Properties

Label 360.4.q.e.241.1
Level $360$
Weight $4$
Character 360.241
Analytic conductor $21.241$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [360,4,Mod(121,360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("360.121"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(360, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 360.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.2406876021\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{19} + 9 x^{18} + 228 x^{17} - 1491 x^{16} + 5274 x^{15} + 540 x^{14} + \cdots + 205891132094649 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{15} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 241.1
Root \(-2.09215 + 4.75635i\) of defining polynomial
Character \(\chi\) \(=\) 360.241
Dual form 360.4.q.e.121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.16520 + 0.566318i) q^{3} +(2.50000 + 4.33013i) q^{5} +(1.57018 - 2.71963i) q^{7} +(26.3586 - 5.85030i) q^{9} +(-7.30996 + 12.6612i) q^{11} +(-27.3440 - 47.3612i) q^{13} +(-15.3652 - 20.9502i) q^{15} +45.7952 q^{17} -50.3457 q^{19} +(-6.57012 + 14.9367i) q^{21} +(9.94951 + 17.2331i) q^{23} +(-12.5000 + 21.6506i) q^{25} +(-132.834 + 45.1453i) q^{27} +(82.1830 - 142.345i) q^{29} +(123.317 + 213.592i) q^{31} +(30.5871 - 69.5375i) q^{33} +15.7018 q^{35} +268.484 q^{37} +(168.059 + 229.144i) q^{39} +(166.114 + 287.718i) q^{41} +(55.4147 - 95.9811i) q^{43} +(91.2289 + 99.5102i) q^{45} +(-17.8310 + 30.8843i) q^{47} +(166.569 + 288.506i) q^{49} +(-236.541 + 25.9347i) q^{51} +482.657 q^{53} -73.0996 q^{55} +(260.046 - 28.5117i) q^{57} +(164.766 + 285.383i) q^{59} +(-80.0901 + 138.720i) q^{61} +(25.4771 - 80.8717i) q^{63} +(136.720 - 236.806i) q^{65} +(145.738 + 252.425i) q^{67} +(-61.1506 - 83.3776i) q^{69} +191.669 q^{71} +866.440 q^{73} +(52.3038 - 118.909i) q^{75} +(22.9559 + 39.7608i) q^{77} +(-369.794 + 640.503i) q^{79} +(660.548 - 308.411i) q^{81} +(244.041 - 422.691i) q^{83} +(114.488 + 198.299i) q^{85} +(-343.879 + 781.783i) q^{87} +173.938 q^{89} -171.740 q^{91} +(-757.920 - 1033.41i) q^{93} +(-125.864 - 218.003i) q^{95} +(-744.116 + 1288.85i) q^{97} +(-118.608 + 376.497i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{3} + 50 q^{5} + 22 q^{7} - 6 q^{9} + 50 q^{11} - 16 q^{13} - 68 q^{17} + 212 q^{19} - 60 q^{21} + 50 q^{23} - 250 q^{25} + 630 q^{27} - 64 q^{29} - 22 q^{31} - 330 q^{33} + 220 q^{35} + 600 q^{37}+ \cdots + 5562 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.16520 + 0.566318i −0.994043 + 0.108988i
\(4\) 0 0
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 1.57018 2.71963i 0.0847818 0.146846i −0.820516 0.571623i \(-0.806314\pi\)
0.905298 + 0.424777i \(0.139647\pi\)
\(8\) 0 0
\(9\) 26.3586 5.85030i 0.976243 0.216678i
\(10\) 0 0
\(11\) −7.30996 + 12.6612i −0.200367 + 0.347046i −0.948647 0.316338i \(-0.897547\pi\)
0.748280 + 0.663383i \(0.230880\pi\)
\(12\) 0 0
\(13\) −27.3440 47.3612i −0.583374 1.01043i −0.995076 0.0991143i \(-0.968399\pi\)
0.411703 0.911318i \(-0.364934\pi\)
\(14\) 0 0
\(15\) −15.3652 20.9502i −0.264486 0.360621i
\(16\) 0 0
\(17\) 45.7952 0.653351 0.326676 0.945137i \(-0.394072\pi\)
0.326676 + 0.945137i \(0.394072\pi\)
\(18\) 0 0
\(19\) −50.3457 −0.607900 −0.303950 0.952688i \(-0.598306\pi\)
−0.303950 + 0.952688i \(0.598306\pi\)
\(20\) 0 0
\(21\) −6.57012 + 14.9367i −0.0682723 + 0.155212i
\(22\) 0 0
\(23\) 9.94951 + 17.2331i 0.0902007 + 0.156232i 0.907595 0.419846i \(-0.137916\pi\)
−0.817395 + 0.576078i \(0.804582\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) −132.834 + 45.1453i −0.946813 + 0.321786i
\(28\) 0 0
\(29\) 82.1830 142.345i 0.526242 0.911477i −0.473291 0.880906i \(-0.656934\pi\)
0.999533 0.0305711i \(-0.00973259\pi\)
\(30\) 0 0
\(31\) 123.317 + 213.592i 0.714466 + 1.23749i 0.963165 + 0.268911i \(0.0866636\pi\)
−0.248699 + 0.968581i \(0.580003\pi\)
\(32\) 0 0
\(33\) 30.5871 69.5375i 0.161349 0.366816i
\(34\) 0 0
\(35\) 15.7018 0.0758312
\(36\) 0 0
\(37\) 268.484 1.19293 0.596467 0.802637i \(-0.296571\pi\)
0.596467 + 0.802637i \(0.296571\pi\)
\(38\) 0 0
\(39\) 168.059 + 229.144i 0.690023 + 0.940833i
\(40\) 0 0
\(41\) 166.114 + 287.718i 0.632747 + 1.09595i 0.986988 + 0.160795i \(0.0514059\pi\)
−0.354241 + 0.935154i \(0.615261\pi\)
\(42\) 0 0
\(43\) 55.4147 95.9811i 0.196527 0.340395i −0.750873 0.660447i \(-0.770367\pi\)
0.947400 + 0.320052i \(0.103700\pi\)
\(44\) 0 0
\(45\) 91.2289 + 99.5102i 0.302213 + 0.329647i
\(46\) 0 0
\(47\) −17.8310 + 30.8843i −0.0553388 + 0.0958496i −0.892368 0.451309i \(-0.850957\pi\)
0.837029 + 0.547159i \(0.184291\pi\)
\(48\) 0 0
\(49\) 166.569 + 288.506i 0.485624 + 0.841126i
\(50\) 0 0
\(51\) −236.541 + 25.9347i −0.649459 + 0.0712075i
\(52\) 0 0
\(53\) 482.657 1.25091 0.625453 0.780262i \(-0.284914\pi\)
0.625453 + 0.780262i \(0.284914\pi\)
\(54\) 0 0
\(55\) −73.0996 −0.179214
\(56\) 0 0
\(57\) 260.046 28.5117i 0.604279 0.0662538i
\(58\) 0 0
\(59\) 164.766 + 285.383i 0.363572 + 0.629724i 0.988546 0.150921i \(-0.0482239\pi\)
−0.624974 + 0.780645i \(0.714891\pi\)
\(60\) 0 0
\(61\) −80.0901 + 138.720i −0.168106 + 0.291169i −0.937754 0.347300i \(-0.887099\pi\)
0.769648 + 0.638469i \(0.220432\pi\)
\(62\) 0 0
\(63\) 25.4771 80.8717i 0.0509493 0.161728i
\(64\) 0 0
\(65\) 136.720 236.806i 0.260893 0.451879i
\(66\) 0 0
\(67\) 145.738 + 252.425i 0.265742 + 0.460278i 0.967758 0.251883i \(-0.0810498\pi\)
−0.702016 + 0.712161i \(0.747716\pi\)
\(68\) 0 0
\(69\) −61.1506 83.3776i −0.106691 0.145471i
\(70\) 0 0
\(71\) 191.669 0.320380 0.160190 0.987086i \(-0.448789\pi\)
0.160190 + 0.987086i \(0.448789\pi\)
\(72\) 0 0
\(73\) 866.440 1.38917 0.694583 0.719412i \(-0.255589\pi\)
0.694583 + 0.719412i \(0.255589\pi\)
\(74\) 0 0
\(75\) 52.3038 118.909i 0.0805270 0.183072i
\(76\) 0 0
\(77\) 22.9559 + 39.7608i 0.0339749 + 0.0588463i
\(78\) 0 0
\(79\) −369.794 + 640.503i −0.526647 + 0.912180i 0.472871 + 0.881132i \(0.343218\pi\)
−0.999518 + 0.0310478i \(0.990116\pi\)
\(80\) 0 0
\(81\) 660.548 308.411i 0.906102 0.423060i
\(82\) 0 0
\(83\) 244.041 422.691i 0.322734 0.558992i −0.658317 0.752741i \(-0.728731\pi\)
0.981051 + 0.193749i \(0.0620646\pi\)
\(84\) 0 0
\(85\) 114.488 + 198.299i 0.146094 + 0.253042i
\(86\) 0 0
\(87\) −343.879 + 781.783i −0.423767 + 0.963402i
\(88\) 0 0
\(89\) 173.938 0.207161 0.103581 0.994621i \(-0.466970\pi\)
0.103581 + 0.994621i \(0.466970\pi\)
\(90\) 0 0
\(91\) −171.740 −0.197838
\(92\) 0 0
\(93\) −757.920 1033.41i −0.845082 1.15225i
\(94\) 0 0
\(95\) −125.864 218.003i −0.135931 0.235439i
\(96\) 0 0
\(97\) −744.116 + 1288.85i −0.778902 + 1.34910i 0.153673 + 0.988122i \(0.450890\pi\)
−0.932575 + 0.360976i \(0.882444\pi\)
\(98\) 0 0
\(99\) −118.608 + 376.497i −0.120410 + 0.382216i
\(100\) 0 0
\(101\) 197.683 342.397i 0.194754 0.337324i −0.752066 0.659088i \(-0.770942\pi\)
0.946820 + 0.321764i \(0.104276\pi\)
\(102\) 0 0
\(103\) −428.044 741.394i −0.409480 0.709240i 0.585352 0.810779i \(-0.300956\pi\)
−0.994831 + 0.101540i \(0.967623\pi\)
\(104\) 0 0
\(105\) −81.1030 + 8.89223i −0.0753794 + 0.00826469i
\(106\) 0 0
\(107\) 423.634 0.382750 0.191375 0.981517i \(-0.438705\pi\)
0.191375 + 0.981517i \(0.438705\pi\)
\(108\) 0 0
\(109\) −840.730 −0.738783 −0.369391 0.929274i \(-0.620434\pi\)
−0.369391 + 0.929274i \(0.620434\pi\)
\(110\) 0 0
\(111\) −1386.78 + 152.048i −1.18583 + 0.130016i
\(112\) 0 0
\(113\) −853.149 1477.70i −0.710243 1.23018i −0.964766 0.263111i \(-0.915252\pi\)
0.254522 0.967067i \(-0.418082\pi\)
\(114\) 0 0
\(115\) −49.7475 + 86.1653i −0.0403390 + 0.0698692i
\(116\) 0 0
\(117\) −997.825 1088.40i −0.788453 0.860024i
\(118\) 0 0
\(119\) 71.9068 124.546i 0.0553923 0.0959423i
\(120\) 0 0
\(121\) 558.629 + 967.574i 0.419706 + 0.726953i
\(122\) 0 0
\(123\) −1020.95 1392.05i −0.748423 1.02046i
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1075.14 0.751205 0.375602 0.926781i \(-0.377436\pi\)
0.375602 + 0.926781i \(0.377436\pi\)
\(128\) 0 0
\(129\) −231.872 + 527.144i −0.158257 + 0.359786i
\(130\) 0 0
\(131\) −443.630 768.390i −0.295879 0.512477i 0.679310 0.733851i \(-0.262279\pi\)
−0.975189 + 0.221374i \(0.928946\pi\)
\(132\) 0 0
\(133\) −79.0519 + 136.922i −0.0515389 + 0.0892679i
\(134\) 0 0
\(135\) −527.570 462.325i −0.336341 0.294745i
\(136\) 0 0
\(137\) 988.251 1711.70i 0.616292 1.06745i −0.373865 0.927483i \(-0.621968\pi\)
0.990156 0.139965i \(-0.0446992\pi\)
\(138\) 0 0
\(139\) 906.632 + 1570.33i 0.553234 + 0.958229i 0.998039 + 0.0626017i \(0.0199398\pi\)
−0.444805 + 0.895628i \(0.646727\pi\)
\(140\) 0 0
\(141\) 74.6105 169.621i 0.0445627 0.101310i
\(142\) 0 0
\(143\) 799.534 0.467555
\(144\) 0 0
\(145\) 821.830 0.470685
\(146\) 0 0
\(147\) −1023.75 1395.86i −0.574404 0.783188i
\(148\) 0 0
\(149\) 505.197 + 875.027i 0.277767 + 0.481107i 0.970830 0.239771i \(-0.0770722\pi\)
−0.693062 + 0.720878i \(0.743739\pi\)
\(150\) 0 0
\(151\) −577.277 + 999.874i −0.311114 + 0.538865i −0.978604 0.205754i \(-0.934035\pi\)
0.667490 + 0.744619i \(0.267369\pi\)
\(152\) 0 0
\(153\) 1207.10 267.916i 0.637830 0.141567i
\(154\) 0 0
\(155\) −616.587 + 1067.96i −0.319519 + 0.553423i
\(156\) 0 0
\(157\) −569.678 986.711i −0.289587 0.501580i 0.684124 0.729366i \(-0.260185\pi\)
−0.973711 + 0.227786i \(0.926851\pi\)
\(158\) 0 0
\(159\) −2493.02 + 273.338i −1.24345 + 0.136334i
\(160\) 0 0
\(161\) 62.4901 0.0305895
\(162\) 0 0
\(163\) −3320.87 −1.59577 −0.797886 0.602809i \(-0.794048\pi\)
−0.797886 + 0.602809i \(0.794048\pi\)
\(164\) 0 0
\(165\) 377.574 41.3977i 0.178146 0.0195321i
\(166\) 0 0
\(167\) 1076.63 + 1864.78i 0.498876 + 0.864078i 0.999999 0.00129774i \(-0.000413084\pi\)
−0.501123 + 0.865376i \(0.667080\pi\)
\(168\) 0 0
\(169\) −396.887 + 687.428i −0.180649 + 0.312894i
\(170\) 0 0
\(171\) −1327.04 + 294.537i −0.593458 + 0.131718i
\(172\) 0 0
\(173\) 1898.21 3287.80i 0.834211 1.44490i −0.0604599 0.998171i \(-0.519257\pi\)
0.894671 0.446725i \(-0.147410\pi\)
\(174\) 0 0
\(175\) 39.2545 + 67.9908i 0.0169564 + 0.0293693i
\(176\) 0 0
\(177\) −1012.67 1380.75i −0.430038 0.586348i
\(178\) 0 0
\(179\) 1763.35 0.736305 0.368153 0.929765i \(-0.379990\pi\)
0.368153 + 0.929765i \(0.379990\pi\)
\(180\) 0 0
\(181\) 194.975 0.0800683 0.0400342 0.999198i \(-0.487253\pi\)
0.0400342 + 0.999198i \(0.487253\pi\)
\(182\) 0 0
\(183\) 335.122 761.874i 0.135371 0.307756i
\(184\) 0 0
\(185\) 671.211 + 1162.57i 0.266748 + 0.462022i
\(186\) 0 0
\(187\) −334.761 + 579.823i −0.130910 + 0.226743i
\(188\) 0 0
\(189\) −85.7950 + 432.146i −0.0330194 + 0.166318i
\(190\) 0 0
\(191\) 1718.62 2976.74i 0.651074 1.12769i −0.331789 0.943354i \(-0.607652\pi\)
0.982863 0.184339i \(-0.0590145\pi\)
\(192\) 0 0
\(193\) 1272.75 + 2204.47i 0.474686 + 0.822181i 0.999580 0.0289870i \(-0.00922813\pi\)
−0.524893 + 0.851168i \(0.675895\pi\)
\(194\) 0 0
\(195\) −572.078 + 1300.58i −0.210089 + 0.477622i
\(196\) 0 0
\(197\) −3772.65 −1.36442 −0.682209 0.731158i \(-0.738980\pi\)
−0.682209 + 0.731158i \(0.738980\pi\)
\(198\) 0 0
\(199\) −1011.51 −0.360321 −0.180160 0.983637i \(-0.557662\pi\)
−0.180160 + 0.983637i \(0.557662\pi\)
\(200\) 0 0
\(201\) −895.718 1221.29i −0.314324 0.428574i
\(202\) 0 0
\(203\) −258.085 447.016i −0.0892314 0.154553i
\(204\) 0 0
\(205\) −830.569 + 1438.59i −0.282973 + 0.490124i
\(206\) 0 0
\(207\) 363.073 + 396.031i 0.121910 + 0.132976i
\(208\) 0 0
\(209\) 368.025 637.438i 0.121803 0.210969i
\(210\) 0 0
\(211\) −2104.05 3644.33i −0.686488 1.18903i −0.972967 0.230946i \(-0.925818\pi\)
0.286478 0.958087i \(-0.407515\pi\)
\(212\) 0 0
\(213\) −990.010 + 108.546i −0.318471 + 0.0349176i
\(214\) 0 0
\(215\) 554.147 0.175779
\(216\) 0 0
\(217\) 774.522 0.242295
\(218\) 0 0
\(219\) −4475.34 + 490.681i −1.38089 + 0.151403i
\(220\) 0 0
\(221\) −1252.22 2168.91i −0.381148 0.660167i
\(222\) 0 0
\(223\) 1576.10 2729.89i 0.473290 0.819762i −0.526243 0.850335i \(-0.676400\pi\)
0.999533 + 0.0305721i \(0.00973293\pi\)
\(224\) 0 0
\(225\) −202.819 + 643.808i −0.0600947 + 0.190758i
\(226\) 0 0
\(227\) 1027.79 1780.18i 0.300515 0.520507i −0.675738 0.737142i \(-0.736175\pi\)
0.976253 + 0.216635i \(0.0695082\pi\)
\(228\) 0 0
\(229\) 2339.71 + 4052.50i 0.675164 + 1.16942i 0.976421 + 0.215875i \(0.0692604\pi\)
−0.301257 + 0.953543i \(0.597406\pi\)
\(230\) 0 0
\(231\) −141.089 192.372i −0.0401861 0.0547929i
\(232\) 0 0
\(233\) −707.658 −0.198971 −0.0994854 0.995039i \(-0.531720\pi\)
−0.0994854 + 0.995039i \(0.531720\pi\)
\(234\) 0 0
\(235\) −178.310 −0.0494965
\(236\) 0 0
\(237\) 1547.33 3517.75i 0.424093 0.964144i
\(238\) 0 0
\(239\) 3046.20 + 5276.18i 0.824446 + 1.42798i 0.902342 + 0.431021i \(0.141846\pi\)
−0.0778960 + 0.996961i \(0.524820\pi\)
\(240\) 0 0
\(241\) −826.336 + 1431.26i −0.220867 + 0.382553i −0.955072 0.296375i \(-0.904222\pi\)
0.734204 + 0.678929i \(0.237555\pi\)
\(242\) 0 0
\(243\) −3237.20 + 1967.08i −0.854596 + 0.519294i
\(244\) 0 0
\(245\) −832.845 + 1442.53i −0.217178 + 0.376163i
\(246\) 0 0
\(247\) 1376.65 + 2384.43i 0.354633 + 0.614242i
\(248\) 0 0
\(249\) −1021.14 + 2321.49i −0.259888 + 0.590836i
\(250\) 0 0
\(251\) 1497.98 0.376700 0.188350 0.982102i \(-0.439686\pi\)
0.188350 + 0.982102i \(0.439686\pi\)
\(252\) 0 0
\(253\) −290.922 −0.0722929
\(254\) 0 0
\(255\) −703.654 959.418i −0.172802 0.235612i
\(256\) 0 0
\(257\) −826.195 1431.01i −0.200532 0.347331i 0.748168 0.663509i \(-0.230934\pi\)
−0.948700 + 0.316178i \(0.897600\pi\)
\(258\) 0 0
\(259\) 421.569 730.179i 0.101139 0.175178i
\(260\) 0 0
\(261\) 1333.47 4232.81i 0.316243 1.00385i
\(262\) 0 0
\(263\) 2877.51 4983.99i 0.674657 1.16854i −0.301912 0.953336i \(-0.597625\pi\)
0.976569 0.215205i \(-0.0690419\pi\)
\(264\) 0 0
\(265\) 1206.64 + 2089.97i 0.279711 + 0.484474i
\(266\) 0 0
\(267\) −898.422 + 98.5041i −0.205927 + 0.0225781i
\(268\) 0 0
\(269\) −4242.00 −0.961484 −0.480742 0.876862i \(-0.659633\pi\)
−0.480742 + 0.876862i \(0.659633\pi\)
\(270\) 0 0
\(271\) 4037.67 0.905059 0.452529 0.891750i \(-0.350522\pi\)
0.452529 + 0.891750i \(0.350522\pi\)
\(272\) 0 0
\(273\) 887.071 97.2596i 0.196659 0.0215620i
\(274\) 0 0
\(275\) −182.749 316.531i −0.0400734 0.0694091i
\(276\) 0 0
\(277\) −425.127 + 736.341i −0.0922144 + 0.159720i −0.908443 0.418010i \(-0.862728\pi\)
0.816228 + 0.577730i \(0.196061\pi\)
\(278\) 0 0
\(279\) 4500.04 + 4908.53i 0.965629 + 1.05328i
\(280\) 0 0
\(281\) 2110.97 3656.30i 0.448149 0.776216i −0.550117 0.835088i \(-0.685417\pi\)
0.998266 + 0.0588713i \(0.0187502\pi\)
\(282\) 0 0
\(283\) −1225.85 2123.23i −0.257488 0.445982i 0.708081 0.706132i \(-0.249561\pi\)
−0.965568 + 0.260150i \(0.916228\pi\)
\(284\) 0 0
\(285\) 773.574 + 1054.75i 0.160781 + 0.219221i
\(286\) 0 0
\(287\) 1043.32 0.214582
\(288\) 0 0
\(289\) −2815.80 −0.573132
\(290\) 0 0
\(291\) 3113.61 7078.55i 0.627227 1.42595i
\(292\) 0 0
\(293\) 1912.62 + 3312.75i 0.381353 + 0.660523i 0.991256 0.131953i \(-0.0421249\pi\)
−0.609903 + 0.792476i \(0.708792\pi\)
\(294\) 0 0
\(295\) −823.831 + 1426.92i −0.162594 + 0.281621i
\(296\) 0 0
\(297\) 399.418 2011.85i 0.0780355 0.393062i
\(298\) 0 0
\(299\) 544.118 942.441i 0.105241 0.182283i
\(300\) 0 0
\(301\) −174.022 301.416i −0.0333239 0.0577186i
\(302\) 0 0
\(303\) −827.166 + 1880.50i −0.156830 + 0.356541i
\(304\) 0 0
\(305\) −800.901 −0.150359
\(306\) 0 0
\(307\) 2771.63 0.515262 0.257631 0.966243i \(-0.417058\pi\)
0.257631 + 0.966243i \(0.417058\pi\)
\(308\) 0 0
\(309\) 2630.80 + 3587.04i 0.484339 + 0.660386i
\(310\) 0 0
\(311\) 4336.74 + 7511.46i 0.790721 + 1.36957i 0.925521 + 0.378696i \(0.123627\pi\)
−0.134801 + 0.990873i \(0.543039\pi\)
\(312\) 0 0
\(313\) −1772.78 + 3070.55i −0.320139 + 0.554497i −0.980516 0.196437i \(-0.937063\pi\)
0.660378 + 0.750934i \(0.270396\pi\)
\(314\) 0 0
\(315\) 413.877 91.8602i 0.0740297 0.0164309i
\(316\) 0 0
\(317\) −3081.76 + 5337.77i −0.546022 + 0.945738i 0.452520 + 0.891754i \(0.350525\pi\)
−0.998542 + 0.0539836i \(0.982808\pi\)
\(318\) 0 0
\(319\) 1201.51 + 2081.08i 0.210883 + 0.365260i
\(320\) 0 0
\(321\) −2188.16 + 239.912i −0.380470 + 0.0417152i
\(322\) 0 0
\(323\) −2305.59 −0.397172
\(324\) 0 0
\(325\) 1367.20 0.233349
\(326\) 0 0
\(327\) 4342.54 476.121i 0.734382 0.0805185i
\(328\) 0 0
\(329\) 55.9959 + 96.9878i 0.00938345 + 0.0162526i
\(330\) 0 0
\(331\) 4358.97 7549.96i 0.723839 1.25373i −0.235611 0.971847i \(-0.575709\pi\)
0.959450 0.281878i \(-0.0909574\pi\)
\(332\) 0 0
\(333\) 7076.87 1570.71i 1.16459 0.258482i
\(334\) 0 0
\(335\) −728.689 + 1262.13i −0.118843 + 0.205843i
\(336\) 0 0
\(337\) 3254.65 + 5637.22i 0.526090 + 0.911214i 0.999538 + 0.0303925i \(0.00967573\pi\)
−0.473448 + 0.880822i \(0.656991\pi\)
\(338\) 0 0
\(339\) 5243.53 + 7149.45i 0.840087 + 1.14544i
\(340\) 0 0
\(341\) −3605.78 −0.572621
\(342\) 0 0
\(343\) 2123.32 0.334252
\(344\) 0 0
\(345\) 208.159 473.234i 0.0324838 0.0738494i
\(346\) 0 0
\(347\) 1852.56 + 3208.72i 0.286601 + 0.496407i 0.972996 0.230822i \(-0.0741414\pi\)
−0.686395 + 0.727228i \(0.740808\pi\)
\(348\) 0 0
\(349\) −5113.11 + 8856.17i −0.784237 + 1.35834i 0.145217 + 0.989400i \(0.453612\pi\)
−0.929454 + 0.368938i \(0.879721\pi\)
\(350\) 0 0
\(351\) 5770.35 + 5056.73i 0.877488 + 0.768969i
\(352\) 0 0
\(353\) −1156.50 + 2003.11i −0.174374 + 0.302025i −0.939944 0.341327i \(-0.889124\pi\)
0.765570 + 0.643352i \(0.222457\pi\)
\(354\) 0 0
\(355\) 479.173 + 829.953i 0.0716391 + 0.124083i
\(356\) 0 0
\(357\) −300.880 + 684.028i −0.0446058 + 0.101408i
\(358\) 0 0
\(359\) 11018.9 1.61993 0.809967 0.586475i \(-0.199485\pi\)
0.809967 + 0.586475i \(0.199485\pi\)
\(360\) 0 0
\(361\) −4324.31 −0.630458
\(362\) 0 0
\(363\) −3433.38 4681.35i −0.496435 0.676879i
\(364\) 0 0
\(365\) 2166.10 + 3751.80i 0.310627 + 0.538022i
\(366\) 0 0
\(367\) 6462.97 11194.2i 0.919248 1.59218i 0.118689 0.992932i \(-0.462131\pi\)
0.800560 0.599253i \(-0.204536\pi\)
\(368\) 0 0
\(369\) 6061.75 + 6612.01i 0.855182 + 0.932811i
\(370\) 0 0
\(371\) 757.859 1312.65i 0.106054 0.183691i
\(372\) 0 0
\(373\) −1003.06 1737.36i −0.139240 0.241171i 0.787969 0.615715i \(-0.211133\pi\)
−0.927209 + 0.374544i \(0.877799\pi\)
\(374\) 0 0
\(375\) 645.650 70.7898i 0.0889099 0.00974819i
\(376\) 0 0
\(377\) −8988.85 −1.22798
\(378\) 0 0
\(379\) −6167.89 −0.835945 −0.417972 0.908460i \(-0.637259\pi\)
−0.417972 + 0.908460i \(0.637259\pi\)
\(380\) 0 0
\(381\) −5553.30 + 608.870i −0.746730 + 0.0818724i
\(382\) 0 0
\(383\) 1344.31 + 2328.41i 0.179350 + 0.310643i 0.941658 0.336571i \(-0.109267\pi\)
−0.762308 + 0.647214i \(0.775934\pi\)
\(384\) 0 0
\(385\) −114.780 + 198.804i −0.0151941 + 0.0263169i
\(386\) 0 0
\(387\) 899.135 2854.12i 0.118102 0.374891i
\(388\) 0 0
\(389\) 857.500 1485.23i 0.111766 0.193584i −0.804716 0.593660i \(-0.797683\pi\)
0.916482 + 0.400075i \(0.131016\pi\)
\(390\) 0 0
\(391\) 455.640 + 789.191i 0.0589327 + 0.102074i
\(392\) 0 0
\(393\) 2726.59 + 3717.65i 0.349970 + 0.477177i
\(394\) 0 0
\(395\) −3697.94 −0.471048
\(396\) 0 0
\(397\) 8048.37 1.01747 0.508735 0.860923i \(-0.330113\pi\)
0.508735 + 0.860923i \(0.330113\pi\)
\(398\) 0 0
\(399\) 330.777 751.998i 0.0415027 0.0943533i
\(400\) 0 0
\(401\) −4821.71 8351.45i −0.600461 1.04003i −0.992751 0.120188i \(-0.961650\pi\)
0.392290 0.919842i \(-0.371683\pi\)
\(402\) 0 0
\(403\) 6743.97 11680.9i 0.833601 1.44384i
\(404\) 0 0
\(405\) 2986.83 + 2089.23i 0.366461 + 0.256333i
\(406\) 0 0
\(407\) −1962.61 + 3399.34i −0.239025 + 0.414003i
\(408\) 0 0
\(409\) −7105.36 12306.8i −0.859016 1.48786i −0.872869 0.487955i \(-0.837743\pi\)
0.0138525 0.999904i \(-0.495590\pi\)
\(410\) 0 0
\(411\) −4135.15 + 9400.94i −0.496281 + 1.12826i
\(412\) 0 0
\(413\) 1034.85 0.123297
\(414\) 0 0
\(415\) 2440.41 0.288662
\(416\) 0 0
\(417\) −5572.24 7597.64i −0.654374 0.892225i
\(418\) 0 0
\(419\) −1114.29 1930.01i −0.129921 0.225029i 0.793725 0.608277i \(-0.208139\pi\)
−0.923646 + 0.383248i \(0.874806\pi\)
\(420\) 0 0
\(421\) 776.902 1345.63i 0.0899380 0.155777i −0.817547 0.575862i \(-0.804666\pi\)
0.907485 + 0.420085i \(0.138000\pi\)
\(422\) 0 0
\(423\) −289.319 + 918.382i −0.0332557 + 0.105563i
\(424\) 0 0
\(425\) −572.440 + 991.495i −0.0653351 + 0.113164i
\(426\) 0 0
\(427\) 251.512 + 435.632i 0.0285047 + 0.0493716i
\(428\) 0 0
\(429\) −4129.75 + 452.791i −0.464770 + 0.0509579i
\(430\) 0 0
\(431\) 462.976 0.0517419 0.0258710 0.999665i \(-0.491764\pi\)
0.0258710 + 0.999665i \(0.491764\pi\)
\(432\) 0 0
\(433\) −580.010 −0.0643729 −0.0321865 0.999482i \(-0.510247\pi\)
−0.0321865 + 0.999482i \(0.510247\pi\)
\(434\) 0 0
\(435\) −4244.92 + 465.418i −0.467881 + 0.0512990i
\(436\) 0 0
\(437\) −500.915 867.610i −0.0548330 0.0949735i
\(438\) 0 0
\(439\) −1096.63 + 1899.41i −0.119223 + 0.206501i −0.919460 0.393183i \(-0.871374\pi\)
0.800237 + 0.599684i \(0.204707\pi\)
\(440\) 0 0
\(441\) 6078.37 + 6630.13i 0.656340 + 0.715919i
\(442\) 0 0
\(443\) 1710.70 2963.02i 0.183471 0.317781i −0.759589 0.650403i \(-0.774600\pi\)
0.943060 + 0.332622i \(0.107933\pi\)
\(444\) 0 0
\(445\) 434.844 + 753.172i 0.0463227 + 0.0802332i
\(446\) 0 0
\(447\) −3104.99 4233.58i −0.328548 0.447968i
\(448\) 0 0
\(449\) −13914.9 −1.46255 −0.731273 0.682085i \(-0.761074\pi\)
−0.731273 + 0.682085i \(0.761074\pi\)
\(450\) 0 0
\(451\) −4857.14 −0.507126
\(452\) 0 0
\(453\) 2415.51 5491.47i 0.250531 0.569562i
\(454\) 0 0
\(455\) −429.350 743.656i −0.0442379 0.0766223i
\(456\) 0 0
\(457\) −3864.00 + 6692.65i −0.395515 + 0.685052i −0.993167 0.116703i \(-0.962767\pi\)
0.597652 + 0.801756i \(0.296101\pi\)
\(458\) 0 0
\(459\) −6083.17 + 2067.44i −0.618601 + 0.210239i
\(460\) 0 0
\(461\) −3464.26 + 6000.28i −0.349993 + 0.606206i −0.986248 0.165273i \(-0.947149\pi\)
0.636255 + 0.771479i \(0.280483\pi\)
\(462\) 0 0
\(463\) −9738.83 16868.1i −0.977541 1.69315i −0.671280 0.741204i \(-0.734255\pi\)
−0.306261 0.951948i \(-0.599078\pi\)
\(464\) 0 0
\(465\) 2579.99 5865.41i 0.257299 0.584950i
\(466\) 0 0
\(467\) −18244.0 −1.80777 −0.903887 0.427772i \(-0.859299\pi\)
−0.903887 + 0.427772i \(0.859299\pi\)
\(468\) 0 0
\(469\) 915.339 0.0901203
\(470\) 0 0
\(471\) 3501.29 + 4773.94i 0.342529 + 0.467031i
\(472\) 0 0
\(473\) 810.159 + 1403.24i 0.0787551 + 0.136408i
\(474\) 0 0
\(475\) 629.321 1090.02i 0.0607900 0.105291i
\(476\) 0 0
\(477\) 12722.1 2823.69i 1.22119 0.271043i
\(478\) 0 0
\(479\) 2243.72 3886.24i 0.214025 0.370703i −0.738945 0.673765i \(-0.764676\pi\)
0.952971 + 0.303063i \(0.0980091\pi\)
\(480\) 0 0
\(481\) −7341.43 12715.7i −0.695926 1.20538i
\(482\) 0 0
\(483\) −322.774 + 35.3893i −0.0304073 + 0.00333389i
\(484\) 0 0
\(485\) −7441.16 −0.696671
\(486\) 0 0
\(487\) −2136.17 −0.198766 −0.0993832 0.995049i \(-0.531687\pi\)
−0.0993832 + 0.995049i \(0.531687\pi\)
\(488\) 0 0
\(489\) 17153.0 1880.67i 1.58627 0.173920i
\(490\) 0 0
\(491\) 7048.39 + 12208.2i 0.647840 + 1.12209i 0.983638 + 0.180158i \(0.0576609\pi\)
−0.335797 + 0.941934i \(0.609006\pi\)
\(492\) 0 0
\(493\) 3763.59 6518.73i 0.343821 0.595515i
\(494\) 0 0
\(495\) −1926.80 + 427.654i −0.174956 + 0.0388316i
\(496\) 0 0
\(497\) 300.956 521.270i 0.0271624 0.0470466i
\(498\) 0 0
\(499\) −10083.5 17465.2i −0.904612 1.56683i −0.821437 0.570299i \(-0.806827\pi\)
−0.0831753 0.996535i \(-0.526506\pi\)
\(500\) 0 0
\(501\) −6617.08 9022.25i −0.590078 0.804559i
\(502\) 0 0
\(503\) −19912.3 −1.76510 −0.882551 0.470217i \(-0.844175\pi\)
−0.882551 + 0.470217i \(0.844175\pi\)
\(504\) 0 0
\(505\) 1976.83 0.174193
\(506\) 0 0
\(507\) 1660.70 3775.47i 0.145472 0.330719i
\(508\) 0 0
\(509\) 9789.42 + 16955.8i 0.852472 + 1.47652i 0.878971 + 0.476876i \(0.158231\pi\)
−0.0264988 + 0.999649i \(0.508436\pi\)
\(510\) 0 0
\(511\) 1360.47 2356.40i 0.117776 0.203994i
\(512\) 0 0
\(513\) 6687.63 2272.87i 0.575567 0.195614i
\(514\) 0 0
\(515\) 2140.22 3706.97i 0.183125 0.317182i
\(516\) 0 0
\(517\) −260.688 451.526i −0.0221761 0.0384102i
\(518\) 0 0
\(519\) −7942.71 + 18057.2i −0.671765 + 1.52721i
\(520\) 0 0
\(521\) −18389.9 −1.54640 −0.773200 0.634163i \(-0.781345\pi\)
−0.773200 + 0.634163i \(0.781345\pi\)
\(522\) 0 0
\(523\) −20546.3 −1.71783 −0.858916 0.512116i \(-0.828862\pi\)
−0.858916 + 0.512116i \(0.828862\pi\)
\(524\) 0 0
\(525\) −241.262 328.956i −0.0200563 0.0273463i
\(526\) 0 0
\(527\) 5647.34 + 9781.49i 0.466797 + 0.808517i
\(528\) 0 0
\(529\) 5885.51 10194.0i 0.483728 0.837841i
\(530\) 0 0
\(531\) 6012.57 + 6558.36i 0.491381 + 0.535986i
\(532\) 0 0
\(533\) 9084.42 15734.7i 0.738255 1.27870i
\(534\) 0 0
\(535\) 1059.09 + 1834.39i 0.0855856 + 0.148239i
\(536\) 0 0
\(537\) −9108.03 + 998.615i −0.731919 + 0.0802485i
\(538\) 0 0
\(539\) −4870.45 −0.389212
\(540\) 0 0
\(541\) 4660.74 0.370390 0.185195 0.982702i \(-0.440708\pi\)
0.185195 + 0.982702i \(0.440708\pi\)
\(542\) 0 0
\(543\) −1007.08 + 110.418i −0.0795914 + 0.00872649i
\(544\) 0 0
\(545\) −2101.83 3640.47i −0.165197 0.286129i
\(546\) 0 0
\(547\) 1458.99 2527.04i 0.114044 0.197529i −0.803353 0.595503i \(-0.796953\pi\)
0.917397 + 0.397973i \(0.130286\pi\)
\(548\) 0 0
\(549\) −1299.51 + 4125.02i −0.101023 + 0.320676i
\(550\) 0 0
\(551\) −4137.56 + 7166.47i −0.319902 + 0.554087i
\(552\) 0 0
\(553\) 1161.29 + 2011.41i 0.0893002 + 0.154672i
\(554\) 0 0
\(555\) −4125.33 5624.80i −0.315514 0.430197i
\(556\) 0 0
\(557\) −14120.6 −1.07417 −0.537084 0.843529i \(-0.680474\pi\)
−0.537084 + 0.843529i \(0.680474\pi\)
\(558\) 0 0
\(559\) −6061.04 −0.458595
\(560\) 0 0
\(561\) 1400.74 3184.48i 0.105418 0.239660i
\(562\) 0 0
\(563\) −6642.62 11505.4i −0.497252 0.861266i 0.502743 0.864436i \(-0.332324\pi\)
−0.999995 + 0.00316990i \(0.998991\pi\)
\(564\) 0 0
\(565\) 4265.74 7388.49i 0.317630 0.550152i
\(566\) 0 0
\(567\) 198.416 2280.71i 0.0146961 0.168926i
\(568\) 0 0
\(569\) 6058.65 10493.9i 0.446383 0.773158i −0.551765 0.834000i \(-0.686045\pi\)
0.998147 + 0.0608422i \(0.0193787\pi\)
\(570\) 0 0
\(571\) 3443.57 + 5964.44i 0.252380 + 0.437135i 0.964181 0.265247i \(-0.0854534\pi\)
−0.711801 + 0.702381i \(0.752120\pi\)
\(572\) 0 0
\(573\) −7191.24 + 16348.7i −0.524290 + 1.19193i
\(574\) 0 0
\(575\) −497.475 −0.0360803
\(576\) 0 0
\(577\) 6389.22 0.460982 0.230491 0.973074i \(-0.425967\pi\)
0.230491 + 0.973074i \(0.425967\pi\)
\(578\) 0 0
\(579\) −7822.43 10665.7i −0.561467 0.765548i
\(580\) 0 0
\(581\) −766.376 1327.40i −0.0547240 0.0947848i
\(582\) 0 0
\(583\) −3528.20 + 6111.03i −0.250640 + 0.434121i
\(584\) 0 0
\(585\) 2218.36 7041.71i 0.156782 0.497674i
\(586\) 0 0
\(587\) −12313.1 + 21327.0i −0.865787 + 1.49959i 0.000476796 1.00000i \(0.499848\pi\)
−0.866264 + 0.499587i \(0.833485\pi\)
\(588\) 0 0
\(589\) −6208.50 10753.4i −0.434324 0.752271i
\(590\) 0 0
\(591\) 19486.5 2136.52i 1.35629 0.148705i
\(592\) 0 0
\(593\) 18703.3 1.29520 0.647598 0.761982i \(-0.275774\pi\)
0.647598 + 0.761982i \(0.275774\pi\)
\(594\) 0 0
\(595\) 719.068 0.0495444
\(596\) 0 0
\(597\) 5224.64 572.835i 0.358174 0.0392707i
\(598\) 0 0
\(599\) 1258.93 + 2180.54i 0.0858741 + 0.148738i 0.905763 0.423784i \(-0.139298\pi\)
−0.819889 + 0.572522i \(0.805965\pi\)
\(600\) 0 0
\(601\) −10579.5 + 18324.2i −0.718048 + 1.24369i 0.243725 + 0.969844i \(0.421631\pi\)
−0.961772 + 0.273851i \(0.911703\pi\)
\(602\) 0 0
\(603\) 5318.20 + 5800.96i 0.359161 + 0.391763i
\(604\) 0 0
\(605\) −2793.14 + 4837.87i −0.187698 + 0.325103i
\(606\) 0 0
\(607\) 14378.7 + 24904.7i 0.961474 + 1.66532i 0.718804 + 0.695213i \(0.244690\pi\)
0.242670 + 0.970109i \(0.421977\pi\)
\(608\) 0 0
\(609\) 1586.21 + 2162.77i 0.105544 + 0.143908i
\(610\) 0 0
\(611\) 1950.29 0.129133
\(612\) 0 0
\(613\) 12342.1 0.813205 0.406602 0.913605i \(-0.366713\pi\)
0.406602 + 0.913605i \(0.366713\pi\)
\(614\) 0 0
\(615\) 3475.36 7900.96i 0.227870 0.518045i
\(616\) 0 0
\(617\) 666.521 + 1154.45i 0.0434897 + 0.0753263i 0.886951 0.461864i \(-0.152819\pi\)
−0.843461 + 0.537190i \(0.819486\pi\)
\(618\) 0 0
\(619\) 1037.12 1796.34i 0.0673429 0.116641i −0.830388 0.557186i \(-0.811881\pi\)
0.897731 + 0.440544i \(0.145215\pi\)
\(620\) 0 0
\(621\) −2099.63 1839.96i −0.135676 0.118897i
\(622\) 0 0
\(623\) 273.114 473.047i 0.0175635 0.0304209i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −1539.93 + 3500.92i −0.0980844 + 0.222987i
\(628\) 0 0
\(629\) 12295.3 0.779405
\(630\) 0 0
\(631\) 9839.77 0.620785 0.310392 0.950609i \(-0.399540\pi\)
0.310392 + 0.950609i \(0.399540\pi\)
\(632\) 0 0
\(633\) 12931.7 + 17632.1i 0.811989 + 1.10713i
\(634\) 0 0
\(635\) 2687.84 + 4655.48i 0.167975 + 0.290940i
\(636\) 0 0
\(637\) 9109.32 15777.8i 0.566600 0.981381i
\(638\) 0 0
\(639\) 5052.13 1121.32i 0.312769 0.0694191i
\(640\) 0 0
\(641\) 7909.90 13700.3i 0.487398 0.844198i −0.512497 0.858689i \(-0.671279\pi\)
0.999895 + 0.0144910i \(0.00461279\pi\)
\(642\) 0 0
\(643\) −7355.81 12740.6i −0.451143 0.781402i 0.547315 0.836927i \(-0.315650\pi\)
−0.998457 + 0.0555249i \(0.982317\pi\)
\(644\) 0 0
\(645\) −2862.28 + 313.824i −0.174732 + 0.0191578i
\(646\) 0 0
\(647\) −16466.5 −1.00056 −0.500281 0.865863i \(-0.666770\pi\)
−0.500281 + 0.865863i \(0.666770\pi\)
\(648\) 0 0
\(649\) −4817.73 −0.291391
\(650\) 0 0
\(651\) −4000.56 + 438.626i −0.240852 + 0.0264072i
\(652\) 0 0
\(653\) 4076.89 + 7061.38i 0.244320 + 0.423175i 0.961940 0.273260i \(-0.0881019\pi\)
−0.717620 + 0.696435i \(0.754769\pi\)
\(654\) 0 0
\(655\) 2218.15 3841.95i 0.132321 0.229187i
\(656\) 0 0
\(657\) 22838.1 5068.93i 1.35616 0.301001i
\(658\) 0 0
\(659\) 15003.6 25987.0i 0.886886 1.53613i 0.0433494 0.999060i \(-0.486197\pi\)
0.843537 0.537072i \(-0.180470\pi\)
\(660\) 0 0
\(661\) −10689.5 18514.8i −0.629008 1.08947i −0.987751 0.156037i \(-0.950128\pi\)
0.358744 0.933436i \(-0.383205\pi\)
\(662\) 0 0
\(663\) 7696.28 + 10493.7i 0.450828 + 0.614694i
\(664\) 0 0
\(665\) −790.519 −0.0460978
\(666\) 0 0
\(667\) 3270.72 0.189869
\(668\) 0 0
\(669\) −6594.90 + 14993.0i −0.381126 + 0.866462i
\(670\) 0 0
\(671\) −1170.91 2028.08i −0.0673659 0.116681i
\(672\) 0 0
\(673\) −12310.3 + 21322.0i −0.705091 + 1.22125i 0.261568 + 0.965185i \(0.415760\pi\)
−0.966659 + 0.256068i \(0.917573\pi\)
\(674\) 0 0
\(675\) 683.002 3440.26i 0.0389463 0.196171i
\(676\) 0 0
\(677\) −13782.0 + 23871.1i −0.782399 + 1.35515i 0.148142 + 0.988966i \(0.452671\pi\)
−0.930541 + 0.366188i \(0.880663\pi\)
\(678\) 0 0
\(679\) 2336.79 + 4047.44i 0.132073 + 0.228758i
\(680\) 0 0
\(681\) −4300.59 + 9777.07i −0.241996 + 0.550159i
\(682\) 0 0
\(683\) −9068.36 −0.508040 −0.254020 0.967199i \(-0.581753\pi\)
−0.254020 + 0.967199i \(0.581753\pi\)
\(684\) 0 0
\(685\) 9882.51 0.551228
\(686\) 0 0
\(687\) −14380.1 19606.9i −0.798594 1.08887i
\(688\) 0 0
\(689\) −13197.8 22859.2i −0.729746 1.26396i
\(690\) 0 0
\(691\) −11432.8 + 19802.2i −0.629413 + 1.09018i 0.358256 + 0.933623i \(0.383371\pi\)
−0.987670 + 0.156553i \(0.949962\pi\)
\(692\) 0 0
\(693\) 837.698 + 913.739i 0.0459185 + 0.0500867i
\(694\) 0 0
\(695\) −4533.16 + 7851.66i −0.247414 + 0.428533i
\(696\) 0 0
\(697\) 7607.22 + 13176.1i 0.413406 + 0.716040i
\(698\) 0 0
\(699\) 3655.19 400.760i 0.197786 0.0216854i
\(700\) 0 0
\(701\) 2080.10 0.112075 0.0560373 0.998429i \(-0.482153\pi\)
0.0560373 + 0.998429i \(0.482153\pi\)
\(702\) 0 0
\(703\) −13517.0 −0.725185
\(704\) 0 0
\(705\) 921.009 100.980i 0.0492017 0.00539453i
\(706\) 0 0
\(707\) −620.796 1075.25i −0.0330232 0.0571979i
\(708\) 0 0
\(709\) 11853.8 20531.4i 0.627898 1.08755i −0.360074 0.932924i \(-0.617249\pi\)
0.987973 0.154628i \(-0.0494180\pi\)
\(710\) 0 0
\(711\) −6000.12 + 19046.1i −0.316487 + 1.00462i
\(712\) 0 0
\(713\) −2453.89 + 4250.27i −0.128891 + 0.223245i
\(714\) 0 0
\(715\) 1998.83 + 3462.08i 0.104548 + 0.181083i
\(716\) 0 0
\(717\) −18722.3 25527.4i −0.975168 1.32962i
\(718\) 0 0
\(719\) 12675.0 0.657438 0.328719 0.944428i \(-0.393383\pi\)
0.328719 + 0.944428i \(0.393383\pi\)
\(720\) 0 0
\(721\) −2688.43 −0.138866
\(722\) 0 0
\(723\) 3457.64 7860.69i 0.177858 0.404346i
\(724\) 0 0
\(725\) 2054.58 + 3558.63i 0.105248 + 0.182295i
\(726\) 0 0
\(727\) 9534.79 16514.7i 0.486418 0.842500i −0.513460 0.858113i \(-0.671637\pi\)
0.999878 + 0.0156129i \(0.00496995\pi\)
\(728\) 0 0
\(729\) 15606.8 11993.7i 0.792908 0.609342i
\(730\) 0 0
\(731\) 2537.73 4395.48i 0.128401 0.222397i
\(732\) 0 0
\(733\) 11079.3 + 19189.9i 0.558285 + 0.966978i 0.997640 + 0.0686641i \(0.0218737\pi\)
−0.439355 + 0.898313i \(0.644793\pi\)
\(734\) 0 0
\(735\) 3484.88 7922.61i 0.174887 0.397592i
\(736\) 0 0
\(737\) −4261.35 −0.212983
\(738\) 0 0
\(739\) −15425.3 −0.767834 −0.383917 0.923368i \(-0.625425\pi\)
−0.383917 + 0.923368i \(0.625425\pi\)
\(740\) 0 0
\(741\) −8461.03 11536.4i −0.419465 0.571932i
\(742\) 0 0
\(743\) 17721.2 + 30694.0i 0.875004 + 1.51555i 0.856759 + 0.515717i \(0.172475\pi\)
0.0182450 + 0.999834i \(0.494192\pi\)
\(744\) 0 0
\(745\) −2525.98 + 4375.13i −0.124221 + 0.215158i
\(746\) 0 0
\(747\) 3959.70 12569.2i 0.193946 0.615642i
\(748\) 0 0
\(749\) 665.183 1152.13i 0.0324503 0.0562055i
\(750\) 0 0
\(751\) 8106.23 + 14040.4i 0.393875 + 0.682212i 0.992957 0.118476i \(-0.0378008\pi\)
−0.599082 + 0.800688i \(0.704468\pi\)
\(752\) 0 0
\(753\) −7737.37 + 848.334i −0.374456 + 0.0410558i
\(754\) 0 0
\(755\) −5772.77 −0.278269
\(756\) 0 0
\(757\) 20286.0 0.973984 0.486992 0.873407i \(-0.338094\pi\)
0.486992 + 0.873407i \(0.338094\pi\)
\(758\) 0 0
\(759\) 1502.67 164.755i 0.0718623 0.00787906i
\(760\) 0 0
\(761\) 17748.5 + 30741.2i 0.845442 + 1.46435i 0.885237 + 0.465140i \(0.153996\pi\)
−0.0397950 + 0.999208i \(0.512670\pi\)
\(762\) 0 0
\(763\) −1320.10 + 2286.48i −0.0626354 + 0.108488i
\(764\) 0 0
\(765\) 4177.85 + 4557.09i 0.197452 + 0.215375i
\(766\) 0 0
\(767\) 9010.72 15607.0i 0.424196 0.734729i
\(768\) 0 0
\(769\) −17945.3 31082.3i −0.841516 1.45755i −0.888613 0.458658i \(-0.848330\pi\)
0.0470967 0.998890i \(-0.485003\pi\)
\(770\) 0 0
\(771\) 5077.87 + 6923.57i 0.237192 + 0.323407i
\(772\) 0 0
\(773\) 22725.0 1.05739 0.528694 0.848812i \(-0.322682\pi\)
0.528694 + 0.848812i \(0.322682\pi\)
\(774\) 0 0
\(775\) −6165.87 −0.285786
\(776\) 0 0
\(777\) −1763.98 + 4010.26i −0.0814443 + 0.185158i
\(778\) 0 0
\(779\) −8363.12 14485.3i −0.384647 0.666228i
\(780\) 0 0
\(781\) −1401.10 + 2426.77i −0.0641935 + 0.111186i
\(782\) 0 0
\(783\) −4490.50 + 22618.5i −0.204952 + 1.03234i
\(784\) 0 0
\(785\) 2848.39 4933.55i 0.129507 0.224313i
\(786\) 0 0
\(787\) 16475.1 + 28535.6i 0.746217 + 1.29249i 0.949624 + 0.313391i \(0.101465\pi\)
−0.203407 + 0.979094i \(0.565202\pi\)
\(788\) 0 0
\(789\) −12040.4 + 27372.9i −0.543281 + 1.23511i
\(790\) 0 0
\(791\) −5358.39 −0.240863
\(792\) 0 0
\(793\) 8759.93 0.392275
\(794\) 0 0
\(795\) −7416.13 10111.7i −0.330847 0.451103i
\(796\) 0 0
\(797\) 9869.56 + 17094.6i 0.438642 + 0.759751i 0.997585 0.0694555i \(-0.0221262\pi\)
−0.558943 + 0.829206i \(0.688793\pi\)
\(798\) 0 0
\(799\) −816.576 + 1414.35i −0.0361557 + 0.0626235i
\(800\) 0 0
\(801\) 4584.75 1017.59i 0.202240 0.0448872i
\(802\) 0 0
\(803\) −6333.64 + 10970.2i −0.278343 + 0.482104i
\(804\) 0 0
\(805\) 156.225 + 270.590i 0.00684002 + 0.0118473i
\(806\) 0 0
\(807\) 21910.8 2402.32i 0.955757 0.104790i
\(808\) 0 0
\(809\) 32852.8 1.42774 0.713870 0.700278i \(-0.246941\pi\)
0.713870 + 0.700278i \(0.246941\pi\)
\(810\) 0 0
\(811\) 20122.0 0.871245 0.435623 0.900129i \(-0.356528\pi\)
0.435623 + 0.900129i \(0.356528\pi\)
\(812\) 0 0
\(813\) −20855.4 + 2286.61i −0.899667 + 0.0986406i
\(814\) 0 0
\(815\) −8302.18 14379.8i −0.356825 0.618040i
\(816\) 0 0
\(817\) −2789.89 + 4832.24i −0.119469 + 0.206926i
\(818\) 0 0
\(819\) −4526.82 + 1004.73i −0.193138 + 0.0428670i
\(820\) 0 0
\(821\) 12567.8 21768.0i 0.534249 0.925347i −0.464950 0.885337i \(-0.653928\pi\)
0.999199 0.0400102i \(-0.0127390\pi\)
\(822\) 0 0
\(823\) 11558.9 + 20020.6i 0.489572 + 0.847963i 0.999928 0.0119999i \(-0.00381978\pi\)
−0.510356 + 0.859963i \(0.670486\pi\)
\(824\) 0 0
\(825\) 1123.19 + 1531.45i 0.0473994 + 0.0646281i
\(826\) 0 0
\(827\) 6362.04 0.267509 0.133754 0.991015i \(-0.457297\pi\)
0.133754 + 0.991015i \(0.457297\pi\)
\(828\) 0 0
\(829\) −21021.5 −0.880706 −0.440353 0.897825i \(-0.645147\pi\)
−0.440353 + 0.897825i \(0.645147\pi\)
\(830\) 0 0
\(831\) 1778.86 4044.10i 0.0742575 0.168819i
\(832\) 0 0
\(833\) 7628.07 + 13212.2i 0.317283 + 0.549550i
\(834\) 0 0
\(835\) −5383.16 + 9323.90i −0.223104 + 0.386427i
\(836\) 0 0
\(837\) −26023.4 22805.1i −1.07467 0.941767i
\(838\) 0 0
\(839\) 23031.0 39890.9i 0.947698 1.64146i 0.197441 0.980315i \(-0.436737\pi\)
0.750257 0.661146i \(-0.229930\pi\)
\(840\) 0 0
\(841\) −1313.60 2275.23i −0.0538605 0.0932891i
\(842\) 0 0
\(843\) −8832.94 + 20081.0i −0.360881 + 0.820435i
\(844\) 0 0
\(845\) −3968.87 −0.161578
\(846\) 0 0
\(847\) 3508.60 0.142334
\(848\) 0 0
\(849\) 7534.17 + 10272.7i 0.304561 + 0.415262i
\(850\) 0 0
\(851\) 2671.29 + 4626.81i 0.107604 + 0.186375i
\(852\) 0 0
\(853\) −8792.39 + 15228.9i −0.352926 + 0.611285i −0.986761 0.162183i \(-0.948147\pi\)
0.633835 + 0.773468i \(0.281480\pi\)
\(854\) 0 0
\(855\) −4592.99 5009.91i −0.183716 0.200392i
\(856\) 0 0
\(857\) 5156.94 8932.09i 0.205552 0.356026i −0.744757 0.667336i \(-0.767434\pi\)
0.950308 + 0.311310i \(0.100768\pi\)
\(858\) 0 0
\(859\) 15293.9 + 26489.9i 0.607476 + 1.05218i 0.991655 + 0.128921i \(0.0411514\pi\)
−0.384178 + 0.923259i \(0.625515\pi\)
\(860\) 0 0
\(861\) −5388.93 + 590.849i −0.213303 + 0.0233868i
\(862\) 0 0
\(863\) −3387.21 −0.133606 −0.0668029 0.997766i \(-0.521280\pi\)
−0.0668029 + 0.997766i \(0.521280\pi\)
\(864\) 0 0
\(865\) 18982.1 0.746141
\(866\) 0 0
\(867\) 14544.2 1594.64i 0.569718 0.0624646i
\(868\) 0 0
\(869\) −5406.36 9364.10i −0.211045 0.365541i
\(870\) 0 0
\(871\) 7970.10 13804.6i 0.310053 0.537028i
\(872\) 0 0
\(873\) −12073.7 + 38325.4i −0.468078 + 1.48582i
\(874\) 0 0
\(875\) −196.273 + 339.954i −0.00758312 + 0.0131343i
\(876\) 0 0
\(877\) 9232.83 + 15991.7i 0.355497 + 0.615738i 0.987203 0.159470i \(-0.0509784\pi\)
−0.631706 + 0.775208i \(0.717645\pi\)
\(878\) 0 0
\(879\) −11755.1 16027.9i −0.451070 0.615025i
\(880\) 0 0
\(881\) 20662.0 0.790148 0.395074 0.918649i \(-0.370719\pi\)
0.395074 + 0.918649i \(0.370719\pi\)
\(882\) 0 0
\(883\) 386.519 0.0147309 0.00736545 0.999973i \(-0.497655\pi\)
0.00736545 + 0.999973i \(0.497655\pi\)
\(884\) 0 0
\(885\) 3447.16 7836.86i 0.130932 0.297665i
\(886\) 0 0
\(887\) −6678.06 11566.7i −0.252793 0.437850i 0.711501 0.702685i \(-0.248016\pi\)
−0.964294 + 0.264835i \(0.914682\pi\)
\(888\) 0 0
\(889\) 1688.16 2923.98i 0.0636885 0.110312i
\(890\) 0 0
\(891\) −923.722 + 10617.8i −0.0347316 + 0.399226i
\(892\) 0 0
\(893\) 897.717 1554.89i 0.0336405 0.0582670i
\(894\) 0 0
\(895\) 4408.36 + 7635.51i 0.164643 + 0.285170i
\(896\) 0 0
\(897\) −2276.76 + 5176.04i −0.0847478 + 0.192668i
\(898\) 0 0
\(899\) 40538.4 1.50393
\(900\) 0 0
\(901\) 22103.4 0.817281
\(902\) 0 0
\(903\) 1069.56 + 1458.32i 0.0394160 + 0.0537429i
\(904\) 0 0
\(905\) 487.437 + 844.266i 0.0179038 + 0.0310103i
\(906\) 0 0
\(907\) −14680.6 + 25427.6i −0.537445 + 0.930882i 0.461596 + 0.887090i \(0.347277\pi\)
−0.999041 + 0.0437913i \(0.986056\pi\)
\(908\) 0 0
\(909\) 3207.51 10181.6i 0.117037 0.371509i
\(910\) 0 0
\(911\) 3836.01 6644.16i 0.139509 0.241636i −0.787802 0.615929i \(-0.788781\pi\)
0.927311 + 0.374292i \(0.122114\pi\)
\(912\) 0 0
\(913\) 3567.86 + 6179.71i 0.129331 + 0.224007i
\(914\) 0 0
\(915\) 4136.81 453.565i 0.149463 0.0163873i
\(916\) 0 0
\(917\) −2786.32 −0.100341
\(918\) 0 0
\(919\) −25818.6 −0.926742 −0.463371 0.886164i \(-0.653360\pi\)
−0.463371 + 0.886164i \(0.653360\pi\)
\(920\) 0 0
\(921\) −14316.0 + 1569.63i −0.512193 + 0.0561574i
\(922\) 0 0
\(923\) −5241.00 9077.68i −0.186901 0.323722i
\(924\) 0 0
\(925\) −3356.06 + 5812.86i −0.119293 + 0.206622i
\(926\) 0 0
\(927\) −15620.0 17037.9i −0.553428 0.603665i
\(928\) 0 0
\(929\) 13689.5 23710.9i 0.483463 0.837383i −0.516356 0.856374i \(-0.672712\pi\)
0.999820 + 0.0189908i \(0.00604531\pi\)
\(930\) 0 0
\(931\) −8386.04 14525.0i −0.295211 0.511320i
\(932\) 0 0
\(933\) −26654.0 36342.2i −0.935277 1.27523i
\(934\) 0 0
\(935\) −3347.61 −0.117089
\(936\) 0 0
\(937\) −4696.47 −0.163743 −0.0818713 0.996643i \(-0.526090\pi\)
−0.0818713 + 0.996643i \(0.526090\pi\)
\(938\) 0 0
\(939\) 7417.86 16863.9i 0.257798 0.586085i
\(940\) 0 0
\(941\) −1419.08 2457.92i −0.0491612 0.0851497i 0.840398 0.541970i \(-0.182321\pi\)
−0.889559 + 0.456821i \(0.848988\pi\)
\(942\) 0 0
\(943\) −3305.50 + 5725.30i −0.114148 + 0.197711i
\(944\) 0 0
\(945\) −2085.74 + 708.863i −0.0717979 + 0.0244014i
\(946\) 0 0
\(947\) −23449.9 + 40616.5i −0.804668 + 1.39373i 0.111847 + 0.993725i \(0.464323\pi\)
−0.916515 + 0.400000i \(0.869010\pi\)
\(948\) 0 0
\(949\) −23691.9 41035.6i −0.810403 1.40366i
\(950\) 0 0
\(951\) 12895.0 29315.9i 0.439695 0.999614i
\(952\) 0 0
\(953\) 32713.6 1.11196 0.555980 0.831196i \(-0.312343\pi\)
0.555980 + 0.831196i \(0.312343\pi\)
\(954\) 0 0
\(955\) 17186.2 0.582338
\(956\) 0 0
\(957\) −7384.59 10068.7i −0.249436 0.340100i
\(958\) 0 0
\(959\) −3103.47 5375.36i −0.104501 0.181001i
\(960\) 0 0
\(961\) −15518.8 + 26879.4i −0.520923 + 0.902266i
\(962\) 0 0
\(963\) 11166.4 2478.39i 0.373657 0.0829334i
\(964\) 0 0
\(965\) −6363.75 + 11022.3i −0.212286 + 0.367691i
\(966\) 0 0
\(967\) 12065.4 + 20897.8i 0.401236 + 0.694962i 0.993875 0.110506i \(-0.0352473\pi\)
−0.592639 + 0.805468i \(0.701914\pi\)
\(968\) 0 0
\(969\) 11908.8 1305.70i 0.394806 0.0432870i
\(970\) 0 0
\(971\) −21198.9 −0.700623 −0.350312 0.936633i \(-0.613924\pi\)
−0.350312 + 0.936633i \(0.613924\pi\)
\(972\) 0 0
\(973\) 5694.31 0.187617
\(974\) 0 0
\(975\) −7061.86 + 774.270i −0.231959 + 0.0254323i
\(976\) 0 0
\(977\) 2070.13 + 3585.57i 0.0677885 + 0.117413i 0.897928 0.440143i \(-0.145072\pi\)
−0.830139 + 0.557556i \(0.811739\pi\)
\(978\) 0 0
\(979\) −1271.48 + 2202.26i −0.0415082 + 0.0718944i
\(980\) 0 0
\(981\) −22160.4 + 4918.52i −0.721232 + 0.160078i
\(982\) 0 0
\(983\) −11969.4 + 20731.6i −0.388367 + 0.672672i −0.992230 0.124417i \(-0.960294\pi\)
0.603863 + 0.797088i \(0.293627\pi\)
\(984\) 0 0
\(985\) −9431.62 16336.1i −0.305093 0.528436i
\(986\) 0 0
\(987\) −344.156 469.250i −0.0110989 0.0151331i
\(988\) 0 0
\(989\) 2205.40 0.0709075
\(990\) 0 0
\(991\) −40688.9 −1.30426 −0.652131 0.758106i \(-0.726125\pi\)
−0.652131 + 0.758106i \(0.726125\pi\)
\(992\) 0 0
\(993\) −18239.3 + 41465.6i −0.582886 + 1.32515i
\(994\) 0 0
\(995\) −2528.77 4379.95i −0.0805702 0.139552i
\(996\) 0 0
\(997\) 1689.21 2925.80i 0.0536589 0.0929400i −0.837948 0.545750i \(-0.816245\pi\)
0.891607 + 0.452810i \(0.149578\pi\)
\(998\) 0 0
\(999\) −35663.9 + 12120.8i −1.12949 + 0.383869i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.4.q.e.241.1 yes 20
3.2 odd 2 1080.4.q.e.721.6 20
9.4 even 3 inner 360.4.q.e.121.1 20
9.5 odd 6 1080.4.q.e.361.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.4.q.e.121.1 20 9.4 even 3 inner
360.4.q.e.241.1 yes 20 1.1 even 1 trivial
1080.4.q.e.361.6 20 9.5 odd 6
1080.4.q.e.721.6 20 3.2 odd 2