Properties

Label 360.4.q.e
Level $360$
Weight $4$
Character orbit 360.q
Analytic conductor $21.241$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [360,4,Mod(121,360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("360.121"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(360, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 360.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.2406876021\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{19} + 9 x^{18} + 228 x^{17} - 1491 x^{16} + 5274 x^{15} + 540 x^{14} + \cdots + 205891132094649 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{15} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{3} + (5 \beta_{3} + 5) q^{5} + ( - \beta_{7} - \beta_{5} - 2 \beta_{3}) q^{7} + ( - \beta_{11} + \beta_{3}) q^{9} + ( - \beta_{17} + \beta_{4} + \cdots - \beta_1) q^{11} + (\beta_{15} + \beta_{11} - 2 \beta_{3} + \cdots - 2) q^{13}+ \cdots + ( - 2 \beta_{19} - 6 \beta_{18} + \cdots + 293) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{3} + 50 q^{5} + 22 q^{7} - 6 q^{9} + 50 q^{11} - 16 q^{13} - 68 q^{17} + 212 q^{19} - 60 q^{21} + 50 q^{23} - 250 q^{25} + 630 q^{27} - 64 q^{29} - 22 q^{31} - 330 q^{33} + 220 q^{35} + 600 q^{37}+ \cdots + 5562 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 6 x^{19} + 9 x^{18} + 228 x^{17} - 1491 x^{16} + 5274 x^{15} + 540 x^{14} + \cdots + 205891132094649 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 69942469 \nu^{19} - 831856812 \nu^{18} - 3102014088 \nu^{17} + 7604625702 \nu^{16} + \cdots - 89\!\cdots\!50 ) / 20\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 45800222 \nu^{19} - 414610701 \nu^{18} - 926917470 \nu^{17} - 13264257012 \nu^{16} + \cdots - 16\!\cdots\!09 ) / 22\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 183704849 \nu^{19} - 364556514 \nu^{18} - 4327571322 \nu^{17} + 47644060641 \nu^{16} + \cdots - 64\!\cdots\!69 ) / 32\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3966795971 \nu^{19} - 80626820583 \nu^{18} - 217206929142 \nu^{17} - 313327140582 \nu^{16} + \cdots - 66\!\cdots\!25 ) / 70\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 9652855402 \nu^{19} - 165675490107 \nu^{18} - 382742725626 \nu^{17} + 1257257421588 \nu^{16} + \cdots - 16\!\cdots\!07 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 398397850 \nu^{19} - 1760904879 \nu^{18} - 3901130658 \nu^{17} + 62916583008 \nu^{16} + \cdots - 21\!\cdots\!23 ) / 22\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 13216742975 \nu^{19} + 104595404433 \nu^{18} + 398726313066 \nu^{17} + \cdots + 89\!\cdots\!71 ) / 47\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 946792921 \nu^{19} - 746375406 \nu^{18} + 3407287662 \nu^{17} + 156945116964 \nu^{16} + \cdots - 26\!\cdots\!26 ) / 32\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 3137325383 \nu^{19} + 1900291218 \nu^{18} + 11147121738 \nu^{17} + 583495728810 \nu^{16} + \cdots - 46\!\cdots\!76 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 6438691679 \nu^{19} + 3401425515 \nu^{18} + 95481515754 \nu^{17} - 955904256078 \nu^{16} + \cdots + 73\!\cdots\!01 ) / 20\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 45381525235 \nu^{19} - 6987927657 \nu^{18} + 270375342246 \nu^{17} + \cdots + 12\!\cdots\!81 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 308765071 \nu^{19} + 1300086609 \nu^{18} + 3007378494 \nu^{17} - 48314719470 \nu^{16} + \cdots + 16\!\cdots\!87 ) / 91\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 8509128289 \nu^{19} + 40329537483 \nu^{18} + 124028552250 \nu^{17} + \cdots + 42\!\cdots\!57 ) / 23\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 8688149081 \nu^{19} - 10884822996 \nu^{18} + 52232107572 \nu^{17} + 2034588732414 \nu^{16} + \cdots - 16\!\cdots\!46 ) / 20\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 67720850041 \nu^{19} - 8284472709 \nu^{18} - 470602071414 \nu^{17} + 10551607581810 \nu^{16} + \cdots - 18\!\cdots\!67 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 71203592759 \nu^{19} - 46149291291 \nu^{18} + 223632315414 \nu^{17} + 14537087258190 \nu^{16} + \cdots - 21\!\cdots\!33 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 44525631335 \nu^{19} + 62064657354 \nu^{18} + 87294900618 \nu^{17} + \cdots + 12\!\cdots\!88 ) / 70\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{19} + 2 \beta_{18} - \beta_{17} - \beta_{14} - \beta_{13} - \beta_{11} - \beta_{10} - \beta_{9} + \cdots - 27 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - \beta_{19} + \beta_{18} - 6 \beta_{17} - 3 \beta_{16} - 4 \beta_{14} + \beta_{13} - 5 \beta_{12} + \cdots + 148 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 5 \beta_{19} + 25 \beta_{18} - 9 \beta_{17} - 3 \beta_{16} + 19 \beta_{15} + 11 \beta_{14} + \cdots - 64 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 27 \beta_{19} - 3 \beta_{18} + 168 \beta_{17} + 84 \beta_{16} + 186 \beta_{15} + 54 \beta_{14} + \cdots + 699 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 54 \beta_{19} - 225 \beta_{18} + 750 \beta_{17} + 531 \beta_{16} - 936 \beta_{15} + 150 \beta_{14} + \cdots - 65001 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 819 \beta_{19} - 4245 \beta_{18} - 846 \beta_{17} - 927 \beta_{16} - 1992 \beta_{15} - 12 \beta_{14} + \cdots - 147825 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 8364 \beta_{19} - 4314 \beta_{18} - 11682 \beta_{17} - 8829 \beta_{16} + 5154 \beta_{15} + \cdots - 143025 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 76248 \beta_{19} - 108153 \beta_{18} + 37908 \beta_{17} + 10521 \beta_{16} + 106713 \beta_{15} + \cdots + 6896304 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 451251 \beta_{19} + 127647 \beta_{18} + 269343 \beta_{17} - 220590 \beta_{16} - 135882 \beta_{15} + \cdots + 8859789 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 75690 \beta_{19} + 732159 \beta_{18} + 1611414 \beta_{17} - 99279 \beta_{16} + 2132127 \beta_{15} + \cdots - 103394565 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 574119 \beta_{19} + 11916054 \beta_{18} - 12264075 \beta_{17} - 8587512 \beta_{16} - 21226203 \beta_{15} + \cdots - 143519913 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 20538360 \beta_{19} + 7933626 \beta_{18} - 151691022 \beta_{17} - 70470783 \beta_{16} + \cdots + 1690224813 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 100287666 \beta_{19} + 206294067 \beta_{18} - 112085424 \beta_{17} - 137254662 \beta_{16} + \cdots + 5015926458 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 2203596117 \beta_{19} + 1699529580 \beta_{18} + 2674311066 \beta_{17} + 3024693738 \beta_{16} + \cdots + 43715415582 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 4824317772 \beta_{19} + 2145650121 \beta_{18} + 7236830142 \beta_{17} + 860462109 \beta_{16} + \cdots - 412441091865 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 50812534035 \beta_{19} - 56779419933 \beta_{18} + 8929800288 \beta_{17} + 32867884917 \beta_{16} + \cdots - 3951307894545 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 77574126627 \beta_{19} - 299498687298 \beta_{18} - 46785680919 \beta_{17} + 70233632685 \beta_{16} + \cdots + 14354716981608 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1 - \beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
−2.09215 4.75635i
1.28647 5.03438i
−5.14566 0.722635i
−5.18141 + 0.391179i
4.41587 2.73862i
4.84530 1.87697i
−3.26851 + 4.03941i
4.42315 + 2.72686i
1.78426 + 4.88021i
1.93267 + 4.82336i
−2.09215 + 4.75635i
1.28647 + 5.03438i
−5.14566 + 0.722635i
−5.18141 0.391179i
4.41587 + 2.73862i
4.84530 + 1.87697i
−3.26851 4.03941i
4.42315 2.72686i
1.78426 4.88021i
1.93267 4.82336i
0 −5.16520 0.566318i 0 2.50000 4.33013i 0 1.57018 + 2.71963i 0 26.3586 + 5.85030i 0
121.2 0 −3.71666 3.63131i 0 2.50000 4.33013i 0 −0.754378 1.30662i 0 0.627193 + 26.9927i 0
121.3 0 −3.19865 + 4.09495i 0 2.50000 4.33013i 0 −6.25621 10.8361i 0 −6.53729 26.1966i 0
121.4 0 −2.25193 + 4.68282i 0 2.50000 4.33013i 0 17.4237 + 30.1787i 0 −16.8576 21.0908i 0
121.5 0 −0.163780 5.19357i 0 2.50000 4.33013i 0 12.4893 + 21.6321i 0 −26.9464 + 1.70121i 0
121.6 0 0.797147 5.13464i 0 2.50000 4.33013i 0 −15.7660 27.3074i 0 −25.7291 8.18613i 0
121.7 0 1.86398 + 4.85032i 0 2.50000 4.33013i 0 −5.21366 9.03032i 0 −20.0512 + 18.0818i 0
121.8 0 4.57310 2.46713i 0 2.50000 4.33013i 0 14.1295 + 24.4730i 0 14.8265 22.5649i 0
121.9 0 5.11851 + 0.894893i 0 2.50000 4.33013i 0 −12.4200 21.5121i 0 25.3983 + 9.16104i 0
121.10 0 5.14349 + 0.737938i 0 2.50000 4.33013i 0 5.79756 + 10.0417i 0 25.9109 + 7.59115i 0
241.1 0 −5.16520 + 0.566318i 0 2.50000 + 4.33013i 0 1.57018 2.71963i 0 26.3586 5.85030i 0
241.2 0 −3.71666 + 3.63131i 0 2.50000 + 4.33013i 0 −0.754378 + 1.30662i 0 0.627193 26.9927i 0
241.3 0 −3.19865 4.09495i 0 2.50000 + 4.33013i 0 −6.25621 + 10.8361i 0 −6.53729 + 26.1966i 0
241.4 0 −2.25193 4.68282i 0 2.50000 + 4.33013i 0 17.4237 30.1787i 0 −16.8576 + 21.0908i 0
241.5 0 −0.163780 + 5.19357i 0 2.50000 + 4.33013i 0 12.4893 21.6321i 0 −26.9464 1.70121i 0
241.6 0 0.797147 + 5.13464i 0 2.50000 + 4.33013i 0 −15.7660 + 27.3074i 0 −25.7291 + 8.18613i 0
241.7 0 1.86398 4.85032i 0 2.50000 + 4.33013i 0 −5.21366 + 9.03032i 0 −20.0512 18.0818i 0
241.8 0 4.57310 + 2.46713i 0 2.50000 + 4.33013i 0 14.1295 24.4730i 0 14.8265 + 22.5649i 0
241.9 0 5.11851 0.894893i 0 2.50000 + 4.33013i 0 −12.4200 + 21.5121i 0 25.3983 9.16104i 0
241.10 0 5.14349 0.737938i 0 2.50000 + 4.33013i 0 5.79756 10.0417i 0 25.9109 7.59115i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 121.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.4.q.e 20
3.b odd 2 1 1080.4.q.e 20
9.c even 3 1 inner 360.4.q.e 20
9.d odd 6 1 1080.4.q.e 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.4.q.e 20 1.a even 1 1 trivial
360.4.q.e 20 9.c even 3 1 inner
1080.4.q.e 20 3.b odd 2 1
1080.4.q.e 20 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{20} - 22 T_{7}^{19} + 2572 T_{7}^{18} - 31512 T_{7}^{17} + 3795924 T_{7}^{16} + \cdots + 19\!\cdots\!64 \) acting on \(S_{4}^{\mathrm{new}}(360, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( T^{20} + \cdots + 205891132094649 \) Copy content Toggle raw display
$5$ \( (T^{2} - 5 T + 25)^{10} \) Copy content Toggle raw display
$7$ \( T^{20} + \cdots + 19\!\cdots\!64 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 78\!\cdots\!76 \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
$17$ \( (T^{10} + \cdots + 19\!\cdots\!32)^{2} \) Copy content Toggle raw display
$19$ \( (T^{10} + \cdots - 69\!\cdots\!28)^{2} \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 13\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 27\!\cdots\!84 \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 16\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( (T^{10} + \cdots + 34\!\cdots\!48)^{2} \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 36\!\cdots\!25 \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 20\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 39\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( (T^{10} + \cdots + 68\!\cdots\!92)^{2} \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 53\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 12\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 43\!\cdots\!25 \) Copy content Toggle raw display
$71$ \( (T^{10} + \cdots - 48\!\cdots\!80)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + \cdots + 10\!\cdots\!44)^{2} \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 63\!\cdots\!96 \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{10} + \cdots - 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 29\!\cdots\!04 \) Copy content Toggle raw display
show more
show less