Properties

Label 3528.3.d.k.1961.1
Level $3528$
Weight $3$
Character 3528.1961
Analytic conductor $96.131$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3528,3,Mod(1961,3528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3528, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3528.1961"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3528.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,20,0,0,0,0,0,20,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(96.1310372663\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 38x^{6} - 60x^{5} + 385x^{4} + 1260x^{3} + 1230x^{2} + 540x + 594 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1961.1
Root \(-1.87753 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 3528.1961
Dual form 3528.3.d.k.1961.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.57392i q^{5} +14.5417i q^{11} +10.9055 q^{13} -26.8141i q^{17} -7.97599 q^{19} +26.8141i q^{23} -48.5120 q^{25} +35.7359i q^{29} +23.8447 q^{31} -38.3654 q^{37} +27.8548i q^{41} +68.4986 q^{43} +71.1239i q^{47} +63.4746i q^{53} +124.679 q^{55} -8.92188i q^{59} -5.77419 q^{61} -93.5030i q^{65} -34.6720 q^{67} +68.6199i q^{71} -131.264 q^{73} +30.0642 q^{79} -86.5943i q^{83} -229.901 q^{85} +128.558i q^{89} +68.3854i q^{95} +80.0096 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 20 q^{13} + 20 q^{19} + 4 q^{25} + 56 q^{31} - 76 q^{37} + 36 q^{43} + 324 q^{55} + 72 q^{61} + 156 q^{67} - 124 q^{73} - 184 q^{79} - 432 q^{85} + 556 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 8.57392i − 1.71478i −0.514665 0.857392i \(-0.672084\pi\)
0.514665 0.857392i \(-0.327916\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 14.5417i 1.32197i 0.750400 + 0.660984i \(0.229861\pi\)
−0.750400 + 0.660984i \(0.770139\pi\)
\(12\) 0 0
\(13\) 10.9055 0.838886 0.419443 0.907782i \(-0.362225\pi\)
0.419443 + 0.907782i \(0.362225\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 26.8141i − 1.57730i −0.614844 0.788649i \(-0.710781\pi\)
0.614844 0.788649i \(-0.289219\pi\)
\(18\) 0 0
\(19\) −7.97599 −0.419789 −0.209894 0.977724i \(-0.567312\pi\)
−0.209894 + 0.977724i \(0.567312\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 26.8141i 1.16583i 0.812534 + 0.582914i \(0.198088\pi\)
−0.812534 + 0.582914i \(0.801912\pi\)
\(24\) 0 0
\(25\) −48.5120 −1.94048
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 35.7359i 1.23227i 0.787639 + 0.616137i \(0.211303\pi\)
−0.787639 + 0.616137i \(0.788697\pi\)
\(30\) 0 0
\(31\) 23.8447 0.769182 0.384591 0.923087i \(-0.374342\pi\)
0.384591 + 0.923087i \(0.374342\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −38.3654 −1.03690 −0.518451 0.855107i \(-0.673491\pi\)
−0.518451 + 0.855107i \(0.673491\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 27.8548i 0.679386i 0.940536 + 0.339693i \(0.110323\pi\)
−0.940536 + 0.339693i \(0.889677\pi\)
\(42\) 0 0
\(43\) 68.4986 1.59299 0.796496 0.604644i \(-0.206685\pi\)
0.796496 + 0.604644i \(0.206685\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 71.1239i 1.51327i 0.653835 + 0.756637i \(0.273159\pi\)
−0.653835 + 0.756637i \(0.726841\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 63.4746i 1.19763i 0.800886 + 0.598817i \(0.204362\pi\)
−0.800886 + 0.598817i \(0.795638\pi\)
\(54\) 0 0
\(55\) 124.679 2.26689
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 8.92188i − 0.151218i −0.997138 0.0756091i \(-0.975910\pi\)
0.997138 0.0756091i \(-0.0240901\pi\)
\(60\) 0 0
\(61\) −5.77419 −0.0946588 −0.0473294 0.998879i \(-0.515071\pi\)
−0.0473294 + 0.998879i \(0.515071\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 93.5030i − 1.43851i
\(66\) 0 0
\(67\) −34.6720 −0.517493 −0.258746 0.965945i \(-0.583309\pi\)
−0.258746 + 0.965945i \(0.583309\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 68.6199i 0.966478i 0.875488 + 0.483239i \(0.160540\pi\)
−0.875488 + 0.483239i \(0.839460\pi\)
\(72\) 0 0
\(73\) −131.264 −1.79814 −0.899069 0.437806i \(-0.855756\pi\)
−0.899069 + 0.437806i \(0.855756\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 30.0642 0.380559 0.190280 0.981730i \(-0.439061\pi\)
0.190280 + 0.981730i \(0.439061\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 86.5943i − 1.04331i −0.853158 0.521653i \(-0.825316\pi\)
0.853158 0.521653i \(-0.174684\pi\)
\(84\) 0 0
\(85\) −229.901 −2.70472
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 128.558i 1.44447i 0.691647 + 0.722236i \(0.256885\pi\)
−0.691647 + 0.722236i \(0.743115\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 68.3854i 0.719847i
\(96\) 0 0
\(97\) 80.0096 0.824841 0.412421 0.910994i \(-0.364683\pi\)
0.412421 + 0.910994i \(0.364683\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 60.2984i − 0.597013i −0.954408 0.298507i \(-0.903511\pi\)
0.954408 0.298507i \(-0.0964885\pi\)
\(102\) 0 0
\(103\) −136.616 −1.32637 −0.663184 0.748457i \(-0.730795\pi\)
−0.663184 + 0.748457i \(0.730795\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 88.5597i 0.827661i 0.910354 + 0.413830i \(0.135809\pi\)
−0.910354 + 0.413830i \(0.864191\pi\)
\(108\) 0 0
\(109\) 120.440 1.10496 0.552479 0.833527i \(-0.313682\pi\)
0.552479 + 0.833527i \(0.313682\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 6.02151i − 0.0532877i −0.999645 0.0266438i \(-0.991518\pi\)
0.999645 0.0266438i \(-0.00848200\pi\)
\(114\) 0 0
\(115\) 229.901 1.99914
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −90.4596 −0.747600
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 201.590i 1.61272i
\(126\) 0 0
\(127\) −63.3782 −0.499041 −0.249521 0.968369i \(-0.580273\pi\)
−0.249521 + 0.968369i \(0.580273\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 37.8129i 0.288648i 0.989530 + 0.144324i \(0.0461007\pi\)
−0.989530 + 0.144324i \(0.953899\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 64.9147i 0.473830i 0.971530 + 0.236915i \(0.0761363\pi\)
−0.971530 + 0.236915i \(0.923864\pi\)
\(138\) 0 0
\(139\) −124.568 −0.896171 −0.448086 0.893991i \(-0.647894\pi\)
−0.448086 + 0.893991i \(0.647894\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 158.584i 1.10898i
\(144\) 0 0
\(145\) 306.397 2.11308
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 156.079i − 1.04751i −0.851868 0.523757i \(-0.824530\pi\)
0.851868 0.523757i \(-0.175470\pi\)
\(150\) 0 0
\(151\) 176.449 1.16854 0.584270 0.811560i \(-0.301381\pi\)
0.584270 + 0.811560i \(0.301381\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 204.442i − 1.31898i
\(156\) 0 0
\(157\) 43.4565 0.276793 0.138396 0.990377i \(-0.455805\pi\)
0.138396 + 0.990377i \(0.455805\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −156.335 −0.959110 −0.479555 0.877512i \(-0.659202\pi\)
−0.479555 + 0.877512i \(0.659202\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 137.999i 0.826343i 0.910653 + 0.413172i \(0.135579\pi\)
−0.910653 + 0.413172i \(0.864421\pi\)
\(168\) 0 0
\(169\) −50.0696 −0.296270
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 61.8388i 0.357450i 0.983899 + 0.178725i \(0.0571972\pi\)
−0.983899 + 0.178725i \(0.942803\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 194.288i 1.08541i 0.839925 + 0.542703i \(0.182599\pi\)
−0.839925 + 0.542703i \(0.817401\pi\)
\(180\) 0 0
\(181\) 23.8714 0.131886 0.0659430 0.997823i \(-0.478994\pi\)
0.0659430 + 0.997823i \(0.478994\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 328.942i 1.77806i
\(186\) 0 0
\(187\) 389.921 2.08514
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 164.171i 0.859532i 0.902940 + 0.429766i \(0.141404\pi\)
−0.902940 + 0.429766i \(0.858596\pi\)
\(192\) 0 0
\(193\) 292.939 1.51782 0.758909 0.651197i \(-0.225733\pi\)
0.758909 + 0.651197i \(0.225733\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 232.573i − 1.18058i −0.807193 0.590288i \(-0.799014\pi\)
0.807193 0.590288i \(-0.200986\pi\)
\(198\) 0 0
\(199\) 24.1124 0.121168 0.0605840 0.998163i \(-0.480704\pi\)
0.0605840 + 0.998163i \(0.480704\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 238.825 1.16500
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 115.984i − 0.554947i
\(210\) 0 0
\(211\) 393.303 1.86400 0.931998 0.362464i \(-0.118064\pi\)
0.931998 + 0.362464i \(0.118064\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 587.302i − 2.73164i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 292.421i − 1.32317i
\(222\) 0 0
\(223\) 198.609 0.890623 0.445311 0.895376i \(-0.353093\pi\)
0.445311 + 0.895376i \(0.353093\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 156.819i − 0.690834i −0.938449 0.345417i \(-0.887738\pi\)
0.938449 0.345417i \(-0.112262\pi\)
\(228\) 0 0
\(229\) −20.5714 −0.0898316 −0.0449158 0.998991i \(-0.514302\pi\)
−0.0449158 + 0.998991i \(0.514302\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 73.9599i − 0.317424i −0.987325 0.158712i \(-0.949266\pi\)
0.987325 0.158712i \(-0.0507342\pi\)
\(234\) 0 0
\(235\) 609.810 2.59494
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 238.052i − 0.996035i −0.867167 0.498017i \(-0.834062\pi\)
0.867167 0.498017i \(-0.165938\pi\)
\(240\) 0 0
\(241\) 201.402 0.835695 0.417847 0.908517i \(-0.362785\pi\)
0.417847 + 0.908517i \(0.362785\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −86.9823 −0.352155
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 260.896i 1.03942i 0.854341 + 0.519712i \(0.173961\pi\)
−0.854341 + 0.519712i \(0.826039\pi\)
\(252\) 0 0
\(253\) −389.921 −1.54119
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 144.620i 0.562723i 0.959602 + 0.281361i \(0.0907859\pi\)
−0.959602 + 0.281361i \(0.909214\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 159.938i − 0.608131i −0.952651 0.304065i \(-0.901656\pi\)
0.952651 0.304065i \(-0.0983441\pi\)
\(264\) 0 0
\(265\) 544.226 2.05368
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 119.728i − 0.445086i −0.974923 0.222543i \(-0.928564\pi\)
0.974923 0.222543i \(-0.0714358\pi\)
\(270\) 0 0
\(271\) 505.421 1.86502 0.932511 0.361141i \(-0.117613\pi\)
0.932511 + 0.361141i \(0.117613\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 705.445i − 2.56525i
\(276\) 0 0
\(277\) 291.401 1.05199 0.525995 0.850488i \(-0.323693\pi\)
0.525995 + 0.850488i \(0.323693\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 371.722i − 1.32285i −0.750010 0.661427i \(-0.769951\pi\)
0.750010 0.661427i \(-0.230049\pi\)
\(282\) 0 0
\(283\) −264.456 −0.934472 −0.467236 0.884133i \(-0.654750\pi\)
−0.467236 + 0.884133i \(0.654750\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −429.994 −1.48787
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 559.211i 1.90857i 0.298897 + 0.954285i \(0.403381\pi\)
−0.298897 + 0.954285i \(0.596619\pi\)
\(294\) 0 0
\(295\) −76.4954 −0.259306
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 292.421i 0.977998i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 49.5074i 0.162319i
\(306\) 0 0
\(307\) 230.693 0.751442 0.375721 0.926733i \(-0.377395\pi\)
0.375721 + 0.926733i \(0.377395\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 170.555i − 0.548408i −0.961672 0.274204i \(-0.911586\pi\)
0.961672 0.274204i \(-0.0884144\pi\)
\(312\) 0 0
\(313\) −262.708 −0.839323 −0.419662 0.907681i \(-0.637851\pi\)
−0.419662 + 0.907681i \(0.637851\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 204.187i 0.644123i 0.946719 + 0.322062i \(0.104376\pi\)
−0.946719 + 0.322062i \(0.895624\pi\)
\(318\) 0 0
\(319\) −519.659 −1.62903
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 213.869i 0.662132i
\(324\) 0 0
\(325\) −529.049 −1.62784
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 163.406 0.493674 0.246837 0.969057i \(-0.420609\pi\)
0.246837 + 0.969057i \(0.420609\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 297.275i 0.887388i
\(336\) 0 0
\(337\) 588.142 1.74523 0.872614 0.488411i \(-0.162423\pi\)
0.872614 + 0.488411i \(0.162423\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 346.741i 1.01683i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 555.009i 1.59945i 0.600366 + 0.799725i \(0.295021\pi\)
−0.600366 + 0.799725i \(0.704979\pi\)
\(348\) 0 0
\(349\) 248.425 0.711819 0.355910 0.934520i \(-0.384171\pi\)
0.355910 + 0.934520i \(0.384171\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 580.389i 1.64416i 0.569370 + 0.822081i \(0.307187\pi\)
−0.569370 + 0.822081i \(0.692813\pi\)
\(354\) 0 0
\(355\) 588.342 1.65730
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 193.354i − 0.538592i −0.963058 0.269296i \(-0.913209\pi\)
0.963058 0.269296i \(-0.0867909\pi\)
\(360\) 0 0
\(361\) −297.384 −0.823777
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1125.45i 3.08342i
\(366\) 0 0
\(367\) 332.929 0.907163 0.453582 0.891215i \(-0.350146\pi\)
0.453582 + 0.891215i \(0.350146\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −452.996 −1.21447 −0.607233 0.794524i \(-0.707721\pi\)
−0.607233 + 0.794524i \(0.707721\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 389.719i 1.03374i
\(378\) 0 0
\(379\) −598.216 −1.57841 −0.789203 0.614133i \(-0.789506\pi\)
−0.789203 + 0.614133i \(0.789506\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 290.640i − 0.758852i −0.925222 0.379426i \(-0.876122\pi\)
0.925222 0.379426i \(-0.123878\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 93.1096i − 0.239356i −0.992813 0.119678i \(-0.961814\pi\)
0.992813 0.119678i \(-0.0381862\pi\)
\(390\) 0 0
\(391\) 718.994 1.83886
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 257.768i − 0.652577i
\(396\) 0 0
\(397\) −300.366 −0.756589 −0.378294 0.925685i \(-0.623489\pi\)
−0.378294 + 0.925685i \(0.623489\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 220.928i 0.550943i 0.961309 + 0.275471i \(0.0888339\pi\)
−0.961309 + 0.275471i \(0.911166\pi\)
\(402\) 0 0
\(403\) 260.038 0.645257
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 557.896i − 1.37075i
\(408\) 0 0
\(409\) 141.765 0.346614 0.173307 0.984868i \(-0.444555\pi\)
0.173307 + 0.984868i \(0.444555\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −742.452 −1.78904
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 455.434i 1.08695i 0.839424 + 0.543477i \(0.182893\pi\)
−0.839424 + 0.543477i \(0.817107\pi\)
\(420\) 0 0
\(421\) 123.182 0.292593 0.146296 0.989241i \(-0.453265\pi\)
0.146296 + 0.989241i \(0.453265\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1300.80i 3.06072i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 104.545i − 0.242564i −0.992618 0.121282i \(-0.961299\pi\)
0.992618 0.121282i \(-0.0387005\pi\)
\(432\) 0 0
\(433\) 249.952 0.577256 0.288628 0.957441i \(-0.406801\pi\)
0.288628 + 0.957441i \(0.406801\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 213.869i − 0.489402i
\(438\) 0 0
\(439\) −363.345 −0.827665 −0.413832 0.910353i \(-0.635810\pi\)
−0.413832 + 0.910353i \(0.635810\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 724.075i 1.63448i 0.576297 + 0.817240i \(0.304497\pi\)
−0.576297 + 0.817240i \(0.695503\pi\)
\(444\) 0 0
\(445\) 1102.24 2.47695
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 498.027i 1.10919i 0.832120 + 0.554596i \(0.187127\pi\)
−0.832120 + 0.554596i \(0.812873\pi\)
\(450\) 0 0
\(451\) −405.055 −0.898126
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 636.745 1.39332 0.696658 0.717404i \(-0.254670\pi\)
0.696658 + 0.717404i \(0.254670\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 597.813i − 1.29678i −0.761310 0.648388i \(-0.775444\pi\)
0.761310 0.648388i \(-0.224556\pi\)
\(462\) 0 0
\(463\) −710.671 −1.53493 −0.767463 0.641093i \(-0.778481\pi\)
−0.767463 + 0.641093i \(0.778481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 208.489i 0.446444i 0.974768 + 0.223222i \(0.0716574\pi\)
−0.974768 + 0.223222i \(0.928343\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 996.083i 2.10588i
\(474\) 0 0
\(475\) 386.931 0.814592
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 311.954i − 0.651260i −0.945497 0.325630i \(-0.894424\pi\)
0.945497 0.325630i \(-0.105576\pi\)
\(480\) 0 0
\(481\) −418.395 −0.869844
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 685.996i − 1.41442i
\(486\) 0 0
\(487\) −955.175 −1.96135 −0.980673 0.195654i \(-0.937317\pi\)
−0.980673 + 0.195654i \(0.937317\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 131.161i − 0.267131i −0.991040 0.133565i \(-0.957357\pi\)
0.991040 0.133565i \(-0.0426426\pi\)
\(492\) 0 0
\(493\) 958.226 1.94366
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 348.305 0.698006 0.349003 0.937122i \(-0.386520\pi\)
0.349003 + 0.937122i \(0.386520\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 602.739i − 1.19829i −0.800641 0.599144i \(-0.795508\pi\)
0.800641 0.599144i \(-0.204492\pi\)
\(504\) 0 0
\(505\) −516.993 −1.02375
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.0888i 0.0276793i 0.999904 + 0.0138397i \(0.00440544\pi\)
−0.999904 + 0.0138397i \(0.995595\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1171.33i 2.27443i
\(516\) 0 0
\(517\) −1034.26 −2.00050
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 47.8232i 0.0917911i 0.998946 + 0.0458956i \(0.0146141\pi\)
−0.998946 + 0.0458956i \(0.985386\pi\)
\(522\) 0 0
\(523\) 384.974 0.736088 0.368044 0.929808i \(-0.380028\pi\)
0.368044 + 0.929808i \(0.380028\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 639.372i − 1.21323i
\(528\) 0 0
\(529\) −189.994 −0.359157
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 303.771i 0.569927i
\(534\) 0 0
\(535\) 759.303 1.41926
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 401.183 0.741558 0.370779 0.928721i \(-0.379091\pi\)
0.370779 + 0.928721i \(0.379091\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 1032.65i − 1.89476i
\(546\) 0 0
\(547\) 826.934 1.51176 0.755881 0.654709i \(-0.227209\pi\)
0.755881 + 0.654709i \(0.227209\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 285.029i − 0.517295i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 716.450i 1.28627i 0.765754 + 0.643133i \(0.222366\pi\)
−0.765754 + 0.643133i \(0.777634\pi\)
\(558\) 0 0
\(559\) 747.014 1.33634
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 248.777i 0.441877i 0.975288 + 0.220938i \(0.0709120\pi\)
−0.975288 + 0.220938i \(0.929088\pi\)
\(564\) 0 0
\(565\) −51.6279 −0.0913768
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 54.3872i − 0.0955838i −0.998857 0.0477919i \(-0.984782\pi\)
0.998857 0.0477919i \(-0.0152184\pi\)
\(570\) 0 0
\(571\) 420.729 0.736828 0.368414 0.929662i \(-0.379901\pi\)
0.368414 + 0.929662i \(0.379901\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 1300.80i − 2.26227i
\(576\) 0 0
\(577\) −712.798 −1.23535 −0.617676 0.786433i \(-0.711926\pi\)
−0.617676 + 0.786433i \(0.711926\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −923.025 −1.58323
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 35.9882i 0.0613088i 0.999530 + 0.0306544i \(0.00975912\pi\)
−0.999530 + 0.0306544i \(0.990241\pi\)
\(588\) 0 0
\(589\) −190.185 −0.322894
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 410.930i − 0.692968i −0.938056 0.346484i \(-0.887375\pi\)
0.938056 0.346484i \(-0.112625\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 499.293i − 0.833545i −0.909011 0.416773i \(-0.863161\pi\)
0.909011 0.416773i \(-0.136839\pi\)
\(600\) 0 0
\(601\) 70.6569 0.117566 0.0587828 0.998271i \(-0.481278\pi\)
0.0587828 + 0.998271i \(0.481278\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 775.593i 1.28197i
\(606\) 0 0
\(607\) 830.528 1.36825 0.684125 0.729364i \(-0.260184\pi\)
0.684125 + 0.729364i \(0.260184\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 775.643i 1.26947i
\(612\) 0 0
\(613\) −226.918 −0.370176 −0.185088 0.982722i \(-0.559257\pi\)
−0.185088 + 0.982722i \(0.559257\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 418.262i 0.677895i 0.940805 + 0.338948i \(0.110071\pi\)
−0.940805 + 0.338948i \(0.889929\pi\)
\(618\) 0 0
\(619\) 513.201 0.829080 0.414540 0.910031i \(-0.363942\pi\)
0.414540 + 0.910031i \(0.363942\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 515.616 0.824986
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1028.73i 1.63550i
\(630\) 0 0
\(631\) −976.542 −1.54761 −0.773805 0.633424i \(-0.781649\pi\)
−0.773805 + 0.633424i \(0.781649\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 543.400i 0.855748i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 952.274i − 1.48561i −0.669510 0.742803i \(-0.733496\pi\)
0.669510 0.742803i \(-0.266504\pi\)
\(642\) 0 0
\(643\) −910.267 −1.41566 −0.707828 0.706385i \(-0.750325\pi\)
−0.707828 + 0.706385i \(0.750325\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 775.131i − 1.19804i −0.800735 0.599019i \(-0.795557\pi\)
0.800735 0.599019i \(-0.204443\pi\)
\(648\) 0 0
\(649\) 129.739 0.199906
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 231.119i 0.353934i 0.984217 + 0.176967i \(0.0566285\pi\)
−0.984217 + 0.176967i \(0.943371\pi\)
\(654\) 0 0
\(655\) 324.204 0.494968
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 731.379i − 1.10983i −0.831907 0.554915i \(-0.812751\pi\)
0.831907 0.554915i \(-0.187249\pi\)
\(660\) 0 0
\(661\) 627.701 0.949623 0.474811 0.880088i \(-0.342516\pi\)
0.474811 + 0.880088i \(0.342516\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −958.226 −1.43662
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 83.9662i − 0.125136i
\(672\) 0 0
\(673\) −536.968 −0.797872 −0.398936 0.916979i \(-0.630620\pi\)
−0.398936 + 0.916979i \(0.630620\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 416.461i 0.615157i 0.951523 + 0.307579i \(0.0995187\pi\)
−0.951523 + 0.307579i \(0.900481\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 838.290i 1.22736i 0.789553 + 0.613682i \(0.210312\pi\)
−0.789553 + 0.613682i \(0.789688\pi\)
\(684\) 0 0
\(685\) 556.573 0.812515
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 692.224i 1.00468i
\(690\) 0 0
\(691\) 412.350 0.596744 0.298372 0.954450i \(-0.403556\pi\)
0.298372 + 0.954450i \(0.403556\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1068.03i 1.53674i
\(696\) 0 0
\(697\) 746.901 1.07159
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 19.5457i 0.0278825i 0.999903 + 0.0139413i \(0.00443779\pi\)
−0.999903 + 0.0139413i \(0.995562\pi\)
\(702\) 0 0
\(703\) 306.002 0.435280
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −120.712 −0.170257 −0.0851287 0.996370i \(-0.527130\pi\)
−0.0851287 + 0.996370i \(0.527130\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 639.372i 0.896735i
\(714\) 0 0
\(715\) 1359.69 1.90166
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 884.044i − 1.22955i −0.788704 0.614773i \(-0.789247\pi\)
0.788704 0.614773i \(-0.210753\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 1733.62i − 2.39120i
\(726\) 0 0
\(727\) −1322.62 −1.81929 −0.909643 0.415391i \(-0.863645\pi\)
−0.909643 + 0.415391i \(0.863645\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 1836.73i − 2.51262i
\(732\) 0 0
\(733\) −324.784 −0.443088 −0.221544 0.975150i \(-0.571110\pi\)
−0.221544 + 0.975150i \(0.571110\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 504.188i − 0.684109i
\(738\) 0 0
\(739\) −164.499 −0.222597 −0.111298 0.993787i \(-0.535501\pi\)
−0.111298 + 0.993787i \(0.535501\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 247.995i 0.333775i 0.985976 + 0.166888i \(0.0533717\pi\)
−0.985976 + 0.166888i \(0.946628\pi\)
\(744\) 0 0
\(745\) −1338.21 −1.79626
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 624.280 0.831264 0.415632 0.909533i \(-0.363560\pi\)
0.415632 + 0.909533i \(0.363560\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 1512.86i − 2.00379i
\(756\) 0 0
\(757\) −1091.35 −1.44167 −0.720836 0.693105i \(-0.756242\pi\)
−0.720836 + 0.693105i \(0.756242\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 483.228i − 0.634991i −0.948260 0.317496i \(-0.897158\pi\)
0.948260 0.317496i \(-0.102842\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 97.2977i − 0.126855i
\(768\) 0 0
\(769\) −1025.78 −1.33391 −0.666957 0.745096i \(-0.732404\pi\)
−0.666957 + 0.745096i \(0.732404\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1191.73i 1.54170i 0.637016 + 0.770851i \(0.280168\pi\)
−0.637016 + 0.770851i \(0.719832\pi\)
\(774\) 0 0
\(775\) −1156.75 −1.49258
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 222.170i − 0.285199i
\(780\) 0 0
\(781\) −997.847 −1.27765
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 372.592i − 0.474640i
\(786\) 0 0
\(787\) −1411.25 −1.79320 −0.896602 0.442837i \(-0.853972\pi\)
−0.896602 + 0.442837i \(0.853972\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −62.9705 −0.0794080
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1495.22i 1.87607i 0.346547 + 0.938033i \(0.387354\pi\)
−0.346547 + 0.938033i \(0.612646\pi\)
\(798\) 0 0
\(799\) 1907.12 2.38688
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 1908.80i − 2.37708i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 623.142i − 0.770263i −0.922862 0.385131i \(-0.874156\pi\)
0.922862 0.385131i \(-0.125844\pi\)
\(810\) 0 0
\(811\) −215.591 −0.265833 −0.132917 0.991127i \(-0.542434\pi\)
−0.132917 + 0.991127i \(0.542434\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1340.40i 1.64467i
\(816\) 0 0
\(817\) −546.344 −0.668720
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 1334.59i − 1.62556i −0.582569 0.812781i \(-0.697952\pi\)
0.582569 0.812781i \(-0.302048\pi\)
\(822\) 0 0
\(823\) 168.907 0.205233 0.102617 0.994721i \(-0.467278\pi\)
0.102617 + 0.994721i \(0.467278\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 336.132i 0.406447i 0.979132 + 0.203224i \(0.0651419\pi\)
−0.979132 + 0.203224i \(0.934858\pi\)
\(828\) 0 0
\(829\) −1250.09 −1.50795 −0.753976 0.656902i \(-0.771867\pi\)
−0.753976 + 0.656902i \(0.771867\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1183.19 1.41700
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 173.924i − 0.207299i −0.994614 0.103649i \(-0.966948\pi\)
0.994614 0.103649i \(-0.0330520\pi\)
\(840\) 0 0
\(841\) −436.057 −0.518498
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 429.292i 0.508038i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 1028.73i − 1.20885i
\(852\) 0 0
\(853\) −74.2360 −0.0870293 −0.0435147 0.999053i \(-0.513856\pi\)
−0.0435147 + 0.999053i \(0.513856\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 888.921i − 1.03725i −0.855003 0.518624i \(-0.826445\pi\)
0.855003 0.518624i \(-0.173555\pi\)
\(858\) 0 0
\(859\) −62.0393 −0.0722227 −0.0361114 0.999348i \(-0.511497\pi\)
−0.0361114 + 0.999348i \(0.511497\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 655.596i − 0.759671i −0.925054 0.379835i \(-0.875981\pi\)
0.925054 0.379835i \(-0.124019\pi\)
\(864\) 0 0
\(865\) 530.201 0.612949
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 437.183i 0.503087i
\(870\) 0 0
\(871\) −378.116 −0.434118
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1267.24 1.44498 0.722488 0.691384i \(-0.242999\pi\)
0.722488 + 0.691384i \(0.242999\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.20047i 0.00703800i 0.999994 + 0.00351900i \(0.00112013\pi\)
−0.999994 + 0.00351900i \(0.998880\pi\)
\(882\) 0 0
\(883\) 1122.22 1.27092 0.635459 0.772135i \(-0.280811\pi\)
0.635459 + 0.772135i \(0.280811\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 480.508i 0.541723i 0.962618 + 0.270861i \(0.0873085\pi\)
−0.962618 + 0.270861i \(0.912692\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 567.283i − 0.635256i
\(894\) 0 0
\(895\) 1665.80 1.86123
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 852.111i 0.947843i
\(900\) 0 0
\(901\) 1702.01 1.88903
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 204.671i − 0.226156i
\(906\) 0 0
\(907\) −170.449 −0.187926 −0.0939630 0.995576i \(-0.529954\pi\)
−0.0939630 + 0.995576i \(0.529954\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1180.21i 1.29552i 0.761847 + 0.647758i \(0.224293\pi\)
−0.761847 + 0.647758i \(0.775707\pi\)
\(912\) 0 0
\(913\) 1259.22 1.37922
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 535.681 0.582895 0.291448 0.956587i \(-0.405863\pi\)
0.291448 + 0.956587i \(0.405863\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 748.336i 0.810765i
\(924\) 0 0
\(925\) 1861.18 2.01209
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 493.610i − 0.531335i −0.964065 0.265667i \(-0.914408\pi\)
0.964065 0.265667i \(-0.0855923\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 3343.15i − 3.57556i
\(936\) 0 0
\(937\) −196.477 −0.209687 −0.104844 0.994489i \(-0.533434\pi\)
−0.104844 + 0.994489i \(0.533434\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 680.985i − 0.723682i −0.932240 0.361841i \(-0.882148\pi\)
0.932240 0.361841i \(-0.117852\pi\)
\(942\) 0 0
\(943\) −746.901 −0.792048
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 652.717i 0.689247i 0.938741 + 0.344623i \(0.111993\pi\)
−0.938741 + 0.344623i \(0.888007\pi\)
\(948\) 0 0
\(949\) −1431.50 −1.50843
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 153.185i 0.160740i 0.996765 + 0.0803701i \(0.0256102\pi\)
−0.996765 + 0.0803701i \(0.974390\pi\)
\(954\) 0 0
\(955\) 1407.58 1.47391
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −392.432 −0.408358
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 2511.63i − 2.60273i
\(966\) 0 0
\(967\) 1697.56 1.75550 0.877748 0.479122i \(-0.159045\pi\)
0.877748 + 0.479122i \(0.159045\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 508.067i − 0.523241i −0.965171 0.261620i \(-0.915743\pi\)
0.965171 0.261620i \(-0.0842568\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 630.303i − 0.645141i −0.946545 0.322571i \(-0.895453\pi\)
0.946545 0.322571i \(-0.104547\pi\)
\(978\) 0 0
\(979\) −1869.44 −1.90954
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 281.461i − 0.286328i −0.989699 0.143164i \(-0.954272\pi\)
0.989699 0.143164i \(-0.0457277\pi\)
\(984\) 0 0
\(985\) −1994.06 −2.02443
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1836.73i 1.85716i
\(990\) 0 0
\(991\) −241.021 −0.243210 −0.121605 0.992579i \(-0.538804\pi\)
−0.121605 + 0.992579i \(0.538804\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 206.738i − 0.207777i
\(996\) 0 0
\(997\) −1425.37 −1.42966 −0.714830 0.699299i \(-0.753496\pi\)
−0.714830 + 0.699299i \(0.753496\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.3.d.k.1961.1 8
3.2 odd 2 inner 3528.3.d.k.1961.8 8
7.2 even 3 504.3.cu.b.305.1 yes 16
7.4 even 3 504.3.cu.b.233.8 yes 16
7.6 odd 2 3528.3.d.f.1961.8 8
21.2 odd 6 504.3.cu.b.305.8 yes 16
21.11 odd 6 504.3.cu.b.233.1 16
21.20 even 2 3528.3.d.f.1961.1 8
28.11 odd 6 1008.3.dc.f.737.8 16
28.23 odd 6 1008.3.dc.f.305.1 16
84.11 even 6 1008.3.dc.f.737.1 16
84.23 even 6 1008.3.dc.f.305.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.cu.b.233.1 16 21.11 odd 6
504.3.cu.b.233.8 yes 16 7.4 even 3
504.3.cu.b.305.1 yes 16 7.2 even 3
504.3.cu.b.305.8 yes 16 21.2 odd 6
1008.3.dc.f.305.1 16 28.23 odd 6
1008.3.dc.f.305.8 16 84.23 even 6
1008.3.dc.f.737.1 16 84.11 even 6
1008.3.dc.f.737.8 16 28.11 odd 6
3528.3.d.f.1961.1 8 21.20 even 2
3528.3.d.f.1961.8 8 7.6 odd 2
3528.3.d.k.1961.1 8 1.1 even 1 trivial
3528.3.d.k.1961.8 8 3.2 odd 2 inner