Properties

Label 1008.3.dc
Level $1008$
Weight $3$
Character orbit 1008.dc
Rep. character $\chi_{1008}(305,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $64$
Newform subspaces $7$
Sturm bound $576$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.dc (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 7 \)
Sturm bound: \(576\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1008, [\chi])\).

Total New Old
Modular forms 816 64 752
Cusp forms 720 64 656
Eisenstein series 96 0 96

Trace form

\( 64 q + 16 q^{7} + 32 q^{19} + 144 q^{25} - 16 q^{31} - 64 q^{43} - 96 q^{49} - 96 q^{67} + 144 q^{73} - 48 q^{79} - 64 q^{85} + 416 q^{91} + 416 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1008, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1008.3.dc.a 1008.dc 21.h $4$ $27.466$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 126.3.s.b \(0\) \(0\) \(0\) \(-26\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{5}+(-5-3\beta _{2})q^{7}+(5\beta _{1}-5\beta _{3})q^{11}+\cdots\)
1008.3.dc.b 1008.dc 21.h $4$ $27.466$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 126.3.s.a \(0\) \(0\) \(0\) \(14\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{5}+(7-7\beta _{2})q^{7}+(-3\beta _{1}+3\beta _{3})q^{11}+\cdots\)
1008.3.dc.c 1008.dc 21.h $4$ $27.466$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 252.3.bk.a \(0\) \(0\) \(0\) \(14\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{5}+(7-7\beta _{2})q^{7}+(5\beta _{1}-5\beta _{3})q^{11}+\cdots\)
1008.3.dc.d 1008.dc 21.h $8$ $27.466$ 8.0.\(\cdots\).1 None 252.3.bk.b \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{3}-\beta _{5})q^{5}+(-2-\beta _{2}-\beta _{7})q^{7}+\cdots\)
1008.3.dc.e 1008.dc 21.h $12$ $27.466$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 63.3.q.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{11}q^{5}+(2-\beta _{2}-\beta _{3}+4\beta _{8})q^{7}+\cdots\)
1008.3.dc.f 1008.dc 21.h $16$ $27.466$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 504.3.cu.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{6}q^{5}+(1+\beta _{4}+\beta _{9}+\beta _{11})q^{7}+\cdots\)
1008.3.dc.g 1008.dc 21.h $16$ $27.466$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 504.3.cu.a \(0\) \(0\) \(0\) \(24\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{4}+\beta _{6})q^{5}+(2-\beta _{1}-\beta _{3}-\beta _{15})q^{7}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(1008, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1008, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)