Properties

Label 3510.2.j.i.1171.5
Level $3510$
Weight $2$
Character 3510.1171
Analytic conductor $28.027$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3510,2,Mod(1171,3510)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3510.1171"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3510, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3510 = 2 \cdot 3^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3510.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-5,0,-5,5,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.0274911095\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.8320271788800.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - 9x^{6} + 27x^{5} - 27x^{4} + 27x^{2} - 81x + 243 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 1170)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1171.5
Root \(1.65783 - 0.501603i\) of defining polynomial
Character \(\chi\) \(=\) 3510.1171
Dual form 3510.2.j.i.2341.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{5} +(1.14433 + 1.98204i) q^{7} +1.00000 q^{8} -1.00000 q^{10} +(-1.04439 - 1.80893i) q^{11} +(0.500000 - 0.866025i) q^{13} +(1.14433 - 1.98204i) q^{14} +(-0.500000 - 0.866025i) q^{16} +1.34265 q^{17} -3.11577 q^{19} +(0.500000 + 0.866025i) q^{20} +(-1.04439 + 1.80893i) q^{22} +(-0.191931 + 0.332435i) q^{23} +(-0.500000 - 0.866025i) q^{25} -1.00000 q^{26} -2.28866 q^{28} +(-1.83626 - 3.18050i) q^{29} +(2.17417 - 3.76578i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-0.671326 - 1.16277i) q^{34} +2.28866 q^{35} -2.56472 q^{37} +(1.55789 + 2.69834i) q^{38} +(0.500000 - 0.866025i) q^{40} +(-0.565838 + 0.980061i) q^{41} +(-2.12657 - 3.68333i) q^{43} +2.08878 q^{44} +0.383863 q^{46} +(-1.67096 - 2.89419i) q^{47} +(0.881015 - 1.52596i) q^{49} +(-0.500000 + 0.866025i) q^{50} +(0.500000 + 0.866025i) q^{52} -2.05399 q^{53} -2.08878 q^{55} +(1.14433 + 1.98204i) q^{56} +(-1.83626 + 3.18050i) q^{58} +(4.11577 - 7.12873i) q^{59} +(2.84691 + 4.93100i) q^{61} -4.34835 q^{62} +1.00000 q^{64} +(-0.500000 - 0.866025i) q^{65} +(-0.770424 + 1.33441i) q^{67} +(-0.671326 + 1.16277i) q^{68} +(-1.14433 - 1.98204i) q^{70} +3.86359 q^{71} +2.98321 q^{73} +(1.28236 + 2.22111i) q^{74} +(1.55789 - 2.69834i) q^{76} +(2.39025 - 4.14004i) q^{77} +(-4.95999 - 8.59095i) q^{79} -1.00000 q^{80} +1.13168 q^{82} +(1.39736 + 2.42030i) q^{83} +(0.671326 - 1.16277i) q^{85} +(-2.12657 + 3.68333i) q^{86} +(-1.04439 - 1.80893i) q^{88} -3.50984 q^{89} +2.28866 q^{91} +(-0.191931 - 0.332435i) q^{92} +(-1.67096 + 2.89419i) q^{94} +(-1.55789 + 2.69834i) q^{95} +(2.28738 + 3.96185i) q^{97} -1.76203 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 5 q^{2} - 5 q^{4} + 5 q^{5} - 5 q^{7} + 10 q^{8} - 10 q^{10} + 2 q^{11} + 5 q^{13} - 5 q^{14} - 5 q^{16} - 16 q^{17} - 8 q^{19} + 5 q^{20} + 2 q^{22} + q^{23} - 5 q^{25} - 10 q^{26} + 10 q^{28}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3510\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(2081\) \(2107\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 1.14433 + 1.98204i 0.432516 + 0.749140i 0.997089 0.0762430i \(-0.0242925\pi\)
−0.564573 + 0.825383i \(0.690959\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −1.04439 1.80893i −0.314895 0.545414i 0.664520 0.747270i \(-0.268636\pi\)
−0.979415 + 0.201856i \(0.935303\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) 1.14433 1.98204i 0.305835 0.529722i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.34265 0.325641 0.162820 0.986656i \(-0.447941\pi\)
0.162820 + 0.986656i \(0.447941\pi\)
\(18\) 0 0
\(19\) −3.11577 −0.714807 −0.357404 0.933950i \(-0.616338\pi\)
−0.357404 + 0.933950i \(0.616338\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) 0 0
\(22\) −1.04439 + 1.80893i −0.222664 + 0.385666i
\(23\) −0.191931 + 0.332435i −0.0400205 + 0.0693175i −0.885342 0.464941i \(-0.846076\pi\)
0.845321 + 0.534258i \(0.179409\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) −2.28866 −0.432516
\(29\) −1.83626 3.18050i −0.340985 0.590604i 0.643631 0.765336i \(-0.277427\pi\)
−0.984616 + 0.174732i \(0.944094\pi\)
\(30\) 0 0
\(31\) 2.17417 3.76578i 0.390493 0.676354i −0.602022 0.798480i \(-0.705638\pi\)
0.992515 + 0.122126i \(0.0389712\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −0.671326 1.16277i −0.115131 0.199413i
\(35\) 2.28866 0.386854
\(36\) 0 0
\(37\) −2.56472 −0.421637 −0.210818 0.977525i \(-0.567613\pi\)
−0.210818 + 0.977525i \(0.567613\pi\)
\(38\) 1.55789 + 2.69834i 0.252723 + 0.437728i
\(39\) 0 0
\(40\) 0.500000 0.866025i 0.0790569 0.136931i
\(41\) −0.565838 + 0.980061i −0.0883691 + 0.153060i −0.906822 0.421514i \(-0.861499\pi\)
0.818453 + 0.574574i \(0.194832\pi\)
\(42\) 0 0
\(43\) −2.12657 3.68333i −0.324299 0.561703i 0.657071 0.753829i \(-0.271795\pi\)
−0.981370 + 0.192126i \(0.938462\pi\)
\(44\) 2.08878 0.314895
\(45\) 0 0
\(46\) 0.383863 0.0565975
\(47\) −1.67096 2.89419i −0.243735 0.422161i 0.718040 0.696001i \(-0.245039\pi\)
−0.961775 + 0.273840i \(0.911706\pi\)
\(48\) 0 0
\(49\) 0.881015 1.52596i 0.125859 0.217995i
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) −2.05399 −0.282137 −0.141069 0.990000i \(-0.545054\pi\)
−0.141069 + 0.990000i \(0.545054\pi\)
\(54\) 0 0
\(55\) −2.08878 −0.281651
\(56\) 1.14433 + 1.98204i 0.152918 + 0.264861i
\(57\) 0 0
\(58\) −1.83626 + 3.18050i −0.241113 + 0.417620i
\(59\) 4.11577 7.12873i 0.535828 0.928081i −0.463295 0.886204i \(-0.653333\pi\)
0.999123 0.0418771i \(-0.0133338\pi\)
\(60\) 0 0
\(61\) 2.84691 + 4.93100i 0.364510 + 0.631349i 0.988697 0.149925i \(-0.0479033\pi\)
−0.624188 + 0.781274i \(0.714570\pi\)
\(62\) −4.34835 −0.552241
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.500000 0.866025i −0.0620174 0.107417i
\(66\) 0 0
\(67\) −0.770424 + 1.33441i −0.0941222 + 0.163024i −0.909242 0.416268i \(-0.863338\pi\)
0.815120 + 0.579293i \(0.196671\pi\)
\(68\) −0.671326 + 1.16277i −0.0814102 + 0.141007i
\(69\) 0 0
\(70\) −1.14433 1.98204i −0.136774 0.236899i
\(71\) 3.86359 0.458523 0.229262 0.973365i \(-0.426369\pi\)
0.229262 + 0.973365i \(0.426369\pi\)
\(72\) 0 0
\(73\) 2.98321 0.349159 0.174579 0.984643i \(-0.444143\pi\)
0.174579 + 0.984643i \(0.444143\pi\)
\(74\) 1.28236 + 2.22111i 0.149071 + 0.258199i
\(75\) 0 0
\(76\) 1.55789 2.69834i 0.178702 0.309521i
\(77\) 2.39025 4.14004i 0.272395 0.471801i
\(78\) 0 0
\(79\) −4.95999 8.59095i −0.558042 0.966557i −0.997660 0.0683723i \(-0.978219\pi\)
0.439618 0.898185i \(-0.355114\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) 1.13168 0.124973
\(83\) 1.39736 + 2.42030i 0.153380 + 0.265662i 0.932468 0.361252i \(-0.117651\pi\)
−0.779088 + 0.626915i \(0.784317\pi\)
\(84\) 0 0
\(85\) 0.671326 1.16277i 0.0728155 0.126120i
\(86\) −2.12657 + 3.68333i −0.229314 + 0.397184i
\(87\) 0 0
\(88\) −1.04439 1.80893i −0.111332 0.192833i
\(89\) −3.50984 −0.372043 −0.186021 0.982546i \(-0.559559\pi\)
−0.186021 + 0.982546i \(0.559559\pi\)
\(90\) 0 0
\(91\) 2.28866 0.239917
\(92\) −0.191931 0.332435i −0.0200102 0.0346587i
\(93\) 0 0
\(94\) −1.67096 + 2.89419i −0.172346 + 0.298513i
\(95\) −1.55789 + 2.69834i −0.159836 + 0.276844i
\(96\) 0 0
\(97\) 2.28738 + 3.96185i 0.232248 + 0.402265i 0.958469 0.285196i \(-0.0920586\pi\)
−0.726221 + 0.687461i \(0.758725\pi\)
\(98\) −1.76203 −0.177992
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 1.48971 + 2.58026i 0.148232 + 0.256746i 0.930574 0.366104i \(-0.119308\pi\)
−0.782342 + 0.622849i \(0.785975\pi\)
\(102\) 0 0
\(103\) 9.57411 16.5828i 0.943365 1.63396i 0.184373 0.982856i \(-0.440975\pi\)
0.758992 0.651100i \(-0.225692\pi\)
\(104\) 0.500000 0.866025i 0.0490290 0.0849208i
\(105\) 0 0
\(106\) 1.02700 + 1.77881i 0.0997506 + 0.172773i
\(107\) −12.4016 −1.19891 −0.599454 0.800409i \(-0.704616\pi\)
−0.599454 + 0.800409i \(0.704616\pi\)
\(108\) 0 0
\(109\) −3.34548 −0.320439 −0.160219 0.987081i \(-0.551220\pi\)
−0.160219 + 0.987081i \(0.551220\pi\)
\(110\) 1.04439 + 1.80893i 0.0995786 + 0.172475i
\(111\) 0 0
\(112\) 1.14433 1.98204i 0.108129 0.187285i
\(113\) 1.93942 3.35917i 0.182445 0.316004i −0.760268 0.649610i \(-0.774932\pi\)
0.942713 + 0.333606i \(0.108266\pi\)
\(114\) 0 0
\(115\) 0.191931 + 0.332435i 0.0178977 + 0.0309997i
\(116\) 3.67252 0.340985
\(117\) 0 0
\(118\) −8.23155 −0.757775
\(119\) 1.53644 + 2.66119i 0.140845 + 0.243951i
\(120\) 0 0
\(121\) 3.31850 5.74782i 0.301682 0.522529i
\(122\) 2.84691 4.93100i 0.257747 0.446431i
\(123\) 0 0
\(124\) 2.17417 + 3.76578i 0.195247 + 0.338177i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 18.5652 1.64740 0.823698 0.567029i \(-0.191907\pi\)
0.823698 + 0.567029i \(0.191907\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −0.500000 + 0.866025i −0.0438529 + 0.0759555i
\(131\) 3.40750 5.90196i 0.297714 0.515656i −0.677898 0.735156i \(-0.737109\pi\)
0.975613 + 0.219499i \(0.0704424\pi\)
\(132\) 0 0
\(133\) −3.56547 6.17558i −0.309166 0.535491i
\(134\) 1.54085 0.133109
\(135\) 0 0
\(136\) 1.34265 0.115131
\(137\) −6.70290 11.6098i −0.572667 0.991889i −0.996291 0.0860507i \(-0.972575\pi\)
0.423623 0.905838i \(-0.360758\pi\)
\(138\) 0 0
\(139\) 7.24106 12.5419i 0.614179 1.06379i −0.376349 0.926478i \(-0.622821\pi\)
0.990528 0.137311i \(-0.0438459\pi\)
\(140\) −1.14433 + 1.98204i −0.0967136 + 0.167513i
\(141\) 0 0
\(142\) −1.93179 3.34596i −0.162112 0.280787i
\(143\) −2.08878 −0.174672
\(144\) 0 0
\(145\) −3.67252 −0.304987
\(146\) −1.49161 2.58354i −0.123446 0.213815i
\(147\) 0 0
\(148\) 1.28236 2.22111i 0.105409 0.182574i
\(149\) −2.60512 + 4.51221i −0.213420 + 0.369654i −0.952783 0.303653i \(-0.901794\pi\)
0.739363 + 0.673307i \(0.235127\pi\)
\(150\) 0 0
\(151\) −5.61436 9.72436i −0.456890 0.791357i 0.541905 0.840440i \(-0.317703\pi\)
−0.998795 + 0.0490831i \(0.984370\pi\)
\(152\) −3.11577 −0.252723
\(153\) 0 0
\(154\) −4.78050 −0.385224
\(155\) −2.17417 3.76578i −0.174634 0.302475i
\(156\) 0 0
\(157\) 2.67891 4.64001i 0.213801 0.370313i −0.739100 0.673595i \(-0.764749\pi\)
0.952901 + 0.303282i \(0.0980824\pi\)
\(158\) −4.95999 + 8.59095i −0.394595 + 0.683459i
\(159\) 0 0
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) −0.878532 −0.0692380
\(162\) 0 0
\(163\) 7.51764 0.588827 0.294413 0.955678i \(-0.404876\pi\)
0.294413 + 0.955678i \(0.404876\pi\)
\(164\) −0.565838 0.980061i −0.0441846 0.0765299i
\(165\) 0 0
\(166\) 1.39736 2.42030i 0.108456 0.187852i
\(167\) 7.73873 13.4039i 0.598841 1.03722i −0.394152 0.919045i \(-0.628962\pi\)
0.992993 0.118177i \(-0.0377051\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −1.34265 −0.102977
\(171\) 0 0
\(172\) 4.25314 0.324299
\(173\) 12.3538 + 21.3974i 0.939240 + 1.62681i 0.766893 + 0.641775i \(0.221802\pi\)
0.172347 + 0.985036i \(0.444865\pi\)
\(174\) 0 0
\(175\) 1.14433 1.98204i 0.0865033 0.149828i
\(176\) −1.04439 + 1.80893i −0.0787238 + 0.136354i
\(177\) 0 0
\(178\) 1.75492 + 3.03961i 0.131537 + 0.227829i
\(179\) −16.3016 −1.21844 −0.609219 0.793002i \(-0.708517\pi\)
−0.609219 + 0.793002i \(0.708517\pi\)
\(180\) 0 0
\(181\) −0.219795 −0.0163372 −0.00816862 0.999967i \(-0.502600\pi\)
−0.00816862 + 0.999967i \(0.502600\pi\)
\(182\) −1.14433 1.98204i −0.0848234 0.146918i
\(183\) 0 0
\(184\) −0.191931 + 0.332435i −0.0141494 + 0.0245074i
\(185\) −1.28236 + 2.22111i −0.0942809 + 0.163299i
\(186\) 0 0
\(187\) −1.40225 2.42877i −0.102543 0.177609i
\(188\) 3.34192 0.243735
\(189\) 0 0
\(190\) 3.11577 0.226042
\(191\) 0.0682066 + 0.118137i 0.00493526 + 0.00854812i 0.868482 0.495720i \(-0.165096\pi\)
−0.863547 + 0.504268i \(0.831762\pi\)
\(192\) 0 0
\(193\) 9.94802 17.2305i 0.716074 1.24028i −0.246470 0.969150i \(-0.579271\pi\)
0.962544 0.271126i \(-0.0873960\pi\)
\(194\) 2.28738 3.96185i 0.164224 0.284444i
\(195\) 0 0
\(196\) 0.881015 + 1.52596i 0.0629297 + 0.108997i
\(197\) −7.58032 −0.540076 −0.270038 0.962850i \(-0.587036\pi\)
−0.270038 + 0.962850i \(0.587036\pi\)
\(198\) 0 0
\(199\) −23.0705 −1.63543 −0.817713 0.575626i \(-0.804759\pi\)
−0.817713 + 0.575626i \(0.804759\pi\)
\(200\) −0.500000 0.866025i −0.0353553 0.0612372i
\(201\) 0 0
\(202\) 1.48971 2.58026i 0.104816 0.181547i
\(203\) 4.20258 7.27908i 0.294963 0.510892i
\(204\) 0 0
\(205\) 0.565838 + 0.980061i 0.0395199 + 0.0684504i
\(206\) −19.1482 −1.33412
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 3.25408 + 5.63623i 0.225089 + 0.389866i
\(210\) 0 0
\(211\) −5.16571 + 8.94727i −0.355622 + 0.615955i −0.987224 0.159337i \(-0.949064\pi\)
0.631602 + 0.775293i \(0.282398\pi\)
\(212\) 1.02700 1.77881i 0.0705343 0.122169i
\(213\) 0 0
\(214\) 6.20080 + 10.7401i 0.423878 + 0.734179i
\(215\) −4.25314 −0.290062
\(216\) 0 0
\(217\) 9.95189 0.675578
\(218\) 1.67274 + 2.89727i 0.113292 + 0.196228i
\(219\) 0 0
\(220\) 1.04439 1.80893i 0.0704127 0.121958i
\(221\) 0.671326 1.16277i 0.0451582 0.0782164i
\(222\) 0 0
\(223\) −13.5749 23.5124i −0.909041 1.57451i −0.815399 0.578900i \(-0.803482\pi\)
−0.0936426 0.995606i \(-0.529851\pi\)
\(224\) −2.28866 −0.152918
\(225\) 0 0
\(226\) −3.87883 −0.258016
\(227\) −1.96697 3.40689i −0.130552 0.226123i 0.793337 0.608782i \(-0.208342\pi\)
−0.923890 + 0.382659i \(0.875008\pi\)
\(228\) 0 0
\(229\) −3.73928 + 6.47663i −0.247099 + 0.427988i −0.962720 0.270501i \(-0.912811\pi\)
0.715621 + 0.698489i \(0.246144\pi\)
\(230\) 0.191931 0.332435i 0.0126556 0.0219201i
\(231\) 0 0
\(232\) −1.83626 3.18050i −0.120557 0.208810i
\(233\) −11.1654 −0.731472 −0.365736 0.930719i \(-0.619183\pi\)
−0.365736 + 0.930719i \(0.619183\pi\)
\(234\) 0 0
\(235\) −3.34192 −0.218003
\(236\) 4.11577 + 7.12873i 0.267914 + 0.464041i
\(237\) 0 0
\(238\) 1.53644 2.66119i 0.0995924 0.172499i
\(239\) −1.79160 + 3.10313i −0.115889 + 0.200725i −0.918135 0.396269i \(-0.870305\pi\)
0.802246 + 0.596994i \(0.203638\pi\)
\(240\) 0 0
\(241\) 10.8567 + 18.8044i 0.699345 + 1.21130i 0.968694 + 0.248258i \(0.0798580\pi\)
−0.269350 + 0.963042i \(0.586809\pi\)
\(242\) −6.63701 −0.426643
\(243\) 0 0
\(244\) −5.69382 −0.364510
\(245\) −0.881015 1.52596i −0.0562860 0.0974902i
\(246\) 0 0
\(247\) −1.55789 + 2.69834i −0.0991259 + 0.171691i
\(248\) 2.17417 3.76578i 0.138060 0.239127i
\(249\) 0 0
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) 1.57331 0.0993067 0.0496534 0.998767i \(-0.484188\pi\)
0.0496534 + 0.998767i \(0.484188\pi\)
\(252\) 0 0
\(253\) 0.801804 0.0504090
\(254\) −9.28260 16.0779i −0.582442 1.00882i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 2.74680 4.75760i 0.171341 0.296771i −0.767548 0.640991i \(-0.778523\pi\)
0.938889 + 0.344221i \(0.111857\pi\)
\(258\) 0 0
\(259\) −2.93488 5.08337i −0.182365 0.315865i
\(260\) 1.00000 0.0620174
\(261\) 0 0
\(262\) −6.81499 −0.421032
\(263\) 5.12678 + 8.87984i 0.316131 + 0.547554i 0.979677 0.200581i \(-0.0642829\pi\)
−0.663547 + 0.748135i \(0.730950\pi\)
\(264\) 0 0
\(265\) −1.02700 + 1.77881i −0.0630878 + 0.109271i
\(266\) −3.56547 + 6.17558i −0.218613 + 0.378649i
\(267\) 0 0
\(268\) −0.770424 1.33441i −0.0470611 0.0815122i
\(269\) −30.7132 −1.87262 −0.936310 0.351176i \(-0.885782\pi\)
−0.936310 + 0.351176i \(0.885782\pi\)
\(270\) 0 0
\(271\) 6.73125 0.408894 0.204447 0.978878i \(-0.434460\pi\)
0.204447 + 0.978878i \(0.434460\pi\)
\(272\) −0.671326 1.16277i −0.0407051 0.0705033i
\(273\) 0 0
\(274\) −6.70290 + 11.6098i −0.404937 + 0.701372i
\(275\) −1.04439 + 1.80893i −0.0629790 + 0.109083i
\(276\) 0 0
\(277\) −11.6330 20.1489i −0.698956 1.21063i −0.968829 0.247732i \(-0.920315\pi\)
0.269872 0.962896i \(-0.413019\pi\)
\(278\) −14.4821 −0.868580
\(279\) 0 0
\(280\) 2.28866 0.136774
\(281\) −8.40089 14.5508i −0.501155 0.868026i −0.999999 0.00133444i \(-0.999575\pi\)
0.498844 0.866692i \(-0.333758\pi\)
\(282\) 0 0
\(283\) −4.47654 + 7.75359i −0.266102 + 0.460903i −0.967852 0.251521i \(-0.919069\pi\)
0.701749 + 0.712424i \(0.252403\pi\)
\(284\) −1.93179 + 3.34596i −0.114631 + 0.198546i
\(285\) 0 0
\(286\) 1.04439 + 1.80893i 0.0617560 + 0.106965i
\(287\) −2.59002 −0.152884
\(288\) 0 0
\(289\) −15.1973 −0.893958
\(290\) 1.83626 + 3.18050i 0.107829 + 0.186765i
\(291\) 0 0
\(292\) −1.49161 + 2.58354i −0.0872897 + 0.151190i
\(293\) −4.48711 + 7.77190i −0.262140 + 0.454039i −0.966810 0.255495i \(-0.917761\pi\)
0.704671 + 0.709535i \(0.251095\pi\)
\(294\) 0 0
\(295\) −4.11577 7.12873i −0.239630 0.415051i
\(296\) −2.56472 −0.149071
\(297\) 0 0
\(298\) 5.21025 0.301821
\(299\) 0.191931 + 0.332435i 0.0110997 + 0.0192252i
\(300\) 0 0
\(301\) 4.86700 8.42990i 0.280529 0.485891i
\(302\) −5.61436 + 9.72436i −0.323070 + 0.559574i
\(303\) 0 0
\(304\) 1.55789 + 2.69834i 0.0893509 + 0.154760i
\(305\) 5.69382 0.326027
\(306\) 0 0
\(307\) −5.51796 −0.314927 −0.157463 0.987525i \(-0.550332\pi\)
−0.157463 + 0.987525i \(0.550332\pi\)
\(308\) 2.39025 + 4.14004i 0.136197 + 0.235901i
\(309\) 0 0
\(310\) −2.17417 + 3.76578i −0.123485 + 0.213882i
\(311\) 13.0255 22.5609i 0.738610 1.27931i −0.214511 0.976722i \(-0.568816\pi\)
0.953121 0.302589i \(-0.0978510\pi\)
\(312\) 0 0
\(313\) −5.41949 9.38684i −0.306328 0.530576i 0.671228 0.741251i \(-0.265767\pi\)
−0.977556 + 0.210675i \(0.932434\pi\)
\(314\) −5.35783 −0.302360
\(315\) 0 0
\(316\) 9.91997 0.558042
\(317\) −1.12747 1.95284i −0.0633251 0.109682i 0.832625 0.553838i \(-0.186837\pi\)
−0.895950 + 0.444155i \(0.853504\pi\)
\(318\) 0 0
\(319\) −3.83554 + 6.64336i −0.214749 + 0.371956i
\(320\) 0.500000 0.866025i 0.0279508 0.0484123i
\(321\) 0 0
\(322\) 0.439266 + 0.760831i 0.0244793 + 0.0423995i
\(323\) −4.18340 −0.232770
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) −3.75882 6.51046i −0.208182 0.360581i
\(327\) 0 0
\(328\) −0.565838 + 0.980061i −0.0312432 + 0.0541148i
\(329\) 3.82426 6.62382i 0.210839 0.365183i
\(330\) 0 0
\(331\) 14.1948 + 24.5861i 0.780215 + 1.35137i 0.931816 + 0.362931i \(0.118224\pi\)
−0.151601 + 0.988442i \(0.548443\pi\)
\(332\) −2.79472 −0.153380
\(333\) 0 0
\(334\) −15.4775 −0.846889
\(335\) 0.770424 + 1.33441i 0.0420927 + 0.0729068i
\(336\) 0 0
\(337\) 14.1290 24.4722i 0.769657 1.33308i −0.168092 0.985771i \(-0.553761\pi\)
0.937749 0.347313i \(-0.112906\pi\)
\(338\) −0.500000 + 0.866025i −0.0271964 + 0.0471056i
\(339\) 0 0
\(340\) 0.671326 + 1.16277i 0.0364077 + 0.0630601i
\(341\) −9.08273 −0.491857
\(342\) 0 0
\(343\) 20.0533 1.08278
\(344\) −2.12657 3.68333i −0.114657 0.198592i
\(345\) 0 0
\(346\) 12.3538 21.3974i 0.664143 1.15033i
\(347\) 2.52604 4.37523i 0.135605 0.234875i −0.790223 0.612819i \(-0.790036\pi\)
0.925828 + 0.377944i \(0.123369\pi\)
\(348\) 0 0
\(349\) −0.545875 0.945483i −0.0292200 0.0506105i 0.851046 0.525092i \(-0.175969\pi\)
−0.880266 + 0.474481i \(0.842636\pi\)
\(350\) −2.28866 −0.122334
\(351\) 0 0
\(352\) 2.08878 0.111332
\(353\) 12.9246 + 22.3861i 0.687909 + 1.19149i 0.972513 + 0.232848i \(0.0748046\pi\)
−0.284604 + 0.958645i \(0.591862\pi\)
\(354\) 0 0
\(355\) 1.93179 3.34596i 0.102529 0.177585i
\(356\) 1.75492 3.03961i 0.0930107 0.161099i
\(357\) 0 0
\(358\) 8.15080 + 14.1176i 0.430783 + 0.746138i
\(359\) −3.18085 −0.167879 −0.0839395 0.996471i \(-0.526750\pi\)
−0.0839395 + 0.996471i \(0.526750\pi\)
\(360\) 0 0
\(361\) −9.29196 −0.489051
\(362\) 0.109898 + 0.190348i 0.00577609 + 0.0100045i
\(363\) 0 0
\(364\) −1.14433 + 1.98204i −0.0599792 + 0.103887i
\(365\) 1.49161 2.58354i 0.0780743 0.135229i
\(366\) 0 0
\(367\) −15.0789 26.1173i −0.787110 1.36331i −0.927731 0.373250i \(-0.878243\pi\)
0.140621 0.990063i \(-0.455090\pi\)
\(368\) 0.383863 0.0200102
\(369\) 0 0
\(370\) 2.56472 0.133333
\(371\) −2.35044 4.07109i −0.122029 0.211360i
\(372\) 0 0
\(373\) 10.9732 19.0062i 0.568173 0.984104i −0.428574 0.903507i \(-0.640984\pi\)
0.996747 0.0805972i \(-0.0256827\pi\)
\(374\) −1.40225 + 2.42877i −0.0725086 + 0.125589i
\(375\) 0 0
\(376\) −1.67096 2.89419i −0.0861732 0.149256i
\(377\) −3.67252 −0.189145
\(378\) 0 0
\(379\) −17.4708 −0.897413 −0.448707 0.893679i \(-0.648115\pi\)
−0.448707 + 0.893679i \(0.648115\pi\)
\(380\) −1.55789 2.69834i −0.0799179 0.138422i
\(381\) 0 0
\(382\) 0.0682066 0.118137i 0.00348975 0.00604443i
\(383\) 11.3764 19.7045i 0.581308 1.00685i −0.414017 0.910269i \(-0.635875\pi\)
0.995325 0.0965855i \(-0.0307921\pi\)
\(384\) 0 0
\(385\) −2.39025 4.14004i −0.121819 0.210996i
\(386\) −19.8960 −1.01268
\(387\) 0 0
\(388\) −4.57475 −0.232248
\(389\) 10.9909 + 19.0368i 0.557261 + 0.965204i 0.997724 + 0.0674336i \(0.0214811\pi\)
−0.440463 + 0.897771i \(0.645186\pi\)
\(390\) 0 0
\(391\) −0.257697 + 0.446344i −0.0130323 + 0.0225726i
\(392\) 0.881015 1.52596i 0.0444980 0.0770728i
\(393\) 0 0
\(394\) 3.79016 + 6.56475i 0.190946 + 0.330727i
\(395\) −9.91997 −0.499128
\(396\) 0 0
\(397\) 14.9767 0.751658 0.375829 0.926689i \(-0.377358\pi\)
0.375829 + 0.926689i \(0.377358\pi\)
\(398\) 11.5353 + 19.9797i 0.578211 + 1.00149i
\(399\) 0 0
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) −4.71659 + 8.16938i −0.235535 + 0.407959i −0.959428 0.281953i \(-0.909018\pi\)
0.723893 + 0.689913i \(0.242351\pi\)
\(402\) 0 0
\(403\) −2.17417 3.76578i −0.108303 0.187587i
\(404\) −2.97943 −0.148232
\(405\) 0 0
\(406\) −8.40516 −0.417141
\(407\) 2.67856 + 4.63941i 0.132771 + 0.229967i
\(408\) 0 0
\(409\) −10.4365 + 18.0766i −0.516053 + 0.893831i 0.483773 + 0.875194i \(0.339266\pi\)
−0.999826 + 0.0186371i \(0.994067\pi\)
\(410\) 0.565838 0.980061i 0.0279448 0.0484018i
\(411\) 0 0
\(412\) 9.57411 + 16.5828i 0.471683 + 0.816978i
\(413\) 18.8392 0.927017
\(414\) 0 0
\(415\) 2.79472 0.137187
\(416\) 0.500000 + 0.866025i 0.0245145 + 0.0424604i
\(417\) 0 0
\(418\) 3.25408 5.63623i 0.159162 0.275677i
\(419\) −2.78987 + 4.83220i −0.136294 + 0.236069i −0.926091 0.377300i \(-0.876853\pi\)
0.789797 + 0.613368i \(0.210186\pi\)
\(420\) 0 0
\(421\) 10.0500 + 17.4072i 0.489809 + 0.848375i 0.999931 0.0117273i \(-0.00373301\pi\)
−0.510122 + 0.860102i \(0.670400\pi\)
\(422\) 10.3314 0.502925
\(423\) 0 0
\(424\) −2.05399 −0.0997506
\(425\) −0.671326 1.16277i −0.0325641 0.0564026i
\(426\) 0 0
\(427\) −6.51562 + 11.2854i −0.315313 + 0.546138i
\(428\) 6.20080 10.7401i 0.299727 0.519143i
\(429\) 0 0
\(430\) 2.12657 + 3.68333i 0.102552 + 0.177626i
\(431\) 28.0361 1.35045 0.675226 0.737611i \(-0.264046\pi\)
0.675226 + 0.737611i \(0.264046\pi\)
\(432\) 0 0
\(433\) −4.99781 −0.240180 −0.120090 0.992763i \(-0.538318\pi\)
−0.120090 + 0.992763i \(0.538318\pi\)
\(434\) −4.97595 8.61859i −0.238853 0.413706i
\(435\) 0 0
\(436\) 1.67274 2.89727i 0.0801096 0.138754i
\(437\) 0.598015 1.03579i 0.0286069 0.0495486i
\(438\) 0 0
\(439\) 0.234001 + 0.405301i 0.0111682 + 0.0193440i 0.871556 0.490297i \(-0.163112\pi\)
−0.860387 + 0.509641i \(0.829778\pi\)
\(440\) −2.08878 −0.0995786
\(441\) 0 0
\(442\) −1.34265 −0.0638634
\(443\) −0.620624 1.07495i −0.0294868 0.0510726i 0.850905 0.525319i \(-0.176054\pi\)
−0.880392 + 0.474246i \(0.842721\pi\)
\(444\) 0 0
\(445\) −1.75492 + 3.03961i −0.0831913 + 0.144092i
\(446\) −13.5749 + 23.5124i −0.642789 + 1.11334i
\(447\) 0 0
\(448\) 1.14433 + 1.98204i 0.0540645 + 0.0936425i
\(449\) −17.1091 −0.807429 −0.403714 0.914885i \(-0.632281\pi\)
−0.403714 + 0.914885i \(0.632281\pi\)
\(450\) 0 0
\(451\) 2.36382 0.111308
\(452\) 1.93942 + 3.35917i 0.0912224 + 0.158002i
\(453\) 0 0
\(454\) −1.96697 + 3.40689i −0.0923143 + 0.159893i
\(455\) 1.14433 1.98204i 0.0536470 0.0929194i
\(456\) 0 0
\(457\) −6.22825 10.7876i −0.291345 0.504625i 0.682783 0.730621i \(-0.260769\pi\)
−0.974128 + 0.225997i \(0.927436\pi\)
\(458\) 7.47857 0.349450
\(459\) 0 0
\(460\) −0.383863 −0.0178977
\(461\) −1.28757 2.23014i −0.0599683 0.103868i 0.834483 0.551034i \(-0.185767\pi\)
−0.894451 + 0.447166i \(0.852433\pi\)
\(462\) 0 0
\(463\) −4.26765 + 7.39179i −0.198335 + 0.343526i −0.947989 0.318304i \(-0.896887\pi\)
0.749654 + 0.661830i \(0.230220\pi\)
\(464\) −1.83626 + 3.18050i −0.0852463 + 0.147651i
\(465\) 0 0
\(466\) 5.58272 + 9.66955i 0.258614 + 0.447933i
\(467\) −0.426207 −0.0197225 −0.00986124 0.999951i \(-0.503139\pi\)
−0.00986124 + 0.999951i \(0.503139\pi\)
\(468\) 0 0
\(469\) −3.52648 −0.162838
\(470\) 1.67096 + 2.89419i 0.0770757 + 0.133499i
\(471\) 0 0
\(472\) 4.11577 7.12873i 0.189444 0.328126i
\(473\) −4.44194 + 7.69366i −0.204240 + 0.353755i
\(474\) 0 0
\(475\) 1.55789 + 2.69834i 0.0714807 + 0.123808i
\(476\) −3.07287 −0.140845
\(477\) 0 0
\(478\) 3.58319 0.163891
\(479\) 3.51507 + 6.08829i 0.160608 + 0.278181i 0.935087 0.354419i \(-0.115321\pi\)
−0.774479 + 0.632600i \(0.781988\pi\)
\(480\) 0 0
\(481\) −1.28236 + 2.22111i −0.0584705 + 0.101274i
\(482\) 10.8567 18.8044i 0.494511 0.856519i
\(483\) 0 0
\(484\) 3.31850 + 5.74782i 0.150841 + 0.261264i
\(485\) 4.57475 0.207729
\(486\) 0 0
\(487\) −0.382362 −0.0173265 −0.00866323 0.999962i \(-0.502758\pi\)
−0.00866323 + 0.999962i \(0.502758\pi\)
\(488\) 2.84691 + 4.93100i 0.128874 + 0.223216i
\(489\) 0 0
\(490\) −0.881015 + 1.52596i −0.0398002 + 0.0689360i
\(491\) 15.3831 26.6443i 0.694230 1.20244i −0.276210 0.961097i \(-0.589079\pi\)
0.970440 0.241344i \(-0.0775881\pi\)
\(492\) 0 0
\(493\) −2.46546 4.27030i −0.111039 0.192325i
\(494\) 3.11577 0.140185
\(495\) 0 0
\(496\) −4.34835 −0.195247
\(497\) 4.42122 + 7.65778i 0.198319 + 0.343498i
\(498\) 0 0
\(499\) −19.6155 + 33.9751i −0.878111 + 1.52093i −0.0246999 + 0.999695i \(0.507863\pi\)
−0.853411 + 0.521238i \(0.825470\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) 0 0
\(502\) −0.786657 1.36253i −0.0351102 0.0608127i
\(503\) 14.9377 0.666040 0.333020 0.942920i \(-0.391932\pi\)
0.333020 + 0.942920i \(0.391932\pi\)
\(504\) 0 0
\(505\) 2.97943 0.132583
\(506\) −0.400902 0.694383i −0.0178223 0.0308691i
\(507\) 0 0
\(508\) −9.28260 + 16.0779i −0.411849 + 0.713343i
\(509\) −10.0892 + 17.4750i −0.447197 + 0.774568i −0.998202 0.0599339i \(-0.980911\pi\)
0.551005 + 0.834502i \(0.314244\pi\)
\(510\) 0 0
\(511\) 3.41378 + 5.91284i 0.151017 + 0.261569i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −5.49360 −0.242312
\(515\) −9.57411 16.5828i −0.421886 0.730727i
\(516\) 0 0
\(517\) −3.49027 + 6.04532i −0.153502 + 0.265873i
\(518\) −2.93488 + 5.08337i −0.128951 + 0.223350i
\(519\) 0 0
\(520\) −0.500000 0.866025i −0.0219265 0.0379777i
\(521\) 23.8718 1.04584 0.522921 0.852381i \(-0.324842\pi\)
0.522921 + 0.852381i \(0.324842\pi\)
\(522\) 0 0
\(523\) −31.3232 −1.36967 −0.684835 0.728698i \(-0.740126\pi\)
−0.684835 + 0.728698i \(0.740126\pi\)
\(524\) 3.40750 + 5.90196i 0.148857 + 0.257828i
\(525\) 0 0
\(526\) 5.12678 8.87984i 0.223538 0.387179i
\(527\) 2.91916 5.05613i 0.127160 0.220248i
\(528\) 0 0
\(529\) 11.4263 + 19.7910i 0.496797 + 0.860477i
\(530\) 2.05399 0.0892196
\(531\) 0 0
\(532\) 7.13095 0.309166
\(533\) 0.565838 + 0.980061i 0.0245092 + 0.0424511i
\(534\) 0 0
\(535\) −6.20080 + 10.7401i −0.268084 + 0.464335i
\(536\) −0.770424 + 1.33441i −0.0332772 + 0.0576379i
\(537\) 0 0
\(538\) 15.3566 + 26.5984i 0.662071 + 1.14674i
\(539\) −3.68049 −0.158530
\(540\) 0 0
\(541\) −28.2162 −1.21311 −0.606555 0.795042i \(-0.707449\pi\)
−0.606555 + 0.795042i \(0.707449\pi\)
\(542\) −3.36563 5.82943i −0.144566 0.250396i
\(543\) 0 0
\(544\) −0.671326 + 1.16277i −0.0287828 + 0.0498534i
\(545\) −1.67274 + 2.89727i −0.0716522 + 0.124105i
\(546\) 0 0
\(547\) 6.44808 + 11.1684i 0.275700 + 0.477526i 0.970311 0.241859i \(-0.0777570\pi\)
−0.694611 + 0.719385i \(0.744424\pi\)
\(548\) 13.4058 0.572667
\(549\) 0 0
\(550\) 2.08878 0.0890658
\(551\) 5.72138 + 9.90971i 0.243739 + 0.422168i
\(552\) 0 0
\(553\) 11.3517 19.6618i 0.482725 0.836104i
\(554\) −11.6330 + 20.1489i −0.494237 + 0.856043i
\(555\) 0 0
\(556\) 7.24106 + 12.5419i 0.307089 + 0.531894i
\(557\) 18.3270 0.776541 0.388271 0.921545i \(-0.373073\pi\)
0.388271 + 0.921545i \(0.373073\pi\)
\(558\) 0 0
\(559\) −4.25314 −0.179889
\(560\) −1.14433 1.98204i −0.0483568 0.0837564i
\(561\) 0 0
\(562\) −8.40089 + 14.5508i −0.354370 + 0.613787i
\(563\) 17.3765 30.0969i 0.732331 1.26843i −0.223554 0.974692i \(-0.571766\pi\)
0.955885 0.293742i \(-0.0949007\pi\)
\(564\) 0 0
\(565\) −1.93942 3.35917i −0.0815918 0.141321i
\(566\) 8.95307 0.376326
\(567\) 0 0
\(568\) 3.86359 0.162112
\(569\) −3.06295 5.30518i −0.128405 0.222405i 0.794654 0.607063i \(-0.207653\pi\)
−0.923059 + 0.384659i \(0.874319\pi\)
\(570\) 0 0
\(571\) −10.1348 + 17.5539i −0.424127 + 0.734609i −0.996338 0.0854968i \(-0.972752\pi\)
0.572212 + 0.820106i \(0.306086\pi\)
\(572\) 1.04439 1.80893i 0.0436681 0.0756354i
\(573\) 0 0
\(574\) 1.29501 + 2.24303i 0.0540528 + 0.0936221i
\(575\) 0.383863 0.0160082
\(576\) 0 0
\(577\) 18.8064 0.782922 0.391461 0.920195i \(-0.371970\pi\)
0.391461 + 0.920195i \(0.371970\pi\)
\(578\) 7.59864 + 13.1612i 0.316062 + 0.547435i
\(579\) 0 0
\(580\) 1.83626 3.18050i 0.0762466 0.132063i
\(581\) −3.19808 + 5.53924i −0.132679 + 0.229807i
\(582\) 0 0
\(583\) 2.14516 + 3.71553i 0.0888436 + 0.153882i
\(584\) 2.98321 0.123446
\(585\) 0 0
\(586\) 8.97422 0.370722
\(587\) 3.15977 + 5.47288i 0.130418 + 0.225890i 0.923838 0.382785i \(-0.125035\pi\)
−0.793420 + 0.608675i \(0.791702\pi\)
\(588\) 0 0
\(589\) −6.77423 + 11.7333i −0.279127 + 0.483463i
\(590\) −4.11577 + 7.12873i −0.169444 + 0.293485i
\(591\) 0 0
\(592\) 1.28236 + 2.22111i 0.0527046 + 0.0912871i
\(593\) 7.58336 0.311411 0.155706 0.987804i \(-0.450235\pi\)
0.155706 + 0.987804i \(0.450235\pi\)
\(594\) 0 0
\(595\) 3.07287 0.125976
\(596\) −2.60512 4.51221i −0.106710 0.184827i
\(597\) 0 0
\(598\) 0.191931 0.332435i 0.00784866 0.0135943i
\(599\) 24.0482 41.6526i 0.982581 1.70188i 0.330352 0.943858i \(-0.392833\pi\)
0.652229 0.758022i \(-0.273834\pi\)
\(600\) 0 0
\(601\) 1.13416 + 1.96442i 0.0462634 + 0.0801305i 0.888230 0.459399i \(-0.151935\pi\)
−0.841966 + 0.539530i \(0.818602\pi\)
\(602\) −9.73401 −0.396729
\(603\) 0 0
\(604\) 11.2287 0.456890
\(605\) −3.31850 5.74782i −0.134916 0.233682i
\(606\) 0 0
\(607\) 0.903270 1.56451i 0.0366626 0.0635015i −0.847112 0.531415i \(-0.821661\pi\)
0.883774 + 0.467913i \(0.154994\pi\)
\(608\) 1.55789 2.69834i 0.0631806 0.109432i
\(609\) 0 0
\(610\) −2.84691 4.93100i −0.115268 0.199650i
\(611\) −3.34192 −0.135200
\(612\) 0 0
\(613\) 8.41978 0.340072 0.170036 0.985438i \(-0.445612\pi\)
0.170036 + 0.985438i \(0.445612\pi\)
\(614\) 2.75898 + 4.77870i 0.111343 + 0.192853i
\(615\) 0 0
\(616\) 2.39025 4.14004i 0.0963060 0.166807i
\(617\) 15.6962 27.1867i 0.631906 1.09449i −0.355256 0.934769i \(-0.615606\pi\)
0.987162 0.159724i \(-0.0510605\pi\)
\(618\) 0 0
\(619\) 8.18535 + 14.1774i 0.328997 + 0.569839i 0.982313 0.187246i \(-0.0599561\pi\)
−0.653316 + 0.757085i \(0.726623\pi\)
\(620\) 4.34835 0.174634
\(621\) 0 0
\(622\) −26.0511 −1.04455
\(623\) −4.01642 6.95665i −0.160915 0.278712i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −5.41949 + 9.38684i −0.216607 + 0.375174i
\(627\) 0 0
\(628\) 2.67891 + 4.64001i 0.106900 + 0.185157i
\(629\) −3.44352 −0.137302
\(630\) 0 0
\(631\) −26.7240 −1.06387 −0.531933 0.846787i \(-0.678534\pi\)
−0.531933 + 0.846787i \(0.678534\pi\)
\(632\) −4.95999 8.59095i −0.197298 0.341730i
\(633\) 0 0
\(634\) −1.12747 + 1.95284i −0.0447776 + 0.0775571i
\(635\) 9.28260 16.0779i 0.368369 0.638033i
\(636\) 0 0
\(637\) −0.881015 1.52596i −0.0349071 0.0604609i
\(638\) 7.67109 0.303701
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 19.7860 + 34.2704i 0.781501 + 1.35360i 0.931067 + 0.364848i \(0.118879\pi\)
−0.149566 + 0.988752i \(0.547788\pi\)
\(642\) 0 0
\(643\) −14.7925 + 25.6214i −0.583360 + 1.01041i 0.411718 + 0.911311i \(0.364929\pi\)
−0.995078 + 0.0990972i \(0.968405\pi\)
\(644\) 0.439266 0.760831i 0.0173095 0.0299809i
\(645\) 0 0
\(646\) 2.09170 + 3.62293i 0.0822968 + 0.142542i
\(647\) 14.9579 0.588054 0.294027 0.955797i \(-0.405004\pi\)
0.294027 + 0.955797i \(0.405004\pi\)
\(648\) 0 0
\(649\) −17.1939 −0.674918
\(650\) 0.500000 + 0.866025i 0.0196116 + 0.0339683i
\(651\) 0 0
\(652\) −3.75882 + 6.51046i −0.147207 + 0.254969i
\(653\) −21.3270 + 36.9395i −0.834590 + 1.44555i 0.0597734 + 0.998212i \(0.480962\pi\)
−0.894364 + 0.447341i \(0.852371\pi\)
\(654\) 0 0
\(655\) −3.40750 5.90196i −0.133142 0.230609i
\(656\) 1.13168 0.0441846
\(657\) 0 0
\(658\) −7.64853 −0.298171
\(659\) 3.57781 + 6.19696i 0.139372 + 0.241399i 0.927259 0.374420i \(-0.122158\pi\)
−0.787887 + 0.615820i \(0.788825\pi\)
\(660\) 0 0
\(661\) −8.03639 + 13.9194i −0.312579 + 0.541403i −0.978920 0.204244i \(-0.934526\pi\)
0.666341 + 0.745647i \(0.267860\pi\)
\(662\) 14.1948 24.5861i 0.551696 0.955565i
\(663\) 0 0
\(664\) 1.39736 + 2.42030i 0.0542281 + 0.0939258i
\(665\) −7.13095 −0.276526
\(666\) 0 0
\(667\) 1.40975 0.0545856
\(668\) 7.73873 + 13.4039i 0.299420 + 0.518611i
\(669\) 0 0
\(670\) 0.770424 1.33441i 0.0297641 0.0515529i
\(671\) 5.94657 10.2998i 0.229565 0.397618i
\(672\) 0 0
\(673\) −6.97003 12.0725i −0.268675 0.465359i 0.699845 0.714295i \(-0.253252\pi\)
−0.968520 + 0.248936i \(0.919919\pi\)
\(674\) −28.2580 −1.08846
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 17.2974 + 29.9601i 0.664795 + 1.15146i 0.979341 + 0.202216i \(0.0648144\pi\)
−0.314546 + 0.949242i \(0.601852\pi\)
\(678\) 0 0
\(679\) −5.23503 + 9.06734i −0.200902 + 0.347972i
\(680\) 0.671326 1.16277i 0.0257442 0.0445902i
\(681\) 0 0
\(682\) 4.54136 + 7.86587i 0.173898 + 0.301200i
\(683\) 32.9086 1.25921 0.629605 0.776915i \(-0.283217\pi\)
0.629605 + 0.776915i \(0.283217\pi\)
\(684\) 0 0
\(685\) −13.4058 −0.512209
\(686\) −10.0267 17.3667i −0.382820 0.663063i
\(687\) 0 0
\(688\) −2.12657 + 3.68333i −0.0810748 + 0.140426i
\(689\) −1.02700 + 1.77881i −0.0391254 + 0.0677672i
\(690\) 0 0
\(691\) −8.92207 15.4535i −0.339412 0.587878i 0.644911 0.764258i \(-0.276895\pi\)
−0.984322 + 0.176380i \(0.943561\pi\)
\(692\) −24.7075 −0.939240
\(693\) 0 0
\(694\) −5.05208 −0.191774
\(695\) −7.24106 12.5419i −0.274669 0.475741i
\(696\) 0 0
\(697\) −0.759724 + 1.31588i −0.0287766 + 0.0498425i
\(698\) −0.545875 + 0.945483i −0.0206617 + 0.0357870i
\(699\) 0 0
\(700\) 1.14433 + 1.98204i 0.0432516 + 0.0749140i
\(701\) 33.8350 1.27793 0.638964 0.769236i \(-0.279363\pi\)
0.638964 + 0.769236i \(0.279363\pi\)
\(702\) 0 0
\(703\) 7.99108 0.301389
\(704\) −1.04439 1.80893i −0.0393619 0.0681768i
\(705\) 0 0
\(706\) 12.9246 22.3861i 0.486425 0.842513i
\(707\) −3.40945 + 5.90534i −0.128226 + 0.222093i
\(708\) 0 0
\(709\) 14.1704 + 24.5439i 0.532181 + 0.921765i 0.999294 + 0.0375670i \(0.0119608\pi\)
−0.467113 + 0.884198i \(0.654706\pi\)
\(710\) −3.86359 −0.144998
\(711\) 0 0
\(712\) −3.50984 −0.131537
\(713\) 0.834584 + 1.44554i 0.0312554 + 0.0541360i
\(714\) 0 0
\(715\) −1.04439 + 1.80893i −0.0390579 + 0.0676503i
\(716\) 8.15080 14.1176i 0.304610 0.527599i
\(717\) 0 0
\(718\) 1.59043 + 2.75470i 0.0593542 + 0.102805i
\(719\) −5.61477 −0.209396 −0.104698 0.994504i \(-0.533388\pi\)
−0.104698 + 0.994504i \(0.533388\pi\)
\(720\) 0 0
\(721\) 43.8238 1.63208
\(722\) 4.64598 + 8.04707i 0.172905 + 0.299481i
\(723\) 0 0
\(724\) 0.109898 0.190348i 0.00408431 0.00707423i
\(725\) −1.83626 + 3.18050i −0.0681971 + 0.118121i
\(726\) 0 0
\(727\) −12.6476 21.9064i −0.469075 0.812462i 0.530300 0.847810i \(-0.322079\pi\)
−0.999375 + 0.0353480i \(0.988746\pi\)
\(728\) 2.28866 0.0848234
\(729\) 0 0
\(730\) −2.98321 −0.110414
\(731\) −2.85525 4.94543i −0.105605 0.182913i
\(732\) 0 0
\(733\) −4.49916 + 7.79277i −0.166180 + 0.287833i −0.937074 0.349131i \(-0.886477\pi\)
0.770894 + 0.636964i \(0.219810\pi\)
\(734\) −15.0789 + 26.1173i −0.556571 + 0.964008i
\(735\) 0 0
\(736\) −0.191931 0.332435i −0.00707469 0.0122537i
\(737\) 3.21849 0.118555
\(738\) 0 0
\(739\) −20.5564 −0.756178 −0.378089 0.925769i \(-0.623419\pi\)
−0.378089 + 0.925769i \(0.623419\pi\)
\(740\) −1.28236 2.22111i −0.0471404 0.0816496i
\(741\) 0 0
\(742\) −2.35044 + 4.07109i −0.0862875 + 0.149454i
\(743\) −5.08377 + 8.80534i −0.186505 + 0.323037i −0.944083 0.329709i \(-0.893049\pi\)
0.757577 + 0.652745i \(0.226383\pi\)
\(744\) 0 0
\(745\) 2.60512 + 4.51221i 0.0954443 + 0.165314i
\(746\) −21.9465 −0.803517
\(747\) 0 0
\(748\) 2.80450 0.102543
\(749\) −14.1915 24.5805i −0.518548 0.898151i
\(750\) 0 0
\(751\) 2.06969 3.58481i 0.0755242 0.130812i −0.825790 0.563978i \(-0.809270\pi\)
0.901314 + 0.433166i \(0.142604\pi\)
\(752\) −1.67096 + 2.89419i −0.0609337 + 0.105540i
\(753\) 0 0
\(754\) 1.83626 + 3.18050i 0.0668727 + 0.115827i
\(755\) −11.2287 −0.408655
\(756\) 0 0
\(757\) 42.2348 1.53505 0.767524 0.641020i \(-0.221488\pi\)
0.767524 + 0.641020i \(0.221488\pi\)
\(758\) 8.73539 + 15.1301i 0.317284 + 0.549551i
\(759\) 0 0
\(760\) −1.55789 + 2.69834i −0.0565105 + 0.0978790i
\(761\) −15.5543 + 26.9409i −0.563843 + 0.976605i 0.433313 + 0.901244i \(0.357344\pi\)
−0.997156 + 0.0753617i \(0.975989\pi\)
\(762\) 0 0
\(763\) −3.82833 6.63087i −0.138595 0.240053i
\(764\) −0.136413 −0.00493526
\(765\) 0 0
\(766\) −22.7528 −0.822093
\(767\) −4.11577 7.12873i −0.148612 0.257403i
\(768\) 0 0
\(769\) 5.32217 9.21827i 0.191922 0.332419i −0.753965 0.656915i \(-0.771861\pi\)
0.945887 + 0.324495i \(0.105194\pi\)
\(770\) −2.39025 + 4.14004i −0.0861387 + 0.149197i
\(771\) 0 0
\(772\) 9.94802 + 17.2305i 0.358037 + 0.620138i
\(773\) 42.7091 1.53614 0.768069 0.640367i \(-0.221218\pi\)
0.768069 + 0.640367i \(0.221218\pi\)
\(774\) 0 0
\(775\) −4.34835 −0.156197
\(776\) 2.28738 + 3.96185i 0.0821120 + 0.142222i
\(777\) 0 0
\(778\) 10.9909 19.0368i 0.394043 0.682503i
\(779\) 1.76302 3.05365i 0.0631669 0.109408i
\(780\) 0 0
\(781\) −4.03509 6.98898i −0.144387 0.250085i
\(782\) 0.515394 0.0184304
\(783\) 0 0
\(784\) −1.76203 −0.0629297
\(785\) −2.67891 4.64001i −0.0956145 0.165609i
\(786\) 0 0
\(787\) −2.93651 + 5.08619i −0.104675 + 0.181303i −0.913606 0.406602i \(-0.866714\pi\)
0.808930 + 0.587905i \(0.200047\pi\)
\(788\) 3.79016 6.56475i 0.135019 0.233860i
\(789\) 0 0
\(790\) 4.95999 + 8.59095i 0.176468 + 0.305652i
\(791\) 8.87733 0.315642
\(792\) 0 0
\(793\) 5.69382 0.202194
\(794\) −7.48834 12.9702i −0.265751 0.460295i
\(795\) 0 0
\(796\) 11.5353 19.9797i 0.408857 0.708161i
\(797\) 15.7758 27.3244i 0.558806 0.967880i −0.438791 0.898589i \(-0.644593\pi\)
0.997597 0.0692909i \(-0.0220737\pi\)
\(798\) 0 0
\(799\) −2.24352 3.88589i −0.0793700 0.137473i
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 9.43319 0.333097
\(803\) −3.11564 5.39644i −0.109948 0.190436i
\(804\) 0 0
\(805\) −0.439266 + 0.760831i −0.0154821 + 0.0268158i
\(806\) −2.17417 + 3.76578i −0.0765820 + 0.132644i
\(807\) 0 0
\(808\) 1.48971 + 2.58026i 0.0524080 + 0.0907733i
\(809\) −44.1579 −1.55251 −0.776254 0.630420i \(-0.782883\pi\)
−0.776254 + 0.630420i \(0.782883\pi\)
\(810\) 0 0
\(811\) −10.6564 −0.374196 −0.187098 0.982341i \(-0.559908\pi\)
−0.187098 + 0.982341i \(0.559908\pi\)
\(812\) 4.20258 + 7.27908i 0.147482 + 0.255446i
\(813\) 0 0
\(814\) 2.67856 4.63941i 0.0938835 0.162611i
\(815\) 3.75882 6.51046i 0.131666 0.228052i
\(816\) 0 0
\(817\) 6.62592 + 11.4764i 0.231811 + 0.401509i
\(818\) 20.8731 0.729810
\(819\) 0 0
\(820\) −1.13168 −0.0395199
\(821\) 26.3275 + 45.6005i 0.918834 + 1.59147i 0.801188 + 0.598412i \(0.204202\pi\)
0.117646 + 0.993056i \(0.462465\pi\)
\(822\) 0 0
\(823\) −11.1693 + 19.3458i −0.389338 + 0.674353i −0.992361 0.123371i \(-0.960629\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(824\) 9.57411 16.5828i 0.333530 0.577691i
\(825\) 0 0
\(826\) −9.41961 16.3152i −0.327750 0.567680i
\(827\) 30.1816 1.04952 0.524759 0.851251i \(-0.324155\pi\)
0.524759 + 0.851251i \(0.324155\pi\)
\(828\) 0 0
\(829\) 47.7093 1.65701 0.828506 0.559980i \(-0.189191\pi\)
0.828506 + 0.559980i \(0.189191\pi\)
\(830\) −1.39736 2.42030i −0.0485031 0.0840098i
\(831\) 0 0
\(832\) 0.500000 0.866025i 0.0173344 0.0300240i
\(833\) 1.18290 2.04884i 0.0409849 0.0709880i
\(834\) 0 0
\(835\) −7.73873 13.4039i −0.267810 0.463860i
\(836\) −6.50816 −0.225089
\(837\) 0 0
\(838\) 5.57975 0.192749
\(839\) −3.30450 5.72357i −0.114084 0.197599i 0.803329 0.595535i \(-0.203060\pi\)
−0.917413 + 0.397936i \(0.869727\pi\)
\(840\) 0 0
\(841\) 7.75628 13.4343i 0.267458 0.463251i
\(842\) 10.0500 17.4072i 0.346348 0.599892i
\(843\) 0 0
\(844\) −5.16571 8.94727i −0.177811 0.307978i
\(845\) −1.00000 −0.0344010
\(846\) 0 0
\(847\) 15.1899 0.521930
\(848\) 1.02700 + 1.77881i 0.0352672 + 0.0610845i
\(849\) 0 0
\(850\) −0.671326 + 1.16277i −0.0230263 + 0.0398827i
\(851\) 0.492250 0.852602i 0.0168741 0.0292268i
\(852\) 0 0
\(853\) −12.2797 21.2690i −0.420448 0.728237i 0.575536 0.817777i \(-0.304794\pi\)
−0.995983 + 0.0895400i \(0.971460\pi\)
\(854\) 13.0312 0.445920
\(855\) 0 0
\(856\) −12.4016 −0.423878
\(857\) 24.4450 + 42.3401i 0.835027 + 1.44631i 0.894008 + 0.448050i \(0.147881\pi\)
−0.0589816 + 0.998259i \(0.518785\pi\)
\(858\) 0 0
\(859\) −4.90171 + 8.49001i −0.167244 + 0.289675i −0.937450 0.348120i \(-0.886820\pi\)
0.770206 + 0.637795i \(0.220153\pi\)
\(860\) 2.12657 3.68333i 0.0725155 0.125601i
\(861\) 0 0
\(862\) −14.0181 24.2800i −0.477457 0.826980i
\(863\) −46.2681 −1.57498 −0.787491 0.616326i \(-0.788621\pi\)
−0.787491 + 0.616326i \(0.788621\pi\)
\(864\) 0 0
\(865\) 24.7075 0.840082
\(866\) 2.49891 + 4.32823i 0.0849163 + 0.147079i
\(867\) 0 0
\(868\) −4.97595 + 8.61859i −0.168895 + 0.292534i
\(869\) −10.3603 + 17.9446i −0.351449 + 0.608728i
\(870\) 0 0
\(871\) 0.770424 + 1.33441i 0.0261048 + 0.0452149i
\(872\) −3.34548 −0.113292
\(873\) 0 0
\(874\) −1.19603 −0.0404563
\(875\) −1.14433 1.98204i −0.0386854 0.0670051i
\(876\) 0 0
\(877\) −5.94165 + 10.2912i −0.200635 + 0.347511i −0.948733 0.316078i \(-0.897634\pi\)
0.748098 + 0.663588i \(0.230967\pi\)
\(878\) 0.234001 0.405301i 0.00789714 0.0136782i
\(879\) 0 0
\(880\) 1.04439 + 1.80893i 0.0352063 + 0.0609792i
\(881\) 35.8912 1.20920 0.604602 0.796528i \(-0.293332\pi\)
0.604602 + 0.796528i \(0.293332\pi\)
\(882\) 0 0
\(883\) 59.1872 1.99181 0.995904 0.0904131i \(-0.0288187\pi\)
0.995904 + 0.0904131i \(0.0288187\pi\)
\(884\) 0.671326 + 1.16277i 0.0225791 + 0.0391082i
\(885\) 0 0
\(886\) −0.620624 + 1.07495i −0.0208503 + 0.0361137i
\(887\) −28.2254 + 48.8877i −0.947715 + 1.64149i −0.197492 + 0.980305i \(0.563280\pi\)
−0.750223 + 0.661185i \(0.770054\pi\)
\(888\) 0 0
\(889\) 21.2447 + 36.7969i 0.712525 + 1.23413i
\(890\) 3.50984 0.117650
\(891\) 0 0
\(892\) 27.1498 0.909041
\(893\) 5.20634 + 9.01764i 0.174223 + 0.301764i
\(894\) 0 0
\(895\) −8.15080 + 14.1176i −0.272451 + 0.471899i
\(896\) 1.14433 1.98204i 0.0382294 0.0662153i
\(897\) 0 0
\(898\) 8.55455 + 14.8169i 0.285469 + 0.494447i
\(899\) −15.9694 −0.532610
\(900\) 0 0
\(901\) −2.75779 −0.0918754
\(902\) −1.18191 2.04713i −0.0393533 0.0681619i
\(903\) 0 0
\(904\) 1.93942 3.35917i 0.0645040 0.111724i
\(905\) −0.109898 + 0.190348i −0.00365312 + 0.00632739i
\(906\) 0 0
\(907\) 3.55848 + 6.16347i 0.118157 + 0.204655i 0.919037 0.394170i \(-0.128968\pi\)
−0.800880 + 0.598825i \(0.795635\pi\)
\(908\) 3.93393 0.130552
\(909\) 0 0
\(910\) −2.28866 −0.0758684
\(911\) −8.19985 14.2026i −0.271673 0.470552i 0.697617 0.716471i \(-0.254244\pi\)
−0.969290 + 0.245919i \(0.920910\pi\)
\(912\) 0 0
\(913\) 2.91878 5.05547i 0.0965974 0.167312i
\(914\) −6.22825 + 10.7876i −0.206012 + 0.356823i
\(915\) 0 0
\(916\) −3.73928 6.47663i −0.123549 0.213994i
\(917\) 15.5972 0.515065
\(918\) 0 0
\(919\) 5.18751 0.171120 0.0855601 0.996333i \(-0.472732\pi\)
0.0855601 + 0.996333i \(0.472732\pi\)
\(920\) 0.191931 + 0.332435i 0.00632779 + 0.0109601i
\(921\) 0 0
\(922\) −1.28757 + 2.23014i −0.0424040 + 0.0734459i
\(923\) 1.93179 3.34596i 0.0635858 0.110134i
\(924\) 0 0
\(925\) 1.28236 + 2.22111i 0.0421637 + 0.0730296i
\(926\) 8.53531 0.280488
\(927\) 0 0
\(928\) 3.67252 0.120557
\(929\) 2.35915 + 4.08616i 0.0774011 + 0.134063i 0.902128 0.431469i \(-0.142004\pi\)
−0.824727 + 0.565531i \(0.808671\pi\)
\(930\) 0 0
\(931\) −2.74504 + 4.75455i −0.0899652 + 0.155824i
\(932\) 5.58272 9.66955i 0.182868 0.316737i
\(933\) 0 0
\(934\) 0.213103 + 0.369106i 0.00697295 + 0.0120775i
\(935\) −2.80450 −0.0917170
\(936\) 0 0
\(937\) 41.4443 1.35393 0.676963 0.736017i \(-0.263296\pi\)
0.676963 + 0.736017i \(0.263296\pi\)
\(938\) 1.76324 + 3.05402i 0.0575718 + 0.0997172i
\(939\) 0 0
\(940\) 1.67096 2.89419i 0.0545007 0.0943981i
\(941\) 10.9111 18.8985i 0.355690 0.616074i −0.631546 0.775339i \(-0.717579\pi\)
0.987236 + 0.159265i \(0.0509125\pi\)
\(942\) 0 0
\(943\) −0.217204 0.376209i −0.00707315 0.0122510i
\(944\) −8.23155 −0.267914
\(945\) 0 0
\(946\) 8.88387 0.288840
\(947\) 7.23434 + 12.5302i 0.235084 + 0.407178i 0.959297 0.282398i \(-0.0911300\pi\)
−0.724213 + 0.689577i \(0.757797\pi\)
\(948\) 0 0
\(949\) 1.49161 2.58354i 0.0484196 0.0838652i
\(950\) 1.55789 2.69834i 0.0505445 0.0875457i
\(951\) 0 0
\(952\) 1.53644 + 2.66119i 0.0497962 + 0.0862496i
\(953\) 28.8687 0.935149 0.467575 0.883954i \(-0.345128\pi\)
0.467575 + 0.883954i \(0.345128\pi\)
\(954\) 0 0
\(955\) 0.136413 0.00441423
\(956\) −1.79160 3.10313i −0.0579443 0.100363i
\(957\) 0 0
\(958\) 3.51507 6.08829i 0.113567 0.196704i
\(959\) 15.3407 26.5708i 0.495376 0.858016i
\(960\) 0 0
\(961\) 6.04594 + 10.4719i 0.195030 + 0.337802i
\(962\) 2.56472 0.0826898
\(963\) 0 0
\(964\) −21.7135 −0.699345
\(965\) −9.94802 17.2305i −0.320238 0.554668i
\(966\) 0 0
\(967\) −10.9151 + 18.9054i −0.351005 + 0.607958i −0.986426 0.164208i \(-0.947493\pi\)
0.635421 + 0.772166i \(0.280827\pi\)
\(968\) 3.31850 5.74782i 0.106661 0.184742i
\(969\) 0 0
\(970\) −2.28738 3.96185i −0.0734432 0.127207i
\(971\) 31.1439 0.999454 0.499727 0.866183i \(-0.333434\pi\)
0.499727 + 0.866183i \(0.333434\pi\)
\(972\) 0 0
\(973\) 33.1447 1.06257
\(974\) 0.191181 + 0.331135i 0.00612583 + 0.0106103i
\(975\) 0 0
\(976\) 2.84691 4.93100i 0.0911274 0.157837i
\(977\) −14.2814 + 24.7361i −0.456903 + 0.791379i −0.998795 0.0490686i \(-0.984375\pi\)
0.541892 + 0.840448i \(0.317708\pi\)
\(978\) 0 0
\(979\) 3.66564 + 6.34908i 0.117154 + 0.202917i
\(980\) 1.76203 0.0562860
\(981\) 0 0
\(982\) −30.7662 −0.981789
\(983\) −10.2967 17.8344i −0.328414 0.568829i 0.653784 0.756682i \(-0.273181\pi\)
−0.982197 + 0.187852i \(0.939847\pi\)
\(984\) 0 0
\(985\) −3.79016 + 6.56475i −0.120765 + 0.209170i
\(986\) −2.46546 + 4.27030i −0.0785162 + 0.135994i
\(987\) 0 0
\(988\) −1.55789 2.69834i −0.0495630 0.0858456i
\(989\) 1.63262 0.0519144
\(990\) 0 0
\(991\) 0.397448 0.0126253 0.00631267 0.999980i \(-0.497991\pi\)
0.00631267 + 0.999980i \(0.497991\pi\)
\(992\) 2.17417 + 3.76578i 0.0690301 + 0.119564i
\(993\) 0 0
\(994\) 4.42122 7.65778i 0.140233 0.242890i
\(995\) −11.5353 + 19.9797i −0.365693 + 0.633398i
\(996\) 0 0
\(997\) 18.5238 + 32.0842i 0.586656 + 1.01612i 0.994667 + 0.103140i \(0.0328891\pi\)
−0.408011 + 0.912977i \(0.633778\pi\)
\(998\) 39.2310 1.24184
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3510.2.j.i.1171.5 10
3.2 odd 2 1170.2.j.j.391.5 10
9.2 odd 6 1170.2.j.j.781.5 yes 10
9.7 even 3 inner 3510.2.j.i.2341.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.j.j.391.5 10 3.2 odd 2
1170.2.j.j.781.5 yes 10 9.2 odd 6
3510.2.j.i.1171.5 10 1.1 even 1 trivial
3510.2.j.i.2341.5 10 9.7 even 3 inner