Properties

Label 3510.2.j.i
Level $3510$
Weight $2$
Character orbit 3510.j
Analytic conductor $28.027$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3510,2,Mod(1171,3510)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3510, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3510.1171"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3510 = 2 \cdot 3^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3510.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-5,0,-5,5,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.0274911095\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.8320271788800.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - 9x^{6} + 27x^{5} - 27x^{4} + 27x^{2} - 81x + 243 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 1170)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} + ( - \beta_{5} - 1) q^{4} + (\beta_{5} + 1) q^{5} + (\beta_{7} + \beta_{5}) q^{7} + q^{8} - q^{10} + (\beta_{9} - \beta_{4}) q^{11} + (\beta_{5} + 1) q^{13} + ( - \beta_{6} - \beta_{5} - 1) q^{14}+ \cdots + ( - \beta_{8} - 2 \beta_{7} + \beta_{6} + \cdots - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 5 q^{2} - 5 q^{4} + 5 q^{5} - 5 q^{7} + 10 q^{8} - 10 q^{10} + 2 q^{11} + 5 q^{13} - 5 q^{14} - 5 q^{16} - 16 q^{17} - 8 q^{19} + 5 q^{20} + 2 q^{22} + q^{23} - 5 q^{25} - 10 q^{26} + 10 q^{28}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - x^{9} + x^{8} - 9x^{6} + 27x^{5} - 27x^{4} + 27x^{2} - 81x + 243 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{9} - 4\nu^{8} + 4\nu^{7} + 6\nu^{6} - 18\nu^{5} + 36\nu^{4} - 81\nu^{3} + 54\nu^{2} + 108\nu - 162 ) / 81 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{9} + 2\nu^{8} - 11\nu^{7} + 12\nu^{6} - 18\nu^{5} + 54\nu^{3} - 162\nu^{2} + 108\nu ) / 81 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{8} + 4\nu^{7} - 4\nu^{6} + 3\nu^{5} + 9\nu^{4} - 27\nu^{3} + 54\nu^{2} - 54\nu - 27 ) / 27 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{9} + 2\nu^{8} - 2\nu^{7} - 9\nu^{6} + 27\nu^{5} - 36\nu^{4} + 27\nu^{3} + 27\nu^{2} - 216\nu + 162 ) / 81 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{9} + \nu^{8} - 10\nu^{7} + 12\nu^{6} + 54\nu^{3} - 162\nu^{2} + 54\nu + 243 ) / 81 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -2\nu^{9} + 8\nu^{8} - 8\nu^{7} - 12\nu^{6} + 36\nu^{5} - 72\nu^{4} + 81\nu^{3} - 27\nu^{2} - 297\nu + 324 ) / 81 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 2\nu^{9} - 8\nu^{8} - \nu^{7} + 21\nu^{6} - 45\nu^{5} + 72\nu^{4} - 81\nu^{3} - 135\nu^{2} + 459\nu - 324 ) / 81 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 2\nu^{9} - 11\nu^{8} + 11\nu^{7} + 18\nu^{6} - 45\nu^{5} + 81\nu^{4} - 135\nu^{3} + 378\nu - 405 ) / 81 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -8\nu^{9} + 5\nu^{8} + 13\nu^{7} - 12\nu^{6} - 45\nu^{4} + 216\nu^{2} + 27\nu - 891 ) / 81 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{8} + \beta_{7} - \beta_{4} - \beta_{3} - 2\beta_{2} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{8} - \beta_{7} - 3\beta_{6} + \beta_{4} - 2\beta_{3} - \beta_{2} + 3\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{8} - 2\beta_{7} - 6\beta_{6} + 2\beta_{4} - \beta_{3} + \beta_{2} - 3\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{9} - 8\beta_{8} + 5\beta_{7} - 6\beta_{6} + 9\beta_{5} + \beta_{4} + 10\beta_{3} + 2\beta_{2} + 18 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 3\beta_{9} - 7\beta_{8} + 7\beta_{7} + 18\beta_{5} - \beta_{4} + 2\beta_{3} - 17\beta_{2} + 3\beta _1 - 18 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 9 \beta_{9} + 10 \beta_{8} - 16 \beta_{7} - 3 \beta_{6} + 36 \beta_{5} + 7 \beta_{4} + \beta_{3} + \cdots + 18 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 6 \beta_{9} + 35 \beta_{8} - 14 \beta_{7} + 24 \beta_{6} + 18 \beta_{5} - 28 \beta_{4} + 17 \beta_{3} + \cdots + 36 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 24 \beta_{9} - 20 \beta_{8} + 20 \beta_{7} + 54 \beta_{6} + 63 \beta_{5} - 80 \beta_{4} + 52 \beta_{3} + \cdots + 99 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 36 \beta_{9} + 17 \beta_{8} - 38 \beta_{7} + 30 \beta_{6} - 36 \beta_{5} - 88 \beta_{4} - 55 \beta_{3} + \cdots - 342 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3510\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(2081\) \(2107\)
\(\chi(n)\) \(1\) \(-1 - \beta_{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1171.1
−0.268761 1.71107i
1.15639 + 1.28949i
−1.72991 + 0.0861500i
−0.315546 + 1.70307i
1.65783 0.501603i
−0.268761 + 1.71107i
1.15639 1.28949i
−1.72991 0.0861500i
−0.315546 1.70307i
1.65783 + 0.501603i
−0.500000 0.866025i 0 −0.500000 + 0.866025i 0.500000 0.866025i 0 −1.65934 2.87405i 1.00000 0 −1.00000
1171.2 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0.500000 0.866025i 0 −1.27139 2.20211i 1.00000 0 −1.00000
1171.3 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0.500000 0.866025i 0 −1.16800 2.02303i 1.00000 0 −1.00000
1171.4 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0.500000 0.866025i 0 0.454390 + 0.787026i 1.00000 0 −1.00000
1171.5 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0.500000 0.866025i 0 1.14433 + 1.98204i 1.00000 0 −1.00000
2341.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0.500000 + 0.866025i 0 −1.65934 + 2.87405i 1.00000 0 −1.00000
2341.2 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0.500000 + 0.866025i 0 −1.27139 + 2.20211i 1.00000 0 −1.00000
2341.3 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0.500000 + 0.866025i 0 −1.16800 + 2.02303i 1.00000 0 −1.00000
2341.4 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0.500000 + 0.866025i 0 0.454390 0.787026i 1.00000 0 −1.00000
2341.5 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0.500000 + 0.866025i 0 1.14433 1.98204i 1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1171.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3510.2.j.i 10
3.b odd 2 1 1170.2.j.j 10
9.c even 3 1 inner 3510.2.j.i 10
9.d odd 6 1 1170.2.j.j 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1170.2.j.j 10 3.b odd 2 1
1170.2.j.j 10 9.d odd 6 1
3510.2.j.i 10 1.a even 1 1 trivial
3510.2.j.i 10 9.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3510, [\chi])\):

\( T_{7}^{10} + 5 T_{7}^{9} + 27 T_{7}^{8} + 58 T_{7}^{7} + 191 T_{7}^{6} + 279 T_{7}^{5} + 917 T_{7}^{4} + \cdots + 1681 \) Copy content Toggle raw display
\( T_{11}^{10} - 2 T_{11}^{9} + 30 T_{11}^{8} - 76 T_{11}^{7} + 710 T_{11}^{6} - 1530 T_{11}^{5} + \cdots + 58564 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{5} \) Copy content Toggle raw display
$3$ \( T^{10} \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{5} \) Copy content Toggle raw display
$7$ \( T^{10} + 5 T^{9} + \cdots + 1681 \) Copy content Toggle raw display
$11$ \( T^{10} - 2 T^{9} + \cdots + 58564 \) Copy content Toggle raw display
$13$ \( (T^{2} - T + 1)^{5} \) Copy content Toggle raw display
$17$ \( (T^{5} + 8 T^{4} + \cdots + 166)^{2} \) Copy content Toggle raw display
$19$ \( (T^{5} + 4 T^{4} - 14 T^{3} + \cdots - 30)^{2} \) Copy content Toggle raw display
$23$ \( T^{10} - T^{9} + \cdots + 729 \) Copy content Toggle raw display
$29$ \( T^{10} - T^{9} + \cdots + 383161 \) Copy content Toggle raw display
$31$ \( T^{10} - 4 T^{9} + \cdots + 3006756 \) Copy content Toggle raw display
$37$ \( (T^{5} + 6 T^{4} + \cdots + 1662)^{2} \) Copy content Toggle raw display
$41$ \( T^{10} - 11 T^{9} + \cdots + 1771561 \) Copy content Toggle raw display
$43$ \( T^{10} - 10 T^{9} + \cdots + 1149184 \) Copy content Toggle raw display
$47$ \( T^{10} - 27 T^{9} + \cdots + 29648025 \) Copy content Toggle raw display
$53$ \( (T^{5} + 12 T^{4} + \cdots + 768)^{2} \) Copy content Toggle raw display
$59$ \( T^{10} - 18 T^{9} + \cdots + 43877376 \) Copy content Toggle raw display
$61$ \( T^{10} - 13 T^{9} + \cdots + 483025 \) Copy content Toggle raw display
$67$ \( T^{10} + 5 T^{9} + \cdots + 9455625 \) Copy content Toggle raw display
$71$ \( (T^{5} + 6 T^{4} + \cdots + 13344)^{2} \) Copy content Toggle raw display
$73$ \( (T^{5} - 12 T^{4} + \cdots - 2568)^{2} \) Copy content Toggle raw display
$79$ \( T^{10} + 2 T^{9} + \cdots + 306916 \) Copy content Toggle raw display
$83$ \( T^{10} - 9 T^{9} + \cdots + 8982009 \) Copy content Toggle raw display
$89$ \( (T^{5} + T^{4} - 146 T^{3} + \cdots - 2221)^{2} \) Copy content Toggle raw display
$97$ \( T^{10} + 2 T^{9} + \cdots + 14760964 \) Copy content Toggle raw display
show more
show less