L(s) = 1 | − 8.57i·5-s + 14.5i·11-s + 10.9·13-s − 26.8i·17-s − 7.97·19-s + 26.8i·23-s − 48.5·25-s + 35.7i·29-s + 23.8·31-s − 38.3·37-s + 27.8i·41-s + 68.4·43-s + 71.1i·47-s + 63.4i·53-s + 124.·55-s + ⋯ |
L(s) = 1 | − 1.71i·5-s + 1.32i·11-s + 0.838·13-s − 1.57i·17-s − 0.419·19-s + 1.16i·23-s − 1.94·25-s + 1.23i·29-s + 0.769·31-s − 1.03·37-s + 0.679i·41-s + 1.59·43-s + 1.51i·47-s + 1.19i·53-s + 2.26·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.647153009\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.647153009\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 8.57iT - 25T^{2} \) |
| 11 | \( 1 - 14.5iT - 121T^{2} \) |
| 13 | \( 1 - 10.9T + 169T^{2} \) |
| 17 | \( 1 + 26.8iT - 289T^{2} \) |
| 19 | \( 1 + 7.97T + 361T^{2} \) |
| 23 | \( 1 - 26.8iT - 529T^{2} \) |
| 29 | \( 1 - 35.7iT - 841T^{2} \) |
| 31 | \( 1 - 23.8T + 961T^{2} \) |
| 37 | \( 1 + 38.3T + 1.36e3T^{2} \) |
| 41 | \( 1 - 27.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 68.4T + 1.84e3T^{2} \) |
| 47 | \( 1 - 71.1iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 63.4iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 8.92iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 5.77T + 3.72e3T^{2} \) |
| 67 | \( 1 + 34.6T + 4.48e3T^{2} \) |
| 71 | \( 1 - 68.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 131.T + 5.32e3T^{2} \) |
| 79 | \( 1 - 30.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + 86.5iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 128. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 80.0T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.641431177719275865836404790189, −7.69885188128144124311148381702, −7.19933626755712422915333679461, −6.09567269437483485359785940415, −5.26484366604008587657120942032, −4.69740053996323436555981102340, −4.10091120245798068590240267722, −2.87127407300149821034916143218, −1.62668966083714909916055894058, −0.986034254357598902645277285895,
0.40018054732134283028943195084, 1.91509965730205200839309604302, 2.80321430035635409575897993449, 3.60129379999628763462268138133, 4.14658172112930527568180878887, 5.67161140660581432609482351009, 6.23643020228546288524533194550, 6.59868298699154225564931262293, 7.58496824860661638911084411628, 8.394914074433522080365085863449