2.66176i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.09580e9i 0.567829i
\(768\) 0 0
\(769\) 8.77857e9 0.696116 0.348058 0.937473i \(-0.386841\pi\)
0.348058 + 0.937473i \(0.386841\pi\)
\(770\) 0 0
\(771\) −2.10430e10 −1.65355
\(772\) 0 0
\(773\) 8.03519e9i 0.625703i 0.949802 + 0.312851i \(0.101284\pi\)
−0.949802 + 0.312851i \(0.898716\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 3.43325e10i − 2.62562i
\(778\) 0 0
\(779\) −2.33089e8 −0.0176661
\(780\) 0 0
\(781\) −2.50316e9 −0.188022
\(782\) 0 0
\(783\) 1.41219e10i 1.05130i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 9.89014e9i − 0.723254i −0.932323 0.361627i \(-0.882221\pi\)
0.932323 0.361627i \(-0.117779\pi\)
\(788\) 0 0
\(789\) −1.48587e10 −1.07699
\(790\) 0 0
\(791\) 2.68889e10 1.93177
\(792\) 0 0
\(793\) − 1.04160e10i − 0.741730i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 2.22521e10i − 1.55692i −0.627694 0.778460i \(-0.716001\pi\)
0.627694 0.778460i \(-0.283999\pi\)
\(798\) 0 0
\(799\) 1.56541e9 0.108571
\(800\) 0 0
\(801\) −3.47792e9 −0.239115
\(802\) 0 0
\(803\) − 9.07291e9i − 0.618361i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.30351e10i 1.54288i
\(808\) 0 0
\(809\) −2.40746e10 −1.59860 −0.799300 0.600932i \(-0.794796\pi\)
−0.799300 + 0.600932i \(0.794796\pi\)
\(810\) 0 0
\(811\) 7.05679e9 0.464552 0.232276 0.972650i \(-0.425383\pi\)
0.232276 + 0.972650i \(0.425383\pi\)
\(812\) 0 0
\(813\) 2.36542e10i 1.54380i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 8.43833e9i − 0.541351i
\(818\) 0 0
\(819\) 4.94408e9 0.314479
\(820\) 0 0
\(821\) 4.39901e9 0.277430 0.138715 0.990332i \(-0.455703\pi\)
0.138715 + 0.990332i \(0.455703\pi\)
\(822\) 0 0
\(823\) − 2.19932e10i − 1.37528i −0.726054 0.687638i \(-0.758648\pi\)
0.726054 0.687638i \(-0.241352\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 5.85930e9i − 0.360227i −0.983646 0.180114i \(-0.942353\pi\)
0.983646 0.180114i \(-0.0576466\pi\)
\(828\) 0 0
\(829\) 1.44100e10 0.878464 0.439232 0.898374i \(-0.355251\pi\)
0.439232 + 0.898374i \(0.355251\pi\)
\(830\) 0 0
\(831\) 3.33806e10 2.01786
\(832\) 0 0
\(833\) − 3.78643e9i − 0.226972i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.94577e10i 1.14697i
\(838\) 0 0
\(839\) 2.46206e10 1.43923 0.719617 0.694371i \(-0.244317\pi\)
0.719617 + 0.694371i \(0.244317\pi\)
\(840\) 0 0
\(841\) 2.58604e10 1.49917
\(842\) 0 0
\(843\) 2.77541e10i 1.59563i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 3.85508e8i − 0.0217992i
\(848\) 0 0
\(849\) 1.69753e10 0.952010
\(850\) 0 0
\(851\) −2.69237e10 −1.49755
\(852\) 0 0
\(853\) 5.02066e9i 0.276974i 0.990364 + 0.138487i \(0.0442239\pi\)
−0.990364 + 0.138487i \(0.955776\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.48488e9i 0.189127i 0.995519 + 0.0945637i \(0.0301456\pi\)
−0.995519 + 0.0945637i \(0.969854\pi\)
\(858\) 0 0
\(859\) −3.27339e10 −1.76206 −0.881031 0.473058i \(-0.843150\pi\)
−0.881031 + 0.473058i \(0.843150\pi\)
\(860\) 0 0
\(861\) 4.52512e8 0.0241613
\(862\) 0 0
\(863\) 3.17065e10i 1.67923i 0.543179 + 0.839617i \(0.317220\pi\)
−0.543179 + 0.839617i \(0.682780\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 2.22518e10i − 1.15958i
\(868\) 0 0
\(869\) 8.45661e9 0.437147
\(870\) 0 0
\(871\) −1.22180e10 −0.626524
\(872\) 0 0
\(873\) 1.23402e10i 0.627727i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.24939e9i 0.162668i 0.996687 + 0.0813342i \(0.0259181\pi\)
−0.996687 + 0.0813342i \(0.974082\pi\)
\(878\) 0 0
\(879\) −1.73758e10 −0.862945
\(880\) 0 0
\(881\) 2.79940e10 1.37927 0.689636 0.724157i \(-0.257771\pi\)
0.689636 + 0.724157i \(0.257771\pi\)
\(882\) 0 0
\(883\) − 1.41470e10i − 0.691515i −0.938324 0.345758i \(-0.887622\pi\)
0.938324 0.345758i \(-0.112378\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.73596e9i 0.179750i 0.995953 + 0.0898751i \(0.0286468\pi\)
−0.995953 + 0.0898751i \(0.971353\pi\)
\(888\) 0 0
\(889\) 4.51807e10 2.15674
\(890\) 0 0
\(891\) −2.61393e10 −1.23800
\(892\) 0 0
\(893\) 1.58468e10i 0.744665i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1.25470e10i − 0.580452i
\(898\) 0 0
\(899\) 5.93988e10 2.72659
\(900\) 0 0
\(901\) −5.31471e9 −0.242071
\(902\) 0 0
\(903\) 1.63819e10i 0.740385i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.23717e10i − 0.550557i −0.961365 0.275278i \(-0.911230\pi\)
0.961365 0.275278i \(-0.0887700\pi\)
\(908\) 0 0
\(909\) 9.40045e9 0.415121
\(910\) 0 0
\(911\) 5.09259e9 0.223164 0.111582 0.993755i \(-0.464408\pi\)
0.111582 + 0.993755i \(0.464408\pi\)
\(912\) 0 0
\(913\) − 2.99361e10i − 1.30181i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 7.24806e9i − 0.310405i
\(918\) 0 0
\(919\) −7.85605e8 −0.0333887 −0.0166944 0.999861i \(-0.505314\pi\)
−0.0166944 + 0.999861i \(0.505314\pi\)
\(920\) 0 0
\(921\) 2.55346e10 1.07701
\(922\) 0 0
\(923\) − 2.14801e9i − 0.0899147i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 7.72529e9i − 0.318519i
\(928\) 0 0
\(929\) 9.71717e9 0.397635 0.198818 0.980036i \(-0.436290\pi\)
0.198818 + 0.980036i \(0.436290\pi\)
\(930\) 0 0
\(931\) 3.83302e10 1.55675
\(932\) 0 0
\(933\) − 2.73140e10i − 1.10103i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 1.27672e10i − 0.506998i −0.967336 0.253499i \(-0.918418\pi\)
0.967336 0.253499i \(-0.0815815\pi\)
\(938\) 0 0
\(939\) −1.78937e10 −0.705295
\(940\) 0 0
\(941\) −2.35922e10 −0.923008 −0.461504 0.887138i \(-0.652690\pi\)
−0.461504 + 0.887138i \(0.652690\pi\)
\(942\) 0 0
\(943\) − 3.54862e8i − 0.0137806i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 8.88895e9i − 0.340115i −0.985434 0.170057i \(-0.945605\pi\)
0.985434 0.170057i \(-0.0543953\pi\)
\(948\) 0 0
\(949\) 7.78566e9 0.295708
\(950\) 0 0
\(951\) 2.16735e10 0.817142
\(952\) 0 0
\(953\) 1.08612e10i 0.406491i 0.979128 + 0.203245i \(0.0651489\pi\)
−0.979128 + 0.203245i \(0.934851\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 5.11841e10i 1.88774i
\(958\) 0 0
\(959\) −3.76473e10 −1.37838
\(960\) 0 0
\(961\) 5.43292e10 1.97470
\(962\) 0 0
\(963\) − 2.07620e10i − 0.749165i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 2.24979e10i − 0.800109i −0.916491 0.400054i \(-0.868991\pi\)
0.916491 0.400054i \(-0.131009\pi\)
\(968\) 0 0
\(969\) −8.43518e9 −0.297825
\(970\) 0 0
\(971\) −4.57613e10 −1.60410 −0.802049 0.597258i \(-0.796257\pi\)
−0.802049 + 0.597258i \(0.796257\pi\)
\(972\) 0 0
\(973\) − 4.28308e10i − 1.49060i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.40739e10i 0.825879i 0.910759 + 0.412939i \(0.135498\pi\)
−0.910759 + 0.412939i \(0.864502\pi\)
\(978\) 0 0
\(979\) 1.55819e10 0.530740
\(980\) 0 0
\(981\) 2.37592e10 0.803508
\(982\) 0 0
\(983\) 1.95466e10i 0.656346i 0.944618 + 0.328173i \(0.106433\pi\)
−0.944618 + 0.328173i \(0.893567\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 3.07645e10i − 1.01845i
\(988\) 0 0
\(989\) 1.28468e10 0.422287
\(990\) 0 0
\(991\) 5.15969e10 1.68409 0.842046 0.539406i \(-0.181351\pi\)
0.842046 + 0.539406i \(0.181351\pi\)
\(992\) 0 0
\(993\) 4.46232e10i 1.44623i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 5.82401e9i − 0.186118i −0.995661 0.0930591i \(-0.970335\pi\)
0.995661 0.0930591i \(-0.0296645\pi\)
\(998\) 0 0
\(999\) −3.08739e10 −0.979744
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.8.c.h.49.1 4
4.3 odd 2 400.8.c.q.49.4 4
5.2 odd 4 200.8.a.m.1.1 2
5.3 odd 4 40.8.a.b.1.2 2
5.4 even 2 inner 200.8.c.h.49.4 4
15.8 even 4 360.8.a.l.1.2 2
20.3 even 4 80.8.a.h.1.1 2
20.7 even 4 400.8.a.z.1.2 2
20.19 odd 2 400.8.c.q.49.1 4
40.3 even 4 320.8.a.q.1.2 2
40.13 odd 4 320.8.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.8.a.b.1.2 2 5.3 odd 4
80.8.a.h.1.1 2 20.3 even 4
200.8.a.m.1.1 2 5.2 odd 4
200.8.c.h.49.1 4 1.1 even 1 trivial
200.8.c.h.49.4 4 5.4 even 2 inner
320.8.a.o.1.1 2 40.13 odd 4
320.8.a.q.1.2 2 40.3 even 4
360.8.a.l.1.2 2 15.8 even 4
400.8.a.z.1.2 2 20.7 even 4
400.8.c.q.49.1 4 20.19 odd 2
400.8.c.q.49.4 4 4.3 odd 2