Properties

Label 1080.4.q.e.721.6
Level $1080$
Weight $4$
Character 1080.721
Analytic conductor $63.722$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,4,Mod(361,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,-50,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(63.7220628062\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 1542 x^{18} + 976429 x^{16} + 327887620 x^{14} + 62946909772 x^{12} + 6953278937404 x^{10} + \cdots + 45\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{25} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 721.6
Root \(-1.23574i\) of defining polynomial
Character \(\chi\) \(=\) 1080.721
Dual form 1080.4.q.e.361.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.50000 - 4.33013i) q^{5} +(1.57018 - 2.71963i) q^{7} +(7.30996 - 12.6612i) q^{11} +(-27.3440 - 47.3612i) q^{13} -45.7952 q^{17} -50.3457 q^{19} +(-9.94951 - 17.2331i) q^{23} +(-12.5000 + 21.6506i) q^{25} +(-82.1830 + 142.345i) q^{29} +(123.317 + 213.592i) q^{31} -15.7018 q^{35} +268.484 q^{37} +(-166.114 - 287.718i) q^{41} +(55.4147 - 95.9811i) q^{43} +(17.8310 - 30.8843i) q^{47} +(166.569 + 288.506i) q^{49} -482.657 q^{53} -73.0996 q^{55} +(-164.766 - 285.383i) q^{59} +(-80.0901 + 138.720i) q^{61} +(-136.720 + 236.806i) q^{65} +(145.738 + 252.425i) q^{67} -191.669 q^{71} +866.440 q^{73} +(-22.9559 - 39.7608i) q^{77} +(-369.794 + 640.503i) q^{79} +(-244.041 + 422.691i) q^{83} +(114.488 + 198.299i) q^{85} -173.938 q^{89} -171.740 q^{91} +(125.864 + 218.003i) q^{95} +(-744.116 + 1288.85i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 50 q^{5} + 22 q^{7} - 50 q^{11} - 16 q^{13} + 68 q^{17} + 212 q^{19} - 50 q^{23} - 250 q^{25} + 64 q^{29} - 22 q^{31} - 220 q^{35} + 600 q^{37} + 198 q^{41} - 382 q^{43} - 128 q^{47} - 1230 q^{49}+ \cdots - 1354 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) 1.57018 2.71963i 0.0847818 0.146846i −0.820516 0.571623i \(-0.806314\pi\)
0.905298 + 0.424777i \(0.139647\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 7.30996 12.6612i 0.200367 0.347046i −0.748280 0.663383i \(-0.769120\pi\)
0.948647 + 0.316338i \(0.102453\pi\)
\(12\) 0 0
\(13\) −27.3440 47.3612i −0.583374 1.01043i −0.995076 0.0991143i \(-0.968399\pi\)
0.411703 0.911318i \(-0.364934\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −45.7952 −0.653351 −0.326676 0.945137i \(-0.605928\pi\)
−0.326676 + 0.945137i \(0.605928\pi\)
\(18\) 0 0
\(19\) −50.3457 −0.607900 −0.303950 0.952688i \(-0.598306\pi\)
−0.303950 + 0.952688i \(0.598306\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −9.94951 17.2331i −0.0902007 0.156232i 0.817395 0.576078i \(-0.195418\pi\)
−0.907595 + 0.419846i \(0.862084\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −82.1830 + 142.345i −0.526242 + 0.911477i 0.473291 + 0.880906i \(0.343066\pi\)
−0.999533 + 0.0305711i \(0.990267\pi\)
\(30\) 0 0
\(31\) 123.317 + 213.592i 0.714466 + 1.23749i 0.963165 + 0.268911i \(0.0866636\pi\)
−0.248699 + 0.968581i \(0.580003\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −15.7018 −0.0758312
\(36\) 0 0
\(37\) 268.484 1.19293 0.596467 0.802637i \(-0.296571\pi\)
0.596467 + 0.802637i \(0.296571\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −166.114 287.718i −0.632747 1.09595i −0.986988 0.160795i \(-0.948594\pi\)
0.354241 0.935154i \(-0.384739\pi\)
\(42\) 0 0
\(43\) 55.4147 95.9811i 0.196527 0.340395i −0.750873 0.660447i \(-0.770367\pi\)
0.947400 + 0.320052i \(0.103700\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 17.8310 30.8843i 0.0553388 0.0958496i −0.837029 0.547159i \(-0.815709\pi\)
0.892368 + 0.451309i \(0.149043\pi\)
\(48\) 0 0
\(49\) 166.569 + 288.506i 0.485624 + 0.841126i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −482.657 −1.25091 −0.625453 0.780262i \(-0.715086\pi\)
−0.625453 + 0.780262i \(0.715086\pi\)
\(54\) 0 0
\(55\) −73.0996 −0.179214
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −164.766 285.383i −0.363572 0.629724i 0.624974 0.780645i \(-0.285109\pi\)
−0.988546 + 0.150921i \(0.951776\pi\)
\(60\) 0 0
\(61\) −80.0901 + 138.720i −0.168106 + 0.291169i −0.937754 0.347300i \(-0.887099\pi\)
0.769648 + 0.638469i \(0.220432\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −136.720 + 236.806i −0.260893 + 0.451879i
\(66\) 0 0
\(67\) 145.738 + 252.425i 0.265742 + 0.460278i 0.967758 0.251883i \(-0.0810498\pi\)
−0.702016 + 0.712161i \(0.747716\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −191.669 −0.320380 −0.160190 0.987086i \(-0.551211\pi\)
−0.160190 + 0.987086i \(0.551211\pi\)
\(72\) 0 0
\(73\) 866.440 1.38917 0.694583 0.719412i \(-0.255589\pi\)
0.694583 + 0.719412i \(0.255589\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −22.9559 39.7608i −0.0339749 0.0588463i
\(78\) 0 0
\(79\) −369.794 + 640.503i −0.526647 + 0.912180i 0.472871 + 0.881132i \(0.343218\pi\)
−0.999518 + 0.0310478i \(0.990116\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −244.041 + 422.691i −0.322734 + 0.558992i −0.981051 0.193749i \(-0.937935\pi\)
0.658317 + 0.752741i \(0.271269\pi\)
\(84\) 0 0
\(85\) 114.488 + 198.299i 0.146094 + 0.253042i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −173.938 −0.207161 −0.103581 0.994621i \(-0.533030\pi\)
−0.103581 + 0.994621i \(0.533030\pi\)
\(90\) 0 0
\(91\) −171.740 −0.197838
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 125.864 + 218.003i 0.135931 + 0.235439i
\(96\) 0 0
\(97\) −744.116 + 1288.85i −0.778902 + 1.34910i 0.153673 + 0.988122i \(0.450890\pi\)
−0.932575 + 0.360976i \(0.882444\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −197.683 + 342.397i −0.194754 + 0.337324i −0.946820 0.321764i \(-0.895724\pi\)
0.752066 + 0.659088i \(0.229058\pi\)
\(102\) 0 0
\(103\) −428.044 741.394i −0.409480 0.709240i 0.585352 0.810779i \(-0.300956\pi\)
−0.994831 + 0.101540i \(0.967623\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −423.634 −0.382750 −0.191375 0.981517i \(-0.561295\pi\)
−0.191375 + 0.981517i \(0.561295\pi\)
\(108\) 0 0
\(109\) −840.730 −0.738783 −0.369391 0.929274i \(-0.620434\pi\)
−0.369391 + 0.929274i \(0.620434\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 853.149 + 1477.70i 0.710243 + 1.23018i 0.964766 + 0.263111i \(0.0847484\pi\)
−0.254522 + 0.967067i \(0.581918\pi\)
\(114\) 0 0
\(115\) −49.7475 + 86.1653i −0.0403390 + 0.0698692i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −71.9068 + 124.546i −0.0553923 + 0.0959423i
\(120\) 0 0
\(121\) 558.629 + 967.574i 0.419706 + 0.726953i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1075.14 0.751205 0.375602 0.926781i \(-0.377436\pi\)
0.375602 + 0.926781i \(0.377436\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 443.630 + 768.390i 0.295879 + 0.512477i 0.975189 0.221374i \(-0.0710542\pi\)
−0.679310 + 0.733851i \(0.737721\pi\)
\(132\) 0 0
\(133\) −79.0519 + 136.922i −0.0515389 + 0.0892679i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −988.251 + 1711.70i −0.616292 + 1.06745i 0.373865 + 0.927483i \(0.378032\pi\)
−0.990156 + 0.139965i \(0.955301\pi\)
\(138\) 0 0
\(139\) 906.632 + 1570.33i 0.553234 + 0.958229i 0.998039 + 0.0626017i \(0.0199398\pi\)
−0.444805 + 0.895628i \(0.646727\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −799.534 −0.467555
\(144\) 0 0
\(145\) 821.830 0.470685
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −505.197 875.027i −0.277767 0.481107i 0.693062 0.720878i \(-0.256261\pi\)
−0.970830 + 0.239771i \(0.922928\pi\)
\(150\) 0 0
\(151\) −577.277 + 999.874i −0.311114 + 0.538865i −0.978604 0.205754i \(-0.934035\pi\)
0.667490 + 0.744619i \(0.267369\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 616.587 1067.96i 0.319519 0.553423i
\(156\) 0 0
\(157\) −569.678 986.711i −0.289587 0.501580i 0.684124 0.729366i \(-0.260185\pi\)
−0.973711 + 0.227786i \(0.926851\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −62.4901 −0.0305895
\(162\) 0 0
\(163\) −3320.87 −1.59577 −0.797886 0.602809i \(-0.794048\pi\)
−0.797886 + 0.602809i \(0.794048\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1076.63 1864.78i −0.498876 0.864078i 0.501123 0.865376i \(-0.332920\pi\)
−0.999999 + 0.00129774i \(0.999587\pi\)
\(168\) 0 0
\(169\) −396.887 + 687.428i −0.180649 + 0.312894i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1898.21 + 3287.80i −0.834211 + 1.44490i 0.0604599 + 0.998171i \(0.480743\pi\)
−0.894671 + 0.446725i \(0.852590\pi\)
\(174\) 0 0
\(175\) 39.2545 + 67.9908i 0.0169564 + 0.0293693i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1763.35 −0.736305 −0.368153 0.929765i \(-0.620010\pi\)
−0.368153 + 0.929765i \(0.620010\pi\)
\(180\) 0 0
\(181\) 194.975 0.0800683 0.0400342 0.999198i \(-0.487253\pi\)
0.0400342 + 0.999198i \(0.487253\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −671.211 1162.57i −0.266748 0.462022i
\(186\) 0 0
\(187\) −334.761 + 579.823i −0.130910 + 0.226743i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1718.62 + 2976.74i −0.651074 + 1.12769i 0.331789 + 0.943354i \(0.392348\pi\)
−0.982863 + 0.184339i \(0.940985\pi\)
\(192\) 0 0
\(193\) 1272.75 + 2204.47i 0.474686 + 0.822181i 0.999580 0.0289870i \(-0.00922813\pi\)
−0.524893 + 0.851168i \(0.675895\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3772.65 1.36442 0.682209 0.731158i \(-0.261020\pi\)
0.682209 + 0.731158i \(0.261020\pi\)
\(198\) 0 0
\(199\) −1011.51 −0.360321 −0.180160 0.983637i \(-0.557662\pi\)
−0.180160 + 0.983637i \(0.557662\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 258.085 + 447.016i 0.0892314 + 0.154553i
\(204\) 0 0
\(205\) −830.569 + 1438.59i −0.282973 + 0.490124i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −368.025 + 637.438i −0.121803 + 0.210969i
\(210\) 0 0
\(211\) −2104.05 3644.33i −0.686488 1.18903i −0.972967 0.230946i \(-0.925818\pi\)
0.286478 0.958087i \(-0.407515\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −554.147 −0.175779
\(216\) 0 0
\(217\) 774.522 0.242295
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1252.22 + 2168.91i 0.381148 + 0.660167i
\(222\) 0 0
\(223\) 1576.10 2729.89i 0.473290 0.819762i −0.526243 0.850335i \(-0.676400\pi\)
0.999533 + 0.0305721i \(0.00973293\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1027.79 + 1780.18i −0.300515 + 0.520507i −0.976253 0.216635i \(-0.930492\pi\)
0.675738 + 0.737142i \(0.263825\pi\)
\(228\) 0 0
\(229\) 2339.71 + 4052.50i 0.675164 + 1.16942i 0.976421 + 0.215875i \(0.0692604\pi\)
−0.301257 + 0.953543i \(0.597406\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 707.658 0.198971 0.0994854 0.995039i \(-0.468280\pi\)
0.0994854 + 0.995039i \(0.468280\pi\)
\(234\) 0 0
\(235\) −178.310 −0.0494965
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3046.20 5276.18i −0.824446 1.42798i −0.902342 0.431021i \(-0.858154\pi\)
0.0778960 0.996961i \(-0.475180\pi\)
\(240\) 0 0
\(241\) −826.336 + 1431.26i −0.220867 + 0.382553i −0.955072 0.296375i \(-0.904222\pi\)
0.734204 + 0.678929i \(0.237555\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 832.845 1442.53i 0.217178 0.376163i
\(246\) 0 0
\(247\) 1376.65 + 2384.43i 0.354633 + 0.614242i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1497.98 −0.376700 −0.188350 0.982102i \(-0.560314\pi\)
−0.188350 + 0.982102i \(0.560314\pi\)
\(252\) 0 0
\(253\) −290.922 −0.0722929
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 826.195 + 1431.01i 0.200532 + 0.347331i 0.948700 0.316178i \(-0.102400\pi\)
−0.748168 + 0.663509i \(0.769066\pi\)
\(258\) 0 0
\(259\) 421.569 730.179i 0.101139 0.175178i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2877.51 + 4983.99i −0.674657 + 1.16854i 0.301912 + 0.953336i \(0.402375\pi\)
−0.976569 + 0.215205i \(0.930958\pi\)
\(264\) 0 0
\(265\) 1206.64 + 2089.97i 0.279711 + 0.484474i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4242.00 0.961484 0.480742 0.876862i \(-0.340367\pi\)
0.480742 + 0.876862i \(0.340367\pi\)
\(270\) 0 0
\(271\) 4037.67 0.905059 0.452529 0.891750i \(-0.350522\pi\)
0.452529 + 0.891750i \(0.350522\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 182.749 + 316.531i 0.0400734 + 0.0694091i
\(276\) 0 0
\(277\) −425.127 + 736.341i −0.0922144 + 0.159720i −0.908443 0.418010i \(-0.862728\pi\)
0.816228 + 0.577730i \(0.196061\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2110.97 + 3656.30i −0.448149 + 0.776216i −0.998266 0.0588713i \(-0.981250\pi\)
0.550117 + 0.835088i \(0.314583\pi\)
\(282\) 0 0
\(283\) −1225.85 2123.23i −0.257488 0.445982i 0.708081 0.706132i \(-0.249561\pi\)
−0.965568 + 0.260150i \(0.916228\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1043.32 −0.214582
\(288\) 0 0
\(289\) −2815.80 −0.573132
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1912.62 3312.75i −0.381353 0.660523i 0.609903 0.792476i \(-0.291208\pi\)
−0.991256 + 0.131953i \(0.957875\pi\)
\(294\) 0 0
\(295\) −823.831 + 1426.92i −0.162594 + 0.281621i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −544.118 + 942.441i −0.105241 + 0.182283i
\(300\) 0 0
\(301\) −174.022 301.416i −0.0333239 0.0577186i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 800.901 0.150359
\(306\) 0 0
\(307\) 2771.63 0.515262 0.257631 0.966243i \(-0.417058\pi\)
0.257631 + 0.966243i \(0.417058\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4336.74 7511.46i −0.790721 1.36957i −0.925521 0.378696i \(-0.876373\pi\)
0.134801 0.990873i \(-0.456961\pi\)
\(312\) 0 0
\(313\) −1772.78 + 3070.55i −0.320139 + 0.554497i −0.980516 0.196437i \(-0.937063\pi\)
0.660378 + 0.750934i \(0.270396\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3081.76 5337.77i 0.546022 0.945738i −0.452520 0.891754i \(-0.649475\pi\)
0.998542 0.0539836i \(-0.0171919\pi\)
\(318\) 0 0
\(319\) 1201.51 + 2081.08i 0.210883 + 0.365260i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2305.59 0.397172
\(324\) 0 0
\(325\) 1367.20 0.233349
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −55.9959 96.9878i −0.00938345 0.0162526i
\(330\) 0 0
\(331\) 4358.97 7549.96i 0.723839 1.25373i −0.235611 0.971847i \(-0.575709\pi\)
0.959450 0.281878i \(-0.0909574\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 728.689 1262.13i 0.118843 0.205843i
\(336\) 0 0
\(337\) 3254.65 + 5637.22i 0.526090 + 0.911214i 0.999538 + 0.0303925i \(0.00967573\pi\)
−0.473448 + 0.880822i \(0.656991\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3605.78 0.572621
\(342\) 0 0
\(343\) 2123.32 0.334252
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1852.56 3208.72i −0.286601 0.496407i 0.686395 0.727228i \(-0.259192\pi\)
−0.972996 + 0.230822i \(0.925859\pi\)
\(348\) 0 0
\(349\) −5113.11 + 8856.17i −0.784237 + 1.35834i 0.145217 + 0.989400i \(0.453612\pi\)
−0.929454 + 0.368938i \(0.879721\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1156.50 2003.11i 0.174374 0.302025i −0.765570 0.643352i \(-0.777543\pi\)
0.939944 + 0.341327i \(0.110876\pi\)
\(354\) 0 0
\(355\) 479.173 + 829.953i 0.0716391 + 0.124083i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11018.9 −1.61993 −0.809967 0.586475i \(-0.800515\pi\)
−0.809967 + 0.586475i \(0.800515\pi\)
\(360\) 0 0
\(361\) −4324.31 −0.630458
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2166.10 3751.80i −0.310627 0.538022i
\(366\) 0 0
\(367\) 6462.97 11194.2i 0.919248 1.59218i 0.118689 0.992932i \(-0.462131\pi\)
0.800560 0.599253i \(-0.204536\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −757.859 + 1312.65i −0.106054 + 0.183691i
\(372\) 0 0
\(373\) −1003.06 1737.36i −0.139240 0.241171i 0.787969 0.615715i \(-0.211133\pi\)
−0.927209 + 0.374544i \(0.877799\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8988.85 1.22798
\(378\) 0 0
\(379\) −6167.89 −0.835945 −0.417972 0.908460i \(-0.637259\pi\)
−0.417972 + 0.908460i \(0.637259\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1344.31 2328.41i −0.179350 0.310643i 0.762308 0.647214i \(-0.224066\pi\)
−0.941658 + 0.336571i \(0.890733\pi\)
\(384\) 0 0
\(385\) −114.780 + 198.804i −0.0151941 + 0.0263169i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −857.500 + 1485.23i −0.111766 + 0.193584i −0.916482 0.400075i \(-0.868984\pi\)
0.804716 + 0.593660i \(0.202317\pi\)
\(390\) 0 0
\(391\) 455.640 + 789.191i 0.0589327 + 0.102074i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3697.94 0.471048
\(396\) 0 0
\(397\) 8048.37 1.01747 0.508735 0.860923i \(-0.330113\pi\)
0.508735 + 0.860923i \(0.330113\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4821.71 + 8351.45i 0.600461 + 1.04003i 0.992751 + 0.120188i \(0.0383496\pi\)
−0.392290 + 0.919842i \(0.628317\pi\)
\(402\) 0 0
\(403\) 6743.97 11680.9i 0.833601 1.44384i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1962.61 3399.34i 0.239025 0.414003i
\(408\) 0 0
\(409\) −7105.36 12306.8i −0.859016 1.48786i −0.872869 0.487955i \(-0.837743\pi\)
0.0138525 0.999904i \(-0.495590\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1034.85 −0.123297
\(414\) 0 0
\(415\) 2440.41 0.288662
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1114.29 + 1930.01i 0.129921 + 0.225029i 0.923646 0.383248i \(-0.125194\pi\)
−0.793725 + 0.608277i \(0.791861\pi\)
\(420\) 0 0
\(421\) 776.902 1345.63i 0.0899380 0.155777i −0.817547 0.575862i \(-0.804666\pi\)
0.907485 + 0.420085i \(0.138000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 572.440 991.495i 0.0653351 0.113164i
\(426\) 0 0
\(427\) 251.512 + 435.632i 0.0285047 + 0.0493716i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −462.976 −0.0517419 −0.0258710 0.999665i \(-0.508236\pi\)
−0.0258710 + 0.999665i \(0.508236\pi\)
\(432\) 0 0
\(433\) −580.010 −0.0643729 −0.0321865 0.999482i \(-0.510247\pi\)
−0.0321865 + 0.999482i \(0.510247\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 500.915 + 867.610i 0.0548330 + 0.0949735i
\(438\) 0 0
\(439\) −1096.63 + 1899.41i −0.119223 + 0.206501i −0.919460 0.393183i \(-0.871374\pi\)
0.800237 + 0.599684i \(0.204707\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1710.70 + 2963.02i −0.183471 + 0.317781i −0.943060 0.332622i \(-0.892067\pi\)
0.759589 + 0.650403i \(0.225400\pi\)
\(444\) 0 0
\(445\) 434.844 + 753.172i 0.0463227 + 0.0802332i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13914.9 1.46255 0.731273 0.682085i \(-0.238926\pi\)
0.731273 + 0.682085i \(0.238926\pi\)
\(450\) 0 0
\(451\) −4857.14 −0.507126
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 429.350 + 743.656i 0.0442379 + 0.0766223i
\(456\) 0 0
\(457\) −3864.00 + 6692.65i −0.395515 + 0.685052i −0.993167 0.116703i \(-0.962767\pi\)
0.597652 + 0.801756i \(0.296101\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3464.26 6000.28i 0.349993 0.606206i −0.636255 0.771479i \(-0.719517\pi\)
0.986248 + 0.165273i \(0.0528506\pi\)
\(462\) 0 0
\(463\) −9738.83 16868.1i −0.977541 1.69315i −0.671280 0.741204i \(-0.734255\pi\)
−0.306261 0.951948i \(-0.599078\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18244.0 1.80777 0.903887 0.427772i \(-0.140701\pi\)
0.903887 + 0.427772i \(0.140701\pi\)
\(468\) 0 0
\(469\) 915.339 0.0901203
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −810.159 1403.24i −0.0787551 0.136408i
\(474\) 0 0
\(475\) 629.321 1090.02i 0.0607900 0.105291i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2243.72 + 3886.24i −0.214025 + 0.370703i −0.952971 0.303063i \(-0.901991\pi\)
0.738945 + 0.673765i \(0.235324\pi\)
\(480\) 0 0
\(481\) −7341.43 12715.7i −0.695926 1.20538i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7441.16 0.696671
\(486\) 0 0
\(487\) −2136.17 −0.198766 −0.0993832 0.995049i \(-0.531687\pi\)
−0.0993832 + 0.995049i \(0.531687\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7048.39 12208.2i −0.647840 1.12209i −0.983638 0.180158i \(-0.942339\pi\)
0.335797 0.941934i \(-0.390994\pi\)
\(492\) 0 0
\(493\) 3763.59 6518.73i 0.343821 0.595515i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −300.956 + 521.270i −0.0271624 + 0.0470466i
\(498\) 0 0
\(499\) −10083.5 17465.2i −0.904612 1.56683i −0.821437 0.570299i \(-0.806827\pi\)
−0.0831753 0.996535i \(-0.526506\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19912.3 1.76510 0.882551 0.470217i \(-0.155825\pi\)
0.882551 + 0.470217i \(0.155825\pi\)
\(504\) 0 0
\(505\) 1976.83 0.174193
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9789.42 16955.8i −0.852472 1.47652i −0.878971 0.476876i \(-0.841769\pi\)
0.0264988 0.999649i \(-0.491564\pi\)
\(510\) 0 0
\(511\) 1360.47 2356.40i 0.117776 0.203994i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2140.22 + 3706.97i −0.183125 + 0.317182i
\(516\) 0 0
\(517\) −260.688 451.526i −0.0221761 0.0384102i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18389.9 1.54640 0.773200 0.634163i \(-0.218655\pi\)
0.773200 + 0.634163i \(0.218655\pi\)
\(522\) 0 0
\(523\) −20546.3 −1.71783 −0.858916 0.512116i \(-0.828862\pi\)
−0.858916 + 0.512116i \(0.828862\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5647.34 9781.49i −0.466797 0.808517i
\(528\) 0 0
\(529\) 5885.51 10194.0i 0.483728 0.837841i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9084.42 + 15734.7i −0.738255 + 1.27870i
\(534\) 0 0
\(535\) 1059.09 + 1834.39i 0.0855856 + 0.148239i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4870.45 0.389212
\(540\) 0 0
\(541\) 4660.74 0.370390 0.185195 0.982702i \(-0.440708\pi\)
0.185195 + 0.982702i \(0.440708\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2101.83 + 3640.47i 0.165197 + 0.286129i
\(546\) 0 0
\(547\) 1458.99 2527.04i 0.114044 0.197529i −0.803353 0.595503i \(-0.796953\pi\)
0.917397 + 0.397973i \(0.130286\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4137.56 7166.47i 0.319902 0.554087i
\(552\) 0 0
\(553\) 1161.29 + 2011.41i 0.0893002 + 0.154672i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14120.6 1.07417 0.537084 0.843529i \(-0.319526\pi\)
0.537084 + 0.843529i \(0.319526\pi\)
\(558\) 0 0
\(559\) −6061.04 −0.458595
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6642.62 + 11505.4i 0.497252 + 0.861266i 0.999995 0.00316990i \(-0.00100901\pi\)
−0.502743 + 0.864436i \(0.667676\pi\)
\(564\) 0 0
\(565\) 4265.74 7388.49i 0.317630 0.550152i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6058.65 + 10493.9i −0.446383 + 0.773158i −0.998147 0.0608422i \(-0.980621\pi\)
0.551765 + 0.834000i \(0.313955\pi\)
\(570\) 0 0
\(571\) 3443.57 + 5964.44i 0.252380 + 0.437135i 0.964181 0.265247i \(-0.0854534\pi\)
−0.711801 + 0.702381i \(0.752120\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 497.475 0.0360803
\(576\) 0 0
\(577\) 6389.22 0.460982 0.230491 0.973074i \(-0.425967\pi\)
0.230491 + 0.973074i \(0.425967\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 766.376 + 1327.40i 0.0547240 + 0.0947848i
\(582\) 0 0
\(583\) −3528.20 + 6111.03i −0.250640 + 0.434121i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12313.1 21327.0i 0.865787 1.49959i −0.000476796 1.00000i \(-0.500152\pi\)
0.866264 0.499587i \(-0.166515\pi\)
\(588\) 0 0
\(589\) −6208.50 10753.4i −0.434324 0.752271i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18703.3 −1.29520 −0.647598 0.761982i \(-0.724226\pi\)
−0.647598 + 0.761982i \(0.724226\pi\)
\(594\) 0 0
\(595\) 719.068 0.0495444
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1258.93 2180.54i −0.0858741 0.148738i 0.819889 0.572522i \(-0.194035\pi\)
−0.905763 + 0.423784i \(0.860702\pi\)
\(600\) 0 0
\(601\) −10579.5 + 18324.2i −0.718048 + 1.24369i 0.243725 + 0.969844i \(0.421631\pi\)
−0.961772 + 0.273851i \(0.911703\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2793.14 4837.87i 0.187698 0.325103i
\(606\) 0 0
\(607\) 14378.7 + 24904.7i 0.961474 + 1.66532i 0.718804 + 0.695213i \(0.244690\pi\)
0.242670 + 0.970109i \(0.421977\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1950.29 −0.129133
\(612\) 0 0
\(613\) 12342.1 0.813205 0.406602 0.913605i \(-0.366713\pi\)
0.406602 + 0.913605i \(0.366713\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −666.521 1154.45i −0.0434897 0.0753263i 0.843461 0.537190i \(-0.180514\pi\)
−0.886951 + 0.461864i \(0.847181\pi\)
\(618\) 0 0
\(619\) 1037.12 1796.34i 0.0673429 0.116641i −0.830388 0.557186i \(-0.811881\pi\)
0.897731 + 0.440544i \(0.145215\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −273.114 + 473.047i −0.0175635 + 0.0304209i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12295.3 −0.779405
\(630\) 0 0
\(631\) 9839.77 0.620785 0.310392 0.950609i \(-0.399540\pi\)
0.310392 + 0.950609i \(0.399540\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2687.84 4655.48i −0.167975 0.290940i
\(636\) 0 0
\(637\) 9109.32 15777.8i 0.566600 0.981381i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7909.90 + 13700.3i −0.487398 + 0.844198i −0.999895 0.0144910i \(-0.995387\pi\)
0.512497 + 0.858689i \(0.328721\pi\)
\(642\) 0 0
\(643\) −7355.81 12740.6i −0.451143 0.781402i 0.547315 0.836927i \(-0.315650\pi\)
−0.998457 + 0.0555249i \(0.982317\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16466.5 1.00056 0.500281 0.865863i \(-0.333230\pi\)
0.500281 + 0.865863i \(0.333230\pi\)
\(648\) 0 0
\(649\) −4817.73 −0.291391
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4076.89 7061.38i −0.244320 0.423175i 0.717620 0.696435i \(-0.245231\pi\)
−0.961940 + 0.273260i \(0.911898\pi\)
\(654\) 0 0
\(655\) 2218.15 3841.95i 0.132321 0.229187i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15003.6 + 25987.0i −0.886886 + 1.53613i −0.0433494 + 0.999060i \(0.513803\pi\)
−0.843537 + 0.537072i \(0.819530\pi\)
\(660\) 0 0
\(661\) −10689.5 18514.8i −0.629008 1.08947i −0.987751 0.156037i \(-0.950128\pi\)
0.358744 0.933436i \(-0.383205\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 790.519 0.0460978
\(666\) 0 0
\(667\) 3270.72 0.189869
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1170.91 + 2028.08i 0.0673659 + 0.116681i
\(672\) 0 0
\(673\) −12310.3 + 21322.0i −0.705091 + 1.22125i 0.261568 + 0.965185i \(0.415760\pi\)
−0.966659 + 0.256068i \(0.917573\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13782.0 23871.1i 0.782399 1.35515i −0.148142 0.988966i \(-0.547329\pi\)
0.930541 0.366188i \(-0.119337\pi\)
\(678\) 0 0
\(679\) 2336.79 + 4047.44i 0.132073 + 0.228758i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9068.36 0.508040 0.254020 0.967199i \(-0.418247\pi\)
0.254020 + 0.967199i \(0.418247\pi\)
\(684\) 0 0
\(685\) 9882.51 0.551228
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 13197.8 + 22859.2i 0.729746 + 1.26396i
\(690\) 0 0
\(691\) −11432.8 + 19802.2i −0.629413 + 1.09018i 0.358256 + 0.933623i \(0.383371\pi\)
−0.987670 + 0.156553i \(0.949962\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4533.16 7851.66i 0.247414 0.428533i
\(696\) 0 0
\(697\) 7607.22 + 13176.1i 0.413406 + 0.716040i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2080.10 −0.112075 −0.0560373 0.998429i \(-0.517847\pi\)
−0.0560373 + 0.998429i \(0.517847\pi\)
\(702\) 0 0
\(703\) −13517.0 −0.725185
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 620.796 + 1075.25i 0.0330232 + 0.0571979i
\(708\) 0 0
\(709\) 11853.8 20531.4i 0.627898 1.08755i −0.360074 0.932924i \(-0.617249\pi\)
0.987973 0.154628i \(-0.0494180\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2453.89 4250.27i 0.128891 0.223245i
\(714\) 0 0
\(715\) 1998.83 + 3462.08i 0.104548 + 0.181083i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12675.0 −0.657438 −0.328719 0.944428i \(-0.606617\pi\)
−0.328719 + 0.944428i \(0.606617\pi\)
\(720\) 0 0
\(721\) −2688.43 −0.138866
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2054.58 3558.63i −0.105248 0.182295i
\(726\) 0 0
\(727\) 9534.79 16514.7i 0.486418 0.842500i −0.513460 0.858113i \(-0.671637\pi\)
0.999878 + 0.0156129i \(0.00496995\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2537.73 + 4395.48i −0.128401 + 0.222397i
\(732\) 0 0
\(733\) 11079.3 + 19189.9i 0.558285 + 0.966978i 0.997640 + 0.0686641i \(0.0218737\pi\)
−0.439355 + 0.898313i \(0.644793\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4261.35 0.212983
\(738\) 0 0
\(739\) −15425.3 −0.767834 −0.383917 0.923368i \(-0.625425\pi\)
−0.383917 + 0.923368i \(0.625425\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17721.2 30694.0i −0.875004 1.51555i −0.856759 0.515717i \(-0.827525\pi\)
−0.0182450 0.999834i \(-0.505808\pi\)
\(744\) 0 0
\(745\) −2525.98 + 4375.13i −0.124221 + 0.215158i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −665.183 + 1152.13i −0.0324503 + 0.0562055i
\(750\) 0 0
\(751\) 8106.23 + 14040.4i 0.393875 + 0.682212i 0.992957 0.118476i \(-0.0378008\pi\)
−0.599082 + 0.800688i \(0.704468\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5772.77 0.278269
\(756\) 0 0
\(757\) 20286.0 0.973984 0.486992 0.873407i \(-0.338094\pi\)
0.486992 + 0.873407i \(0.338094\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −17748.5 30741.2i −0.845442 1.46435i −0.885237 0.465140i \(-0.846004\pi\)
0.0397950 0.999208i \(-0.487330\pi\)
\(762\) 0 0
\(763\) −1320.10 + 2286.48i −0.0626354 + 0.108488i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9010.72 + 15607.0i −0.424196 + 0.734729i
\(768\) 0 0
\(769\) −17945.3 31082.3i −0.841516 1.45755i −0.888613 0.458658i \(-0.848330\pi\)
0.0470967 0.998890i \(-0.485003\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −22725.0 −1.05739 −0.528694 0.848812i \(-0.677318\pi\)
−0.528694 + 0.848812i \(0.677318\pi\)
\(774\) 0 0
\(775\) −6165.87 −0.285786
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8363.12 + 14485.3i 0.384647 + 0.666228i
\(780\) 0 0
\(781\) −1401.10 + 2426.77i −0.0641935 + 0.111186i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2848.39 + 4933.55i −0.129507 + 0.224313i
\(786\) 0 0
\(787\) 16475.1 + 28535.6i 0.746217 + 1.29249i 0.949624 + 0.313391i \(0.101465\pi\)
−0.203407 + 0.979094i \(0.565202\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5358.39 0.240863
\(792\) 0 0
\(793\) 8759.93 0.392275
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9869.56 17094.6i −0.438642 0.759751i 0.558943 0.829206i \(-0.311207\pi\)
−0.997585 + 0.0694555i \(0.977874\pi\)
\(798\) 0 0
\(799\) −816.576 + 1414.35i −0.0361557 + 0.0626235i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6333.64 10970.2i 0.278343 0.482104i
\(804\) 0 0
\(805\) 156.225 + 270.590i 0.00684002 + 0.0118473i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −32852.8 −1.42774 −0.713870 0.700278i \(-0.753059\pi\)
−0.713870 + 0.700278i \(0.753059\pi\)
\(810\) 0 0
\(811\) 20122.0 0.871245 0.435623 0.900129i \(-0.356528\pi\)
0.435623 + 0.900129i \(0.356528\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8302.18 + 14379.8i 0.356825 + 0.618040i
\(816\) 0 0
\(817\) −2789.89 + 4832.24i −0.119469 + 0.206926i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12567.8 + 21768.0i −0.534249 + 0.925347i 0.464950 + 0.885337i \(0.346072\pi\)
−0.999199 + 0.0400102i \(0.987261\pi\)
\(822\) 0 0
\(823\) 11558.9 + 20020.6i 0.489572 + 0.847963i 0.999928 0.0119999i \(-0.00381978\pi\)
−0.510356 + 0.859963i \(0.670486\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −6362.04 −0.267509 −0.133754 0.991015i \(-0.542703\pi\)
−0.133754 + 0.991015i \(0.542703\pi\)
\(828\) 0 0
\(829\) −21021.5 −0.880706 −0.440353 0.897825i \(-0.645147\pi\)
−0.440353 + 0.897825i \(0.645147\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7628.07 13212.2i −0.317283 0.549550i
\(834\) 0 0
\(835\) −5383.16 + 9323.90i −0.223104 + 0.386427i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −23031.0 + 39890.9i −0.947698 + 1.64146i −0.197441 + 0.980315i \(0.563263\pi\)
−0.750257 + 0.661146i \(0.770070\pi\)
\(840\) 0 0
\(841\) −1313.60 2275.23i −0.0538605 0.0932891i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3968.87 0.161578
\(846\) 0 0
\(847\) 3508.60 0.142334
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2671.29 4626.81i −0.107604 0.186375i
\(852\) 0 0
\(853\) −8792.39 + 15228.9i −0.352926 + 0.611285i −0.986761 0.162183i \(-0.948147\pi\)
0.633835 + 0.773468i \(0.281480\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5156.94 + 8932.09i −0.205552 + 0.356026i −0.950308 0.311310i \(-0.899232\pi\)
0.744757 + 0.667336i \(0.232566\pi\)
\(858\) 0 0
\(859\) 15293.9 + 26489.9i 0.607476 + 1.05218i 0.991655 + 0.128921i \(0.0411514\pi\)
−0.384178 + 0.923259i \(0.625515\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3387.21 0.133606 0.0668029 0.997766i \(-0.478720\pi\)
0.0668029 + 0.997766i \(0.478720\pi\)
\(864\) 0 0
\(865\) 18982.1 0.746141
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5406.36 + 9364.10i 0.211045 + 0.365541i
\(870\) 0 0
\(871\) 7970.10 13804.6i 0.310053 0.537028i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 196.273 339.954i 0.00758312 0.0131343i
\(876\) 0 0
\(877\) 9232.83 + 15991.7i 0.355497 + 0.615738i 0.987203 0.159470i \(-0.0509784\pi\)
−0.631706 + 0.775208i \(0.717645\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −20662.0 −0.790148 −0.395074 0.918649i \(-0.629281\pi\)
−0.395074 + 0.918649i \(0.629281\pi\)
\(882\) 0 0
\(883\) 386.519 0.0147309 0.00736545 0.999973i \(-0.497655\pi\)
0.00736545 + 0.999973i \(0.497655\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6678.06 + 11566.7i 0.252793 + 0.437850i 0.964294 0.264835i \(-0.0853175\pi\)
−0.711501 + 0.702685i \(0.751984\pi\)
\(888\) 0 0
\(889\) 1688.16 2923.98i 0.0636885 0.110312i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −897.717 + 1554.89i −0.0336405 + 0.0582670i
\(894\) 0 0
\(895\) 4408.36 + 7635.51i 0.164643 + 0.285170i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −40538.4 −1.50393
\(900\) 0 0
\(901\) 22103.4 0.817281
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −487.437 844.266i −0.0179038 0.0310103i
\(906\) 0 0
\(907\) −14680.6 + 25427.6i −0.537445 + 0.930882i 0.461596 + 0.887090i \(0.347277\pi\)
−0.999041 + 0.0437913i \(0.986056\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3836.01 + 6644.16i −0.139509 + 0.241636i −0.927311 0.374292i \(-0.877886\pi\)
0.787802 + 0.615929i \(0.211219\pi\)
\(912\) 0 0
\(913\) 3567.86 + 6179.71i 0.129331 + 0.224007i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2786.32 0.100341
\(918\) 0 0
\(919\) −25818.6 −0.926742 −0.463371 0.886164i \(-0.653360\pi\)
−0.463371 + 0.886164i \(0.653360\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5241.00 + 9077.68i 0.186901 + 0.323722i
\(924\) 0 0
\(925\) −3356.06 + 5812.86i −0.119293 + 0.206622i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13689.5 + 23710.9i −0.483463 + 0.837383i −0.999820 0.0189908i \(-0.993955\pi\)
0.516356 + 0.856374i \(0.327288\pi\)
\(930\) 0 0
\(931\) −8386.04 14525.0i −0.295211 0.511320i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3347.61 0.117089
\(936\) 0 0
\(937\) −4696.47 −0.163743 −0.0818713 0.996643i \(-0.526090\pi\)
−0.0818713 + 0.996643i \(0.526090\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1419.08 + 2457.92i 0.0491612 + 0.0851497i 0.889559 0.456821i \(-0.151012\pi\)
−0.840398 + 0.541970i \(0.817679\pi\)
\(942\) 0 0
\(943\) −3305.50 + 5725.30i −0.114148 + 0.197711i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23449.9 40616.5i 0.804668 1.39373i −0.111847 0.993725i \(-0.535677\pi\)
0.916515 0.400000i \(-0.130990\pi\)
\(948\) 0 0
\(949\) −23691.9 41035.6i −0.810403 1.40366i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −32713.6 −1.11196 −0.555980 0.831196i \(-0.687657\pi\)
−0.555980 + 0.831196i \(0.687657\pi\)
\(954\) 0 0
\(955\) 17186.2 0.582338
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3103.47 + 5375.36i 0.104501 + 0.181001i
\(960\) 0 0
\(961\) −15518.8 + 26879.4i −0.520923 + 0.902266i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6363.75 11022.3i 0.212286 0.367691i
\(966\) 0 0
\(967\) 12065.4 + 20897.8i 0.401236 + 0.694962i 0.993875 0.110506i \(-0.0352473\pi\)
−0.592639 + 0.805468i \(0.701914\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 21198.9 0.700623 0.350312 0.936633i \(-0.386076\pi\)
0.350312 + 0.936633i \(0.386076\pi\)
\(972\) 0 0
\(973\) 5694.31 0.187617
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2070.13 3585.57i −0.0677885 0.117413i 0.830139 0.557556i \(-0.188261\pi\)
−0.897928 + 0.440143i \(0.854928\pi\)
\(978\) 0 0
\(979\) −1271.48 + 2202.26i −0.0415082 + 0.0718944i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11969.4 20731.6i 0.388367 0.672672i −0.603863 0.797088i \(-0.706373\pi\)
0.992230 + 0.124417i \(0.0397059\pi\)
\(984\) 0 0
\(985\) −9431.62 16336.1i −0.305093 0.528436i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2205.40 −0.0709075
\(990\) 0 0
\(991\) −40688.9 −1.30426 −0.652131 0.758106i \(-0.726125\pi\)
−0.652131 + 0.758106i \(0.726125\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2528.77 + 4379.95i 0.0805702 + 0.139552i
\(996\) 0 0
\(997\) 1689.21 2925.80i 0.0536589 0.0929400i −0.837948 0.545750i \(-0.816245\pi\)
0.891607 + 0.452810i \(0.149578\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.4.q.e.721.6 20
3.2 odd 2 360.4.q.e.241.1 yes 20
9.4 even 3 inner 1080.4.q.e.361.6 20
9.5 odd 6 360.4.q.e.121.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.4.q.e.121.1 20 9.5 odd 6
360.4.q.e.241.1 yes 20 3.2 odd 2
1080.4.q.e.361.6 20 9.4 even 3 inner
1080.4.q.e.721.6 20 1.1 even 1 trivial