Properties

Label 1008.3.dc.f.305.8
Level $1008$
Weight $3$
Character 1008.305
Analytic conductor $27.466$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(305,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.305"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.dc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38 x^{14} - 120 x^{13} + 1059 x^{12} - 3540 x^{11} + 20690 x^{10} - 73200 x^{9} + 269971 x^{8} + \cdots + 352836 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.8
Root \(1.55114 - 1.27243i\) of defining polynomial
Character \(\chi\) \(=\) 1008.305
Dual form 1008.3.dc.f.737.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.42523 - 4.28696i) q^{5} +(-1.80762 + 6.76258i) q^{7} +(-12.5934 - 7.27083i) q^{11} +10.9055 q^{13} +(-23.2217 - 13.4070i) q^{17} +(-3.98799 - 6.90741i) q^{19} +(23.2217 - 13.4070i) q^{23} +(24.2560 - 42.0126i) q^{25} -35.7359i q^{29} +(11.9223 - 20.6501i) q^{31} +(15.5689 + 57.9629i) q^{35} +(19.1827 + 33.2254i) q^{37} -27.8548i q^{41} -68.4986 q^{43} +(61.5951 - 35.5620i) q^{47} +(-42.4651 - 24.4483i) q^{49} +(54.9706 + 31.7373i) q^{53} -124.679 q^{55} +(7.72657 + 4.46094i) q^{59} +(2.88709 + 5.00059i) q^{61} +(80.9760 - 46.7515i) q^{65} +(-17.3360 + 30.0269i) q^{67} +68.6199i q^{71} +(65.6321 - 113.678i) q^{73} +(71.9336 - 72.0213i) q^{77} +(15.0321 + 26.0363i) q^{79} -86.5943i q^{83} -229.901 q^{85} +(-111.334 + 64.2790i) q^{89} +(-19.7130 + 73.7495i) q^{91} +(-59.2235 - 34.1927i) q^{95} +80.0096 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 40 q^{13} + 20 q^{19} - 4 q^{25} + 56 q^{31} + 76 q^{37} - 72 q^{43} - 48 q^{49} - 648 q^{55} - 72 q^{61} + 156 q^{67} + 124 q^{73} - 184 q^{79} - 864 q^{85} + 116 q^{91} + 1112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 7.42523 4.28696i 1.48505 0.857392i 0.485191 0.874408i \(-0.338750\pi\)
0.999855 + 0.0170169i \(0.00541692\pi\)
\(6\) 0 0
\(7\) −1.80762 + 6.76258i −0.258231 + 0.966083i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −12.5934 7.27083i −1.14486 0.660984i −0.197229 0.980357i \(-0.563194\pi\)
−0.947629 + 0.319373i \(0.896528\pi\)
\(12\) 0 0
\(13\) 10.9055 0.838886 0.419443 0.907782i \(-0.362225\pi\)
0.419443 + 0.907782i \(0.362225\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −23.2217 13.4070i −1.36598 0.788649i −0.375568 0.926795i \(-0.622552\pi\)
−0.990412 + 0.138146i \(0.955886\pi\)
\(18\) 0 0
\(19\) −3.98799 6.90741i −0.209894 0.363548i 0.741787 0.670636i \(-0.233979\pi\)
−0.951681 + 0.307088i \(0.900645\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 23.2217 13.4070i 1.00964 0.582914i 0.0985518 0.995132i \(-0.468579\pi\)
0.911085 + 0.412218i \(0.135246\pi\)
\(24\) 0 0
\(25\) 24.2560 42.0126i 0.970241 1.68051i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 35.7359i 1.23227i −0.787639 0.616137i \(-0.788697\pi\)
0.787639 0.616137i \(-0.211303\pi\)
\(30\) 0 0
\(31\) 11.9223 20.6501i 0.384591 0.666131i −0.607121 0.794609i \(-0.707676\pi\)
0.991712 + 0.128478i \(0.0410091\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 15.5689 + 57.9629i 0.444827 + 1.65608i
\(36\) 0 0
\(37\) 19.1827 + 33.2254i 0.518451 + 0.897984i 0.999770 + 0.0214386i \(0.00682464\pi\)
−0.481319 + 0.876546i \(0.659842\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 27.8548i 0.679386i −0.940536 0.339693i \(-0.889677\pi\)
0.940536 0.339693i \(-0.110323\pi\)
\(42\) 0 0
\(43\) −68.4986 −1.59299 −0.796496 0.604644i \(-0.793315\pi\)
−0.796496 + 0.604644i \(0.793315\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 61.5951 35.5620i 1.31053 0.756637i 0.328350 0.944556i \(-0.393508\pi\)
0.982185 + 0.187919i \(0.0601742\pi\)
\(48\) 0 0
\(49\) −42.4651 24.4483i −0.866634 0.498945i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 54.9706 + 31.7373i 1.03718 + 0.598817i 0.919034 0.394179i \(-0.128971\pi\)
0.118148 + 0.992996i \(0.462304\pi\)
\(54\) 0 0
\(55\) −124.679 −2.26689
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.72657 + 4.46094i 0.130959 + 0.0756091i 0.564048 0.825742i \(-0.309243\pi\)
−0.433089 + 0.901351i \(0.642577\pi\)
\(60\) 0 0
\(61\) 2.88709 + 5.00059i 0.0473294 + 0.0819770i 0.888720 0.458451i \(-0.151596\pi\)
−0.841390 + 0.540428i \(0.818262\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 80.9760 46.7515i 1.24578 0.719254i
\(66\) 0 0
\(67\) −17.3360 + 30.0269i −0.258746 + 0.448162i −0.965906 0.258892i \(-0.916643\pi\)
0.707160 + 0.707054i \(0.249976\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 68.6199i 0.966478i 0.875488 + 0.483239i \(0.160540\pi\)
−0.875488 + 0.483239i \(0.839460\pi\)
\(72\) 0 0
\(73\) 65.6321 113.678i 0.899069 1.55723i 0.0703831 0.997520i \(-0.477578\pi\)
0.828686 0.559714i \(-0.189089\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 71.9336 72.0213i 0.934203 0.935342i
\(78\) 0 0
\(79\) 15.0321 + 26.0363i 0.190280 + 0.329574i 0.945343 0.326078i \(-0.105727\pi\)
−0.755063 + 0.655652i \(0.772394\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 86.5943i 1.04331i −0.853158 0.521653i \(-0.825316\pi\)
0.853158 0.521653i \(-0.174684\pi\)
\(84\) 0 0
\(85\) −229.901 −2.70472
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −111.334 + 64.2790i −1.25095 + 0.722236i −0.971298 0.237866i \(-0.923552\pi\)
−0.279651 + 0.960102i \(0.590219\pi\)
\(90\) 0 0
\(91\) −19.7130 + 73.7495i −0.216626 + 0.810434i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −59.2235 34.1927i −0.623406 0.359923i
\(96\) 0 0
\(97\) 80.0096 0.824841 0.412421 0.910994i \(-0.364683\pi\)
0.412421 + 0.910994i \(0.364683\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −52.2199 30.1492i −0.517029 0.298507i 0.218689 0.975795i \(-0.429822\pi\)
−0.735718 + 0.677288i \(0.763155\pi\)
\(102\) 0 0
\(103\) −68.3079 118.313i −0.663184 1.14867i −0.979774 0.200106i \(-0.935871\pi\)
0.316591 0.948562i \(-0.397462\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 76.6949 44.2798i 0.716775 0.413830i −0.0967895 0.995305i \(-0.530857\pi\)
0.813565 + 0.581475i \(0.197524\pi\)
\(108\) 0 0
\(109\) −60.2202 + 104.304i −0.552479 + 0.956921i 0.445616 + 0.895224i \(0.352985\pi\)
−0.998095 + 0.0616973i \(0.980349\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.02151i 0.0532877i 0.999645 + 0.0266438i \(0.00848200\pi\)
−0.999645 + 0.0266438i \(0.991518\pi\)
\(114\) 0 0
\(115\) 114.951 199.101i 0.999572 1.73131i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 132.642 132.804i 1.11464 1.11600i
\(120\) 0 0
\(121\) 45.2298 + 78.3403i 0.373800 + 0.647440i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 201.590i 1.61272i
\(126\) 0 0
\(127\) 63.3782 0.499041 0.249521 0.968369i \(-0.419727\pi\)
0.249521 + 0.968369i \(0.419727\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 32.7469 18.9064i 0.249976 0.144324i −0.369777 0.929121i \(-0.620566\pi\)
0.619753 + 0.784797i \(0.287233\pi\)
\(132\) 0 0
\(133\) 53.9207 14.4832i 0.405419 0.108896i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 56.2178 + 32.4573i 0.410349 + 0.236915i 0.690940 0.722913i \(-0.257197\pi\)
−0.280591 + 0.959827i \(0.590530\pi\)
\(138\) 0 0
\(139\) 124.568 0.896171 0.448086 0.893991i \(-0.352106\pi\)
0.448086 + 0.893991i \(0.352106\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −137.338 79.2921i −0.960406 0.554490i
\(144\) 0 0
\(145\) −153.198 265.347i −1.05654 1.82998i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 135.169 78.0397i 0.907173 0.523757i 0.0276527 0.999618i \(-0.491197\pi\)
0.879521 + 0.475861i \(0.157863\pi\)
\(150\) 0 0
\(151\) 88.2247 152.810i 0.584270 1.01198i −0.410696 0.911772i \(-0.634714\pi\)
0.994966 0.100213i \(-0.0319523\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 204.442i 1.31898i
\(156\) 0 0
\(157\) −21.7282 + 37.6344i −0.138396 + 0.239710i −0.926890 0.375334i \(-0.877528\pi\)
0.788493 + 0.615043i \(0.210861\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 48.6903 + 181.273i 0.302424 + 1.12592i
\(162\) 0 0
\(163\) −78.1675 135.390i −0.479555 0.830614i 0.520170 0.854063i \(-0.325869\pi\)
−0.999725 + 0.0234489i \(0.992535\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 137.999i 0.826343i 0.910653 + 0.413172i \(0.135579\pi\)
−0.910653 + 0.413172i \(0.864421\pi\)
\(168\) 0 0
\(169\) −50.0696 −0.296270
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −53.5540 + 30.9194i −0.309560 + 0.178725i −0.646730 0.762719i \(-0.723864\pi\)
0.337169 + 0.941444i \(0.390531\pi\)
\(174\) 0 0
\(175\) 240.268 + 239.976i 1.37296 + 1.37129i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −168.258 97.1438i −0.939988 0.542703i −0.0500318 0.998748i \(-0.515932\pi\)
−0.889957 + 0.456045i \(0.849266\pi\)
\(180\) 0 0
\(181\) 23.8714 0.131886 0.0659430 0.997823i \(-0.478994\pi\)
0.0659430 + 0.997823i \(0.478994\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 284.872 + 164.471i 1.53985 + 0.889032i
\(186\) 0 0
\(187\) 194.960 + 337.681i 1.04257 + 1.80578i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 142.176 82.0853i 0.744376 0.429766i −0.0792821 0.996852i \(-0.525263\pi\)
0.823658 + 0.567086i \(0.191929\pi\)
\(192\) 0 0
\(193\) −146.469 + 253.693i −0.758909 + 1.31447i 0.184498 + 0.982833i \(0.440934\pi\)
−0.943407 + 0.331636i \(0.892399\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 232.573i 1.18058i 0.807193 + 0.590288i \(0.200986\pi\)
−0.807193 + 0.590288i \(0.799014\pi\)
\(198\) 0 0
\(199\) 12.0562 20.8820i 0.0605840 0.104935i −0.834143 0.551549i \(-0.814037\pi\)
0.894727 + 0.446614i \(0.147370\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 241.667 + 64.5968i 1.19048 + 0.318211i
\(204\) 0 0
\(205\) −119.412 206.828i −0.582500 1.00892i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 115.984i 0.554947i
\(210\) 0 0
\(211\) −393.303 −1.86400 −0.931998 0.362464i \(-0.881936\pi\)
−0.931998 + 0.362464i \(0.881936\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −508.618 + 293.651i −2.36567 + 1.36582i
\(216\) 0 0
\(217\) 118.097 + 117.953i 0.544225 + 0.543563i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −253.244 146.211i −1.14590 0.661587i
\(222\) 0 0
\(223\) −198.609 −0.890623 −0.445311 0.895376i \(-0.646907\pi\)
−0.445311 + 0.895376i \(0.646907\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 135.809 + 78.4096i 0.598280 + 0.345417i 0.768364 0.640013i \(-0.221071\pi\)
−0.170085 + 0.985429i \(0.554404\pi\)
\(228\) 0 0
\(229\) 10.2857 + 17.8154i 0.0449158 + 0.0777964i 0.887609 0.460597i \(-0.152365\pi\)
−0.842694 + 0.538394i \(0.819031\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 64.0512 36.9800i 0.274898 0.158712i −0.356214 0.934405i \(-0.615932\pi\)
0.631111 + 0.775692i \(0.282599\pi\)
\(234\) 0 0
\(235\) 304.905 528.111i 1.29747 2.24728i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 238.052i 0.996035i −0.867167 0.498017i \(-0.834062\pi\)
0.867167 0.498017i \(-0.165938\pi\)
\(240\) 0 0
\(241\) −100.701 + 174.420i −0.417847 + 0.723733i −0.995723 0.0923922i \(-0.970549\pi\)
0.577875 + 0.816125i \(0.303882\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −420.122 + 0.511700i −1.71478 + 0.00208857i
\(246\) 0 0
\(247\) −43.4912 75.3289i −0.176078 0.304975i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 260.896i 1.03942i 0.854341 + 0.519712i \(0.173961\pi\)
−0.854341 + 0.519712i \(0.826039\pi\)
\(252\) 0 0
\(253\) −389.921 −1.54119
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −125.244 + 72.3099i −0.487332 + 0.281361i −0.723467 0.690359i \(-0.757453\pi\)
0.236135 + 0.971720i \(0.424119\pi\)
\(258\) 0 0
\(259\) −259.365 + 69.6658i −1.00141 + 0.268980i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 138.511 + 79.9692i 0.526657 + 0.304065i 0.739654 0.672987i \(-0.234989\pi\)
−0.212997 + 0.977053i \(0.568323\pi\)
\(264\) 0 0
\(265\) 544.226 2.05368
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −103.688 59.8641i −0.385456 0.222543i 0.294733 0.955580i \(-0.404769\pi\)
−0.680189 + 0.733036i \(0.738103\pi\)
\(270\) 0 0
\(271\) 252.711 + 437.707i 0.932511 + 1.61516i 0.779013 + 0.627008i \(0.215721\pi\)
0.153498 + 0.988149i \(0.450946\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −610.933 + 352.722i −2.22158 + 1.28263i
\(276\) 0 0
\(277\) −145.701 + 252.361i −0.525995 + 0.911050i 0.473546 + 0.880769i \(0.342974\pi\)
−0.999541 + 0.0302812i \(0.990360\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 371.722i 1.32285i 0.750010 + 0.661427i \(0.230049\pi\)
−0.750010 + 0.661427i \(0.769951\pi\)
\(282\) 0 0
\(283\) −132.228 + 229.025i −0.467236 + 0.809277i −0.999299 0.0374281i \(-0.988083\pi\)
0.532063 + 0.846705i \(0.321417\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 188.371 + 50.3508i 0.656343 + 0.175438i
\(288\) 0 0
\(289\) 214.997 + 372.386i 0.743934 + 1.28853i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 559.211i 1.90857i −0.298897 0.954285i \(-0.596619\pi\)
0.298897 0.954285i \(-0.403381\pi\)
\(294\) 0 0
\(295\) 76.4954 0.259306
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 253.244 146.211i 0.846971 0.488999i
\(300\) 0 0
\(301\) 123.819 463.228i 0.411359 1.53896i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 42.8747 + 24.7537i 0.140573 + 0.0811597i
\(306\) 0 0
\(307\) −230.693 −0.751442 −0.375721 0.926733i \(-0.622605\pi\)
−0.375721 + 0.926733i \(0.622605\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 147.705 + 85.2775i 0.474936 + 0.274204i 0.718304 0.695730i \(-0.244919\pi\)
−0.243368 + 0.969934i \(0.578252\pi\)
\(312\) 0 0
\(313\) 131.354 + 227.512i 0.419662 + 0.726875i 0.995905 0.0904028i \(-0.0288154\pi\)
−0.576244 + 0.817278i \(0.695482\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −176.831 + 102.094i −0.557827 + 0.322062i −0.752273 0.658852i \(-0.771043\pi\)
0.194446 + 0.980913i \(0.437709\pi\)
\(318\) 0 0
\(319\) −259.830 + 450.038i −0.814513 + 1.41078i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 213.869i 0.662132i
\(324\) 0 0
\(325\) 264.524 458.170i 0.813921 1.40975i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 129.150 + 480.824i 0.392554 + 1.46147i
\(330\) 0 0
\(331\) 81.7030 + 141.514i 0.246837 + 0.427534i 0.962646 0.270761i \(-0.0872755\pi\)
−0.715810 + 0.698296i \(0.753942\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 297.275i 0.887388i
\(336\) 0 0
\(337\) 588.142 1.74523 0.872614 0.488411i \(-0.162423\pi\)
0.872614 + 0.488411i \(0.162423\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −300.286 + 173.370i −0.880605 + 0.508417i
\(342\) 0 0
\(343\) 242.094 242.980i 0.705814 0.708397i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −480.652 277.505i −1.38516 0.799725i −0.392399 0.919795i \(-0.628355\pi\)
−0.992765 + 0.120070i \(0.961688\pi\)
\(348\) 0 0
\(349\) 248.425 0.711819 0.355910 0.934520i \(-0.384171\pi\)
0.355910 + 0.934520i \(0.384171\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 502.632 + 290.195i 1.42389 + 0.822081i 0.996628 0.0820486i \(-0.0261463\pi\)
0.427258 + 0.904130i \(0.359480\pi\)
\(354\) 0 0
\(355\) 294.171 + 509.519i 0.828650 + 1.43526i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −167.450 + 96.6772i −0.466434 + 0.269296i −0.714746 0.699384i \(-0.753458\pi\)
0.248312 + 0.968680i \(0.420124\pi\)
\(360\) 0 0
\(361\) 148.692 257.542i 0.411889 0.713412i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1125.45i 3.08342i
\(366\) 0 0
\(367\) 166.464 288.325i 0.453582 0.785626i −0.545024 0.838421i \(-0.683479\pi\)
0.998605 + 0.0527943i \(0.0168128\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −313.992 + 314.374i −0.846339 + 0.847371i
\(372\) 0 0
\(373\) 226.498 + 392.306i 0.607233 + 1.05176i 0.991694 + 0.128617i \(0.0410539\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 389.719i 1.03374i
\(378\) 0 0
\(379\) 598.216 1.57841 0.789203 0.614133i \(-0.210494\pi\)
0.789203 + 0.614133i \(0.210494\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −251.702 + 145.320i −0.657185 + 0.379426i −0.791204 0.611553i \(-0.790545\pi\)
0.134019 + 0.990979i \(0.457212\pi\)
\(384\) 0 0
\(385\) 225.371 843.151i 0.585380 2.19000i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −80.6352 46.5548i −0.207289 0.119678i 0.392762 0.919640i \(-0.371520\pi\)
−0.600051 + 0.799962i \(0.704853\pi\)
\(390\) 0 0
\(391\) −718.994 −1.83886
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 223.233 + 128.884i 0.565148 + 0.326288i
\(396\) 0 0
\(397\) 150.183 + 260.124i 0.378294 + 0.655225i 0.990814 0.135230i \(-0.0431774\pi\)
−0.612520 + 0.790455i \(0.709844\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −191.329 + 110.464i −0.477130 + 0.275471i −0.719220 0.694783i \(-0.755501\pi\)
0.242089 + 0.970254i \(0.422167\pi\)
\(402\) 0 0
\(403\) 130.019 225.200i 0.322628 0.558809i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 557.896i 1.37075i
\(408\) 0 0
\(409\) −70.8825 + 122.772i −0.173307 + 0.300176i −0.939574 0.342346i \(-0.888779\pi\)
0.766267 + 0.642522i \(0.222112\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −44.1341 + 44.1879i −0.106862 + 0.106993i
\(414\) 0 0
\(415\) −371.226 642.983i −0.894521 1.54936i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 455.434i 1.08695i 0.839424 + 0.543477i \(0.182893\pi\)
−0.839424 + 0.543477i \(0.817107\pi\)
\(420\) 0 0
\(421\) 123.182 0.292593 0.146296 0.989241i \(-0.453265\pi\)
0.146296 + 0.989241i \(0.453265\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1126.53 + 650.402i −2.65066 + 1.53036i
\(426\) 0 0
\(427\) −39.0357 + 10.4851i −0.0914185 + 0.0245552i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 90.5387 + 52.2726i 0.210067 + 0.121282i 0.601342 0.798991i \(-0.294633\pi\)
−0.391276 + 0.920274i \(0.627966\pi\)
\(432\) 0 0
\(433\) 249.952 0.577256 0.288628 0.957441i \(-0.406801\pi\)
0.288628 + 0.957441i \(0.406801\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −185.216 106.934i −0.423834 0.244701i
\(438\) 0 0
\(439\) −181.672 314.666i −0.413832 0.716779i 0.581473 0.813566i \(-0.302477\pi\)
−0.995305 + 0.0967872i \(0.969143\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 627.067 362.037i 1.41550 0.817240i 0.419602 0.907708i \(-0.362170\pi\)
0.995899 + 0.0904680i \(0.0288363\pi\)
\(444\) 0 0
\(445\) −551.122 + 954.572i −1.23848 + 2.14511i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 498.027i 1.10919i −0.832120 0.554596i \(-0.812873\pi\)
0.832120 0.554596i \(-0.187127\pi\)
\(450\) 0 0
\(451\) −202.528 + 350.788i −0.449063 + 0.777800i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 169.788 + 632.116i 0.373159 + 1.38927i
\(456\) 0 0
\(457\) −318.373 551.437i −0.696658 1.20665i −0.969619 0.244621i \(-0.921336\pi\)
0.272961 0.962025i \(-0.411997\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 597.813i 1.29678i 0.761310 + 0.648388i \(0.224556\pi\)
−0.761310 + 0.648388i \(0.775444\pi\)
\(462\) 0 0
\(463\) 710.671 1.53493 0.767463 0.641093i \(-0.221519\pi\)
0.767463 + 0.641093i \(0.221519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 180.557 104.245i 0.386632 0.223222i −0.294068 0.955784i \(-0.595009\pi\)
0.680700 + 0.732563i \(0.261676\pi\)
\(468\) 0 0
\(469\) −171.722 171.513i −0.366145 0.365700i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 862.634 + 498.042i 1.82375 + 1.05294i
\(474\) 0 0
\(475\) −386.931 −0.814592
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 270.160 + 155.977i 0.564008 + 0.325630i 0.754753 0.656009i \(-0.227757\pi\)
−0.190745 + 0.981640i \(0.561090\pi\)
\(480\) 0 0
\(481\) 209.197 + 362.341i 0.434922 + 0.753307i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 594.090 342.998i 1.22493 0.707212i
\(486\) 0 0
\(487\) −477.588 + 827.206i −0.980673 + 1.69858i −0.320895 + 0.947115i \(0.603984\pi\)
−0.659778 + 0.751461i \(0.729350\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 131.161i 0.267131i −0.991040 0.133565i \(-0.957357\pi\)
0.991040 0.133565i \(-0.0426426\pi\)
\(492\) 0 0
\(493\) −479.113 + 829.848i −0.971831 + 1.68326i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −464.048 124.038i −0.933698 0.249574i
\(498\) 0 0
\(499\) 174.152 + 301.641i 0.349003 + 0.604491i 0.986073 0.166315i \(-0.0531870\pi\)
−0.637070 + 0.770806i \(0.719854\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 602.739i 1.19829i −0.800641 0.599144i \(-0.795508\pi\)
0.800641 0.599144i \(-0.204492\pi\)
\(504\) 0 0
\(505\) −516.993 −1.02375
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.2012 + 7.04438i −0.0239710 + 0.0138397i −0.511938 0.859023i \(-0.671072\pi\)
0.487967 + 0.872862i \(0.337739\pi\)
\(510\) 0 0
\(511\) 650.120 + 649.328i 1.27225 + 1.27070i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1014.40 585.666i −1.96972 1.13722i
\(516\) 0 0
\(517\) −1034.26 −2.00050
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 41.4161 + 23.9116i 0.0794934 + 0.0458956i 0.539220 0.842165i \(-0.318719\pi\)
−0.459726 + 0.888061i \(0.652053\pi\)
\(522\) 0 0
\(523\) 192.487 + 333.397i 0.368044 + 0.637471i 0.989260 0.146169i \(-0.0466943\pi\)
−0.621216 + 0.783640i \(0.713361\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −553.712 + 319.686i −1.05069 + 0.606615i
\(528\) 0 0
\(529\) 94.9969 164.539i 0.179578 0.311039i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 303.771i 0.569927i
\(534\) 0 0
\(535\) 379.652 657.576i 0.709629 1.22911i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 357.022 + 616.644i 0.662378 + 1.14405i
\(540\) 0 0
\(541\) −200.591 347.435i −0.370779 0.642208i 0.618907 0.785465i \(-0.287576\pi\)
−0.989686 + 0.143256i \(0.954243\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1032.65i 1.89476i
\(546\) 0 0
\(547\) −826.934 −1.51176 −0.755881 0.654709i \(-0.772791\pi\)
−0.755881 + 0.654709i \(0.772791\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −246.843 + 142.515i −0.447990 + 0.258647i
\(552\) 0 0
\(553\) −203.245 + 54.5921i −0.367532 + 0.0987198i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 620.464 + 358.225i 1.11394 + 0.643133i 0.939847 0.341596i \(-0.110967\pi\)
0.174093 + 0.984729i \(0.444301\pi\)
\(558\) 0 0
\(559\) −747.014 −1.33634
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −215.447 124.388i −0.382676 0.220938i 0.296306 0.955093i \(-0.404245\pi\)
−0.678982 + 0.734155i \(0.737579\pi\)
\(564\) 0 0
\(565\) 25.8140 + 44.7111i 0.0456884 + 0.0791346i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 47.1007 27.1936i 0.0827780 0.0477919i −0.458040 0.888932i \(-0.651448\pi\)
0.540818 + 0.841140i \(0.318115\pi\)
\(570\) 0 0
\(571\) 210.364 364.362i 0.368414 0.638111i −0.620904 0.783887i \(-0.713234\pi\)
0.989318 + 0.145775i \(0.0465676\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1300.80i 2.26227i
\(576\) 0 0
\(577\) 356.399 617.301i 0.617676 1.06985i −0.372232 0.928140i \(-0.621408\pi\)
0.989909 0.141707i \(-0.0452591\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 585.601 + 156.529i 1.00792 + 0.269413i
\(582\) 0 0
\(583\) −461.513 799.363i −0.791617 1.37112i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 35.9882i 0.0613088i 0.999530 + 0.0306544i \(0.00975912\pi\)
−0.999530 + 0.0306544i \(0.990241\pi\)
\(588\) 0 0
\(589\) −190.185 −0.322894
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 355.876 205.465i 0.600128 0.346484i −0.168964 0.985622i \(-0.554042\pi\)
0.769092 + 0.639138i \(0.220709\pi\)
\(594\) 0 0
\(595\) 415.573 1554.73i 0.698443 2.61299i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 432.401 + 249.647i 0.721871 + 0.416773i 0.815441 0.578840i \(-0.196494\pi\)
−0.0935698 + 0.995613i \(0.529828\pi\)
\(600\) 0 0
\(601\) 70.6569 0.117566 0.0587828 0.998271i \(-0.481278\pi\)
0.0587828 + 0.998271i \(0.481278\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 671.683 + 387.796i 1.11022 + 0.640986i
\(606\) 0 0
\(607\) 415.264 + 719.258i 0.684125 + 1.18494i 0.973711 + 0.227788i \(0.0731492\pi\)
−0.289586 + 0.957152i \(0.593517\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 671.727 387.822i 1.09939 0.634733i
\(612\) 0 0
\(613\) 113.459 196.516i 0.185088 0.320582i −0.758518 0.651652i \(-0.774076\pi\)
0.943606 + 0.331070i \(0.107410\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 418.262i 0.677895i −0.940805 0.338948i \(-0.889929\pi\)
0.940805 0.338948i \(-0.110071\pi\)
\(618\) 0 0
\(619\) 256.600 444.445i 0.414540 0.718005i −0.580840 0.814018i \(-0.697276\pi\)
0.995380 + 0.0960133i \(0.0306091\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −233.442 869.100i −0.374706 1.39502i
\(624\) 0 0
\(625\) −257.808 446.537i −0.412493 0.714458i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1028.73i 1.63550i
\(630\) 0 0
\(631\) 976.542 1.54761 0.773805 0.633424i \(-0.218351\pi\)
0.773805 + 0.633424i \(0.218351\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 470.598 271.700i 0.741099 0.427874i
\(636\) 0 0
\(637\) −463.104 266.621i −0.727007 0.418558i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −824.693 476.137i −1.28657 0.742803i −0.308532 0.951214i \(-0.599838\pi\)
−0.978041 + 0.208411i \(0.933171\pi\)
\(642\) 0 0
\(643\) 910.267 1.41566 0.707828 0.706385i \(-0.249675\pi\)
0.707828 + 0.706385i \(0.249675\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 671.283 + 387.565i 1.03753 + 0.599019i 0.919133 0.393947i \(-0.128891\pi\)
0.118398 + 0.992966i \(0.462224\pi\)
\(648\) 0 0
\(649\) −64.8694 112.357i −0.0999528 0.173123i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −200.155 + 115.559i −0.306516 + 0.176967i −0.645366 0.763873i \(-0.723295\pi\)
0.338851 + 0.940840i \(0.389962\pi\)
\(654\) 0 0
\(655\) 162.102 280.769i 0.247484 0.428655i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 731.379i 1.10983i −0.831907 0.554915i \(-0.812751\pi\)
0.831907 0.554915i \(-0.187249\pi\)
\(660\) 0 0
\(661\) −313.850 + 543.605i −0.474811 + 0.822397i −0.999584 0.0288451i \(-0.990817\pi\)
0.524773 + 0.851243i \(0.324150\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 338.284 338.697i 0.508698 0.509318i
\(666\) 0 0
\(667\) −479.113 829.848i −0.718310 1.24415i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 83.9662i 0.125136i
\(672\) 0 0
\(673\) −536.968 −0.797872 −0.398936 0.916979i \(-0.630620\pi\)
−0.398936 + 0.916979i \(0.630620\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −360.666 + 208.231i −0.532742 + 0.307579i −0.742132 0.670254i \(-0.766185\pi\)
0.209391 + 0.977832i \(0.432852\pi\)
\(678\) 0 0
\(679\) −144.627 + 541.072i −0.212999 + 0.796865i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −725.980 419.145i −1.06293 0.613682i −0.136688 0.990614i \(-0.543646\pi\)
−0.926241 + 0.376932i \(0.876979\pi\)
\(684\) 0 0
\(685\) 556.573 0.812515
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 599.483 + 346.112i 0.870077 + 0.502339i
\(690\) 0 0
\(691\) 206.175 + 357.106i 0.298372 + 0.516796i 0.975764 0.218827i \(-0.0702230\pi\)
−0.677391 + 0.735623i \(0.736890\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 924.945 534.017i 1.33086 0.768370i
\(696\) 0 0
\(697\) −373.450 + 646.835i −0.535797 + 0.928027i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 19.5457i 0.0278825i −0.999903 0.0139413i \(-0.995562\pi\)
0.999903 0.0139413i \(-0.00443779\pi\)
\(702\) 0 0
\(703\) 153.001 265.006i 0.217640 0.376964i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 298.280 298.643i 0.421895 0.422409i
\(708\) 0 0
\(709\) 60.3562 + 104.540i 0.0851287 + 0.147447i 0.905446 0.424461i \(-0.139537\pi\)
−0.820317 + 0.571909i \(0.806203\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 639.372i 0.896735i
\(714\) 0 0
\(715\) −1359.69 −1.90166
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −765.605 + 442.022i −1.06482 + 0.614773i −0.926761 0.375651i \(-0.877419\pi\)
−0.138057 + 0.990424i \(0.544086\pi\)
\(720\) 0 0
\(721\) 923.574 248.074i 1.28096 0.344069i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1501.36 866.811i −2.07084 1.19560i
\(726\) 0 0
\(727\) 1322.62 1.81929 0.909643 0.415391i \(-0.136355\pi\)
0.909643 + 0.415391i \(0.136355\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1590.65 + 918.363i 2.17599 + 1.25631i
\(732\) 0 0
\(733\) 162.392 + 281.271i 0.221544 + 0.383726i 0.955277 0.295712i \(-0.0955570\pi\)
−0.733733 + 0.679438i \(0.762224\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 436.640 252.094i 0.592456 0.342055i
\(738\) 0 0
\(739\) −82.2495 + 142.460i −0.111298 + 0.192774i −0.916294 0.400506i \(-0.868834\pi\)
0.804996 + 0.593281i \(0.202168\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 247.995i 0.333775i 0.985976 + 0.166888i \(0.0533717\pi\)
−0.985976 + 0.166888i \(0.946628\pi\)
\(744\) 0 0
\(745\) 669.106 1158.93i 0.898129 1.55561i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 160.811 + 598.697i 0.214701 + 0.799328i
\(750\) 0 0
\(751\) 312.140 + 540.642i 0.415632 + 0.719896i 0.995495 0.0948184i \(-0.0302270\pi\)
−0.579862 + 0.814714i \(0.696894\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1512.86i 2.00379i
\(756\) 0 0
\(757\) −1091.35 −1.44167 −0.720836 0.693105i \(-0.756242\pi\)
−0.720836 + 0.693105i \(0.756242\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 418.488 241.614i 0.549919 0.317496i −0.199171 0.979965i \(-0.563825\pi\)
0.749089 + 0.662469i \(0.230491\pi\)
\(762\) 0 0
\(763\) −596.512 595.786i −0.781799 0.780847i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 84.2623 + 48.6489i 0.109860 + 0.0634274i
\(768\) 0 0
\(769\) −1025.78 −1.33391 −0.666957 0.745096i \(-0.732404\pi\)
−0.666957 + 0.745096i \(0.732404\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1032.07 + 595.867i 1.33515 + 0.770851i 0.986084 0.166247i \(-0.0531649\pi\)
0.349068 + 0.937097i \(0.386498\pi\)
\(774\) 0 0
\(775\) −578.376 1001.78i −0.746292 1.29262i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −192.405 + 111.085i −0.246989 + 0.142599i
\(780\) 0 0
\(781\) 498.924 864.161i 0.638827 1.10648i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 372.592i 0.474640i
\(786\) 0 0
\(787\) −705.626 + 1222.18i −0.896602 + 1.55296i −0.0647927 + 0.997899i \(0.520639\pi\)
−0.831809 + 0.555062i \(0.812695\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −40.7209 10.8846i −0.0514803 0.0137605i
\(792\) 0 0
\(793\) 31.4853 + 54.5341i 0.0397040 + 0.0687693i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1495.22i 1.87607i −0.346547 0.938033i \(-0.612646\pi\)
0.346547 0.938033i \(-0.387354\pi\)
\(798\) 0 0
\(799\) −1907.12 −2.38688
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1653.07 + 954.398i −2.05861 + 1.18854i
\(804\) 0 0
\(805\) 1138.65 + 1137.26i 1.41447 + 1.41275i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −539.657 311.571i −0.667067 0.385131i 0.127897 0.991787i \(-0.459177\pi\)
−0.794964 + 0.606656i \(0.792511\pi\)
\(810\) 0 0
\(811\) 215.591 0.265833 0.132917 0.991127i \(-0.457566\pi\)
0.132917 + 0.991127i \(0.457566\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1160.82 670.201i −1.42432 0.822333i
\(816\) 0 0
\(817\) 273.172 + 473.148i 0.334360 + 0.579129i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1155.79 667.294i 1.40778 0.812781i 0.412605 0.910910i \(-0.364619\pi\)
0.995174 + 0.0981286i \(0.0312857\pi\)
\(822\) 0 0
\(823\) 84.4535 146.278i 0.102617 0.177737i −0.810145 0.586229i \(-0.800612\pi\)
0.912762 + 0.408492i \(0.133945\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 336.132i 0.406447i 0.979132 + 0.203224i \(0.0651419\pi\)
−0.979132 + 0.203224i \(0.934858\pi\)
\(828\) 0 0
\(829\) 625.046 1082.61i 0.753976 1.30593i −0.191905 0.981413i \(-0.561467\pi\)
0.945882 0.324512i \(-0.105200\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 658.330 + 1137.06i 0.790312 + 1.36502i
\(834\) 0 0
\(835\) 591.597 + 1024.68i 0.708500 + 1.22716i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 173.924i 0.207299i −0.994614 0.103649i \(-0.966948\pi\)
0.994614 0.103649i \(-0.0330520\pi\)
\(840\) 0 0
\(841\) −436.057 −0.518498
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −371.778 + 214.646i −0.439974 + 0.254019i
\(846\) 0 0
\(847\) −611.541 + 164.261i −0.722008 + 0.193933i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 890.908 + 514.366i 1.04690 + 0.604426i
\(852\) 0 0
\(853\) −74.2360 −0.0870293 −0.0435147 0.999053i \(-0.513856\pi\)
−0.0435147 + 0.999053i \(0.513856\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −769.828 444.460i −0.898282 0.518624i −0.0216398 0.999766i \(-0.506889\pi\)
−0.876642 + 0.481142i \(0.840222\pi\)
\(858\) 0 0
\(859\) −31.0197 53.7276i −0.0361114 0.0625467i 0.847405 0.530947i \(-0.178164\pi\)
−0.883516 + 0.468401i \(0.844830\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −567.763 + 327.798i −0.657894 + 0.379835i −0.791474 0.611203i \(-0.790686\pi\)
0.133580 + 0.991038i \(0.457353\pi\)
\(864\) 0 0
\(865\) −265.100 + 459.167i −0.306474 + 0.530829i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 437.183i 0.503087i
\(870\) 0 0
\(871\) −189.058 + 327.458i −0.217059 + 0.375957i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1363.27 + 364.397i 1.55802 + 0.416454i
\(876\) 0 0
\(877\) −633.622 1097.46i −0.722488 1.25139i −0.960000 0.280001i \(-0.909665\pi\)
0.237512 0.971385i \(-0.423668\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.20047i 0.00703800i −0.999994 0.00351900i \(-0.998880\pi\)
0.999994 0.00351900i \(-0.00112013\pi\)
\(882\) 0 0
\(883\) −1122.22 −1.27092 −0.635459 0.772135i \(-0.719189\pi\)
−0.635459 + 0.772135i \(0.719189\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 416.132 240.254i 0.469146 0.270861i −0.246736 0.969083i \(-0.579358\pi\)
0.715882 + 0.698221i \(0.246025\pi\)
\(888\) 0 0
\(889\) −114.563 + 428.601i −0.128868 + 0.482115i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −491.282 283.642i −0.550148 0.317628i
\(894\) 0 0
\(895\) −1665.80 −1.86123
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −737.950 426.056i −0.820856 0.473922i
\(900\) 0 0
\(901\) −851.006 1473.99i −0.944513 1.63594i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 177.250 102.336i 0.195857 0.113078i
\(906\) 0 0
\(907\) −85.2244 + 147.613i −0.0939630 + 0.162749i −0.909175 0.416414i \(-0.863287\pi\)
0.815212 + 0.579162i \(0.196620\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1180.21i 1.29552i 0.761847 + 0.647758i \(0.224293\pi\)
−0.761847 + 0.647758i \(0.775707\pi\)
\(912\) 0 0
\(913\) −629.612 + 1090.52i −0.689608 + 1.19444i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 68.6625 + 255.629i 0.0748773 + 0.278767i
\(918\) 0 0
\(919\) 267.840 + 463.913i 0.291448 + 0.504802i 0.974152 0.225892i \(-0.0725297\pi\)
−0.682705 + 0.730695i \(0.739196\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 748.336i 0.810765i
\(924\) 0 0
\(925\) 1861.18 2.01209
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 427.479 246.805i 0.460149 0.265667i −0.251958 0.967738i \(-0.581074\pi\)
0.712107 + 0.702071i \(0.247741\pi\)
\(930\) 0 0
\(931\) 0.476015 + 390.823i 0.000511294 + 0.419788i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2895.25 + 1671.57i 3.09652 + 1.78778i
\(936\) 0 0
\(937\) −196.477 −0.209687 −0.104844 0.994489i \(-0.533434\pi\)
−0.104844 + 0.994489i \(0.533434\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −589.750 340.492i −0.626727 0.361841i 0.152756 0.988264i \(-0.451185\pi\)
−0.779483 + 0.626423i \(0.784518\pi\)
\(942\) 0 0
\(943\) −373.450 646.835i −0.396024 0.685933i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 565.269 326.358i 0.596905 0.344623i −0.170918 0.985285i \(-0.554673\pi\)
0.767823 + 0.640662i \(0.221340\pi\)
\(948\) 0 0
\(949\) 715.752 1239.72i 0.754217 1.30634i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 153.185i 0.160740i −0.996765 0.0803701i \(-0.974390\pi\)
0.996765 0.0803701i \(-0.0256102\pi\)
\(954\) 0 0
\(955\) 703.792 1219.00i 0.736955 1.27644i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −321.116 + 321.507i −0.334844 + 0.335252i
\(960\) 0 0
\(961\) 196.216 + 339.856i 0.204179 + 0.353649i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2511.63i 2.60273i
\(966\) 0 0
\(967\) −1697.56 −1.75550 −0.877748 0.479122i \(-0.840955\pi\)
−0.877748 + 0.479122i \(0.840955\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −439.999 + 254.033i −0.453140 + 0.261620i −0.709155 0.705052i \(-0.750924\pi\)
0.256016 + 0.966673i \(0.417590\pi\)
\(972\) 0 0
\(973\) −225.171 + 842.400i −0.231419 + 0.865776i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −545.858 315.151i −0.558709 0.322571i 0.193918 0.981018i \(-0.437880\pi\)
−0.752627 + 0.658447i \(0.771214\pi\)
\(978\) 0 0
\(979\) 1869.44 1.90954
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 243.752 + 140.730i 0.247968 + 0.143164i 0.618833 0.785522i \(-0.287606\pi\)
−0.370866 + 0.928687i \(0.620939\pi\)
\(984\) 0 0
\(985\) 997.032 + 1726.91i 1.01222 + 1.75321i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1590.65 + 918.363i −1.60834 + 0.928578i
\(990\) 0 0
\(991\) −120.510 + 208.730i −0.121605 + 0.210626i −0.920401 0.390976i \(-0.872137\pi\)
0.798796 + 0.601602i \(0.205471\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 206.738i 0.207777i
\(996\) 0 0
\(997\) 712.685 1234.41i 0.714830 1.23812i −0.248196 0.968710i \(-0.579838\pi\)
0.963025 0.269411i \(-0.0868291\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.dc.f.305.8 16
3.2 odd 2 inner 1008.3.dc.f.305.1 16
4.3 odd 2 504.3.cu.b.305.8 yes 16
7.2 even 3 inner 1008.3.dc.f.737.1 16
12.11 even 2 504.3.cu.b.305.1 yes 16
21.2 odd 6 inner 1008.3.dc.f.737.8 16
28.3 even 6 3528.3.d.f.1961.1 8
28.11 odd 6 3528.3.d.k.1961.8 8
28.23 odd 6 504.3.cu.b.233.1 16
84.11 even 6 3528.3.d.k.1961.1 8
84.23 even 6 504.3.cu.b.233.8 yes 16
84.59 odd 6 3528.3.d.f.1961.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.cu.b.233.1 16 28.23 odd 6
504.3.cu.b.233.8 yes 16 84.23 even 6
504.3.cu.b.305.1 yes 16 12.11 even 2
504.3.cu.b.305.8 yes 16 4.3 odd 2
1008.3.dc.f.305.1 16 3.2 odd 2 inner
1008.3.dc.f.305.8 16 1.1 even 1 trivial
1008.3.dc.f.737.1 16 7.2 even 3 inner
1008.3.dc.f.737.8 16 21.2 odd 6 inner
3528.3.d.f.1961.1 8 28.3 even 6
3528.3.d.f.1961.8 8 84.59 odd 6
3528.3.d.k.1961.1 8 84.11 even 6
3528.3.d.k.1961.8 8 28.11 odd 6