Properties

Label 351.2.b.d.298.1
Level $351$
Weight $2$
Character 351.298
Analytic conductor $2.803$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(298,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.298"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-2,0,0,0,0,0,8,0,0,6,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.8112.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 5x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 298.1
Root \(-2.07431i\) of defining polynomial
Character \(\chi\) \(=\) 351.298
Dual form 351.2.b.d.298.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.07431i q^{2} -2.30278 q^{4} +2.70236i q^{5} -4.77668i q^{7} +0.628052i q^{8} +5.60555 q^{10} -2.07431i q^{11} +(3.30278 - 1.44626i) q^{13} -9.90833 q^{14} -3.30278 q^{16} -6.90833 q^{17} -3.33042i q^{19} -6.22294i q^{20} -4.30278 q^{22} +3.90833 q^{23} -2.30278 q^{25} +(-3.00000 - 6.85099i) q^{26} +10.9996i q^{28} +3.00000 q^{29} -2.89252i q^{31} +8.10709i q^{32} +14.3300i q^{34} +12.9083 q^{35} +7.66920i q^{37} -6.90833 q^{38} -1.69722 q^{40} -0.628052i q^{41} +5.90833 q^{43} +4.77668i q^{44} -8.10709i q^{46} +5.59489i q^{47} -15.8167 q^{49} +4.77668i q^{50} +(-7.60555 + 3.33042i) q^{52} +6.90833 q^{53} +5.60555 q^{55} +3.00000 q^{56} -6.22294i q^{58} -7.28888i q^{59} +9.60555 q^{61} -6.00000 q^{62} +10.2111 q^{64} +(3.90833 + 8.92530i) q^{65} +8.10709i q^{67} +15.9083 q^{68} -26.7759i q^{70} -2.51221i q^{71} +4.33879i q^{73} +15.9083 q^{74} +7.66920i q^{76} -9.90833 q^{77} +2.69722 q^{79} -8.92530i q^{80} -1.30278 q^{82} +2.26447i q^{83} -18.6688i q^{85} -12.2557i q^{86} +1.30278 q^{88} -2.51221i q^{89} +(-6.90833 - 15.7763i) q^{91} -9.00000 q^{92} +11.6056 q^{94} +9.00000 q^{95} +9.55336i q^{97} +32.8087i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} + 8 q^{10} + 6 q^{13} - 18 q^{14} - 6 q^{16} - 6 q^{17} - 10 q^{22} - 6 q^{23} - 2 q^{25} - 12 q^{26} + 12 q^{29} + 30 q^{35} - 6 q^{38} - 14 q^{40} + 2 q^{43} - 20 q^{49} - 16 q^{52} + 6 q^{53}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07431i 1.46676i −0.679818 0.733380i \(-0.737941\pi\)
0.679818 0.733380i \(-0.262059\pi\)
\(3\) 0 0
\(4\) −2.30278 −1.15139
\(5\) 2.70236i 1.20853i 0.796782 + 0.604267i \(0.206534\pi\)
−0.796782 + 0.604267i \(0.793466\pi\)
\(6\) 0 0
\(7\) 4.77668i 1.80541i −0.430255 0.902707i \(-0.641576\pi\)
0.430255 0.902707i \(-0.358424\pi\)
\(8\) 0.628052i 0.222050i
\(9\) 0 0
\(10\) 5.60555 1.77263
\(11\) 2.07431i 0.625429i −0.949847 0.312714i \(-0.898762\pi\)
0.949847 0.312714i \(-0.101238\pi\)
\(12\) 0 0
\(13\) 3.30278 1.44626i 0.916025 0.401121i
\(14\) −9.90833 −2.64811
\(15\) 0 0
\(16\) −3.30278 −0.825694
\(17\) −6.90833 −1.67552 −0.837758 0.546042i \(-0.816134\pi\)
−0.837758 + 0.546042i \(0.816134\pi\)
\(18\) 0 0
\(19\) 3.33042i 0.764050i −0.924152 0.382025i \(-0.875227\pi\)
0.924152 0.382025i \(-0.124773\pi\)
\(20\) 6.22294i 1.39149i
\(21\) 0 0
\(22\) −4.30278 −0.917355
\(23\) 3.90833 0.814942 0.407471 0.913218i \(-0.366411\pi\)
0.407471 + 0.913218i \(0.366411\pi\)
\(24\) 0 0
\(25\) −2.30278 −0.460555
\(26\) −3.00000 6.85099i −0.588348 1.34359i
\(27\) 0 0
\(28\) 10.9996i 2.07873i
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) 2.89252i 0.519513i −0.965674 0.259756i \(-0.916358\pi\)
0.965674 0.259756i \(-0.0836422\pi\)
\(32\) 8.10709i 1.43315i
\(33\) 0 0
\(34\) 14.3300i 2.45758i
\(35\) 12.9083 2.18191
\(36\) 0 0
\(37\) 7.66920i 1.26081i 0.776267 + 0.630404i \(0.217111\pi\)
−0.776267 + 0.630404i \(0.782889\pi\)
\(38\) −6.90833 −1.12068
\(39\) 0 0
\(40\) −1.69722 −0.268355
\(41\) 0.628052i 0.0980852i −0.998797 0.0490426i \(-0.984383\pi\)
0.998797 0.0490426i \(-0.0156170\pi\)
\(42\) 0 0
\(43\) 5.90833 0.901011 0.450506 0.892774i \(-0.351244\pi\)
0.450506 + 0.892774i \(0.351244\pi\)
\(44\) 4.77668i 0.720111i
\(45\) 0 0
\(46\) 8.10709i 1.19533i
\(47\) 5.59489i 0.816098i 0.912960 + 0.408049i \(0.133791\pi\)
−0.912960 + 0.408049i \(0.866209\pi\)
\(48\) 0 0
\(49\) −15.8167 −2.25952
\(50\) 4.77668i 0.675524i
\(51\) 0 0
\(52\) −7.60555 + 3.33042i −1.05470 + 0.461846i
\(53\) 6.90833 0.948932 0.474466 0.880274i \(-0.342641\pi\)
0.474466 + 0.880274i \(0.342641\pi\)
\(54\) 0 0
\(55\) 5.60555 0.755852
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) 6.22294i 0.817112i
\(59\) 7.28888i 0.948932i −0.880274 0.474466i \(-0.842641\pi\)
0.880274 0.474466i \(-0.157359\pi\)
\(60\) 0 0
\(61\) 9.60555 1.22986 0.614932 0.788580i \(-0.289183\pi\)
0.614932 + 0.788580i \(0.289183\pi\)
\(62\) −6.00000 −0.762001
\(63\) 0 0
\(64\) 10.2111 1.27639
\(65\) 3.90833 + 8.92530i 0.484768 + 1.10705i
\(66\) 0 0
\(67\) 8.10709i 0.990439i 0.868768 + 0.495220i \(0.164912\pi\)
−0.868768 + 0.495220i \(0.835088\pi\)
\(68\) 15.9083 1.92917
\(69\) 0 0
\(70\) 26.7759i 3.20033i
\(71\) 2.51221i 0.298144i −0.988826 0.149072i \(-0.952371\pi\)
0.988826 0.149072i \(-0.0476286\pi\)
\(72\) 0 0
\(73\) 4.33879i 0.507816i 0.967228 + 0.253908i \(0.0817161\pi\)
−0.967228 + 0.253908i \(0.918284\pi\)
\(74\) 15.9083 1.84931
\(75\) 0 0
\(76\) 7.66920i 0.879718i
\(77\) −9.90833 −1.12916
\(78\) 0 0
\(79\) 2.69722 0.303461 0.151731 0.988422i \(-0.451515\pi\)
0.151731 + 0.988422i \(0.451515\pi\)
\(80\) 8.92530i 0.997879i
\(81\) 0 0
\(82\) −1.30278 −0.143868
\(83\) 2.26447i 0.248558i 0.992247 + 0.124279i \(0.0396618\pi\)
−0.992247 + 0.124279i \(0.960338\pi\)
\(84\) 0 0
\(85\) 18.6688i 2.02492i
\(86\) 12.2557i 1.32157i
\(87\) 0 0
\(88\) 1.30278 0.138876
\(89\) 2.51221i 0.266293i −0.991096 0.133147i \(-0.957492\pi\)
0.991096 0.133147i \(-0.0425081\pi\)
\(90\) 0 0
\(91\) −6.90833 15.7763i −0.724189 1.65381i
\(92\) −9.00000 −0.938315
\(93\) 0 0
\(94\) 11.6056 1.19702
\(95\) 9.00000 0.923381
\(96\) 0 0
\(97\) 9.55336i 0.969996i 0.874515 + 0.484998i \(0.161180\pi\)
−0.874515 + 0.484998i \(0.838820\pi\)
\(98\) 32.8087i 3.31418i
\(99\) 0 0
\(100\) 5.30278 0.530278
\(101\) −15.0000 −1.49256 −0.746278 0.665635i \(-0.768161\pi\)
−0.746278 + 0.665635i \(0.768161\pi\)
\(102\) 0 0
\(103\) −10.9083 −1.07483 −0.537415 0.843318i \(-0.680599\pi\)
−0.537415 + 0.843318i \(0.680599\pi\)
\(104\) 0.908327 + 2.07431i 0.0890688 + 0.203403i
\(105\) 0 0
\(106\) 14.3300i 1.39186i
\(107\) 2.09167 0.202210 0.101105 0.994876i \(-0.467762\pi\)
0.101105 + 0.994876i \(0.467762\pi\)
\(108\) 0 0
\(109\) 3.33042i 0.318996i 0.987198 + 0.159498i \(0.0509876\pi\)
−0.987198 + 0.159498i \(0.949012\pi\)
\(110\) 11.6277i 1.10865i
\(111\) 0 0
\(112\) 15.7763i 1.49072i
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) 0 0
\(115\) 10.5617i 0.984886i
\(116\) −6.90833 −0.641422
\(117\) 0 0
\(118\) −15.1194 −1.39186
\(119\) 32.9989i 3.02500i
\(120\) 0 0
\(121\) 6.69722 0.608839
\(122\) 19.9249i 1.80392i
\(123\) 0 0
\(124\) 6.66083i 0.598160i
\(125\) 7.28888i 0.651938i
\(126\) 0 0
\(127\) 17.4222 1.54597 0.772985 0.634424i \(-0.218763\pi\)
0.772985 + 0.634424i \(0.218763\pi\)
\(128\) 4.96684i 0.439010i
\(129\) 0 0
\(130\) 18.5139 8.10709i 1.62377 0.711039i
\(131\) 10.8167 0.945055 0.472528 0.881316i \(-0.343342\pi\)
0.472528 + 0.881316i \(0.343342\pi\)
\(132\) 0 0
\(133\) −15.9083 −1.37943
\(134\) 16.8167 1.45274
\(135\) 0 0
\(136\) 4.33879i 0.372048i
\(137\) 14.0823i 1.20313i −0.798823 0.601566i \(-0.794544\pi\)
0.798823 0.601566i \(-0.205456\pi\)
\(138\) 0 0
\(139\) −13.0000 −1.10265 −0.551323 0.834292i \(-0.685877\pi\)
−0.551323 + 0.834292i \(0.685877\pi\)
\(140\) −29.7250 −2.51222
\(141\) 0 0
\(142\) −5.21110 −0.437306
\(143\) −3.00000 6.85099i −0.250873 0.572909i
\(144\) 0 0
\(145\) 8.10709i 0.673258i
\(146\) 9.00000 0.744845
\(147\) 0 0
\(148\) 17.6605i 1.45168i
\(149\) 4.96684i 0.406899i −0.979085 0.203450i \(-0.934785\pi\)
0.979085 0.203450i \(-0.0652153\pi\)
\(150\) 0 0
\(151\) 10.5617i 0.859501i 0.902948 + 0.429751i \(0.141398\pi\)
−0.902948 + 0.429751i \(0.858602\pi\)
\(152\) 2.09167 0.169657
\(153\) 0 0
\(154\) 20.5530i 1.65621i
\(155\) 7.81665 0.627849
\(156\) 0 0
\(157\) 7.72498 0.616521 0.308260 0.951302i \(-0.400253\pi\)
0.308260 + 0.951302i \(0.400253\pi\)
\(158\) 5.59489i 0.445105i
\(159\) 0 0
\(160\) −21.9083 −1.73201
\(161\) 18.6688i 1.47131i
\(162\) 0 0
\(163\) 2.32205i 0.181877i 0.995857 + 0.0909384i \(0.0289866\pi\)
−0.995857 + 0.0909384i \(0.971013\pi\)
\(164\) 1.44626i 0.112934i
\(165\) 0 0
\(166\) 4.69722 0.364575
\(167\) 6.03278i 0.466831i 0.972377 + 0.233415i \(0.0749902\pi\)
−0.972377 + 0.233415i \(0.925010\pi\)
\(168\) 0 0
\(169\) 8.81665 9.55336i 0.678204 0.734874i
\(170\) −38.7250 −2.97007
\(171\) 0 0
\(172\) −13.6056 −1.03741
\(173\) −3.90833 −0.297145 −0.148572 0.988902i \(-0.547468\pi\)
−0.148572 + 0.988902i \(0.547468\pi\)
\(174\) 0 0
\(175\) 10.9996i 0.831493i
\(176\) 6.85099i 0.516413i
\(177\) 0 0
\(178\) −5.21110 −0.390589
\(179\) −11.0917 −0.829031 −0.414515 0.910042i \(-0.636049\pi\)
−0.414515 + 0.910042i \(0.636049\pi\)
\(180\) 0 0
\(181\) 8.90833 0.662151 0.331075 0.943604i \(-0.392589\pi\)
0.331075 + 0.943604i \(0.392589\pi\)
\(182\) −32.7250 + 14.3300i −2.42574 + 1.06221i
\(183\) 0 0
\(184\) 2.45463i 0.180958i
\(185\) −20.7250 −1.52373
\(186\) 0 0
\(187\) 14.3300i 1.04792i
\(188\) 12.8838i 0.939646i
\(189\) 0 0
\(190\) 18.6688i 1.35438i
\(191\) −8.72498 −0.631317 −0.315659 0.948873i \(-0.602225\pi\)
−0.315659 + 0.948873i \(0.602225\pi\)
\(192\) 0 0
\(193\) 22.4371i 1.61506i 0.589827 + 0.807530i \(0.299196\pi\)
−0.589827 + 0.807530i \(0.700804\pi\)
\(194\) 19.8167 1.42275
\(195\) 0 0
\(196\) 36.4222 2.60159
\(197\) 26.5282i 1.89005i −0.326991 0.945027i \(-0.606035\pi\)
0.326991 0.945027i \(-0.393965\pi\)
\(198\) 0 0
\(199\) −26.1194 −1.85156 −0.925779 0.378066i \(-0.876589\pi\)
−0.925779 + 0.378066i \(0.876589\pi\)
\(200\) 1.44626i 0.102266i
\(201\) 0 0
\(202\) 31.1147i 2.18922i
\(203\) 14.3300i 1.00577i
\(204\) 0 0
\(205\) 1.69722 0.118539
\(206\) 22.6273i 1.57652i
\(207\) 0 0
\(208\) −10.9083 + 4.77668i −0.756356 + 0.331203i
\(209\) −6.90833 −0.477859
\(210\) 0 0
\(211\) −5.11943 −0.352436 −0.176218 0.984351i \(-0.556386\pi\)
−0.176218 + 0.984351i \(0.556386\pi\)
\(212\) −15.9083 −1.09259
\(213\) 0 0
\(214\) 4.33879i 0.296593i
\(215\) 15.9665i 1.08890i
\(216\) 0 0
\(217\) −13.8167 −0.937936
\(218\) 6.90833 0.467891
\(219\) 0 0
\(220\) −12.9083 −0.870279
\(221\) −22.8167 + 9.99125i −1.53481 + 0.672084i
\(222\) 0 0
\(223\) 0.437893i 0.0293235i −0.999893 0.0146617i \(-0.995333\pi\)
0.999893 0.0146617i \(-0.00466714\pi\)
\(224\) 38.7250 2.58742
\(225\) 0 0
\(226\) 31.1147i 2.06972i
\(227\) 3.08268i 0.204605i −0.994753 0.102302i \(-0.967379\pi\)
0.994753 0.102302i \(-0.0326209\pi\)
\(228\) 0 0
\(229\) 19.5446i 1.29154i −0.763530 0.645772i \(-0.776536\pi\)
0.763530 0.645772i \(-0.223464\pi\)
\(230\) 21.9083 1.44459
\(231\) 0 0
\(232\) 1.88415i 0.123701i
\(233\) 4.81665 0.315549 0.157775 0.987475i \(-0.449568\pi\)
0.157775 + 0.987475i \(0.449568\pi\)
\(234\) 0 0
\(235\) −15.1194 −0.986283
\(236\) 16.7847i 1.09259i
\(237\) 0 0
\(238\) 68.4500 4.43695
\(239\) 21.3712i 1.38239i 0.722670 + 0.691194i \(0.242915\pi\)
−0.722670 + 0.691194i \(0.757085\pi\)
\(240\) 0 0
\(241\) 15.7763i 1.01624i −0.861286 0.508120i \(-0.830341\pi\)
0.861286 0.508120i \(-0.169659\pi\)
\(242\) 13.8921i 0.893021i
\(243\) 0 0
\(244\) −22.1194 −1.41605
\(245\) 42.7424i 2.73071i
\(246\) 0 0
\(247\) −4.81665 10.9996i −0.306476 0.699889i
\(248\) 1.81665 0.115358
\(249\) 0 0
\(250\) 15.1194 0.956237
\(251\) 24.9083 1.57220 0.786100 0.618100i \(-0.212097\pi\)
0.786100 + 0.618100i \(0.212097\pi\)
\(252\) 0 0
\(253\) 8.10709i 0.509689i
\(254\) 36.1391i 2.26757i
\(255\) 0 0
\(256\) 10.1194 0.632464
\(257\) −14.0917 −0.879014 −0.439507 0.898239i \(-0.644847\pi\)
−0.439507 + 0.898239i \(0.644847\pi\)
\(258\) 0 0
\(259\) 36.6333 2.27628
\(260\) −9.00000 20.5530i −0.558156 1.27464i
\(261\) 0 0
\(262\) 22.4371i 1.38617i
\(263\) 18.9083 1.16594 0.582969 0.812495i \(-0.301891\pi\)
0.582969 + 0.812495i \(0.301891\pi\)
\(264\) 0 0
\(265\) 18.6688i 1.14682i
\(266\) 32.9989i 2.02329i
\(267\) 0 0
\(268\) 18.6688i 1.14038i
\(269\) −25.5416 −1.55730 −0.778650 0.627458i \(-0.784095\pi\)
−0.778650 + 0.627458i \(0.784095\pi\)
\(270\) 0 0
\(271\) 23.0076i 1.39761i −0.715311 0.698806i \(-0.753715\pi\)
0.715311 0.698806i \(-0.246285\pi\)
\(272\) 22.8167 1.38346
\(273\) 0 0
\(274\) −29.2111 −1.76471
\(275\) 4.77668i 0.288045i
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 26.9661i 1.61732i
\(279\) 0 0
\(280\) 8.10709i 0.484492i
\(281\) 16.5945i 0.989945i 0.868909 + 0.494973i \(0.164822\pi\)
−0.868909 + 0.494973i \(0.835178\pi\)
\(282\) 0 0
\(283\) 13.5139 0.803317 0.401658 0.915790i \(-0.368434\pi\)
0.401658 + 0.915790i \(0.368434\pi\)
\(284\) 5.78505i 0.343279i
\(285\) 0 0
\(286\) −14.2111 + 6.22294i −0.840320 + 0.367970i
\(287\) −3.00000 −0.177084
\(288\) 0 0
\(289\) 30.7250 1.80735
\(290\) 16.8167 0.987508
\(291\) 0 0
\(292\) 9.99125i 0.584694i
\(293\) 6.03278i 0.352439i 0.984351 + 0.176219i \(0.0563868\pi\)
−0.984351 + 0.176219i \(0.943613\pi\)
\(294\) 0 0
\(295\) 19.6972 1.14682
\(296\) −4.81665 −0.279962
\(297\) 0 0
\(298\) −10.3028 −0.596824
\(299\) 12.9083 5.65246i 0.746508 0.326890i
\(300\) 0 0
\(301\) 28.2222i 1.62670i
\(302\) 21.9083 1.26068
\(303\) 0 0
\(304\) 10.9996i 0.630871i
\(305\) 25.9577i 1.48633i
\(306\) 0 0
\(307\) 24.3213i 1.38809i 0.719932 + 0.694044i \(0.244173\pi\)
−0.719932 + 0.694044i \(0.755827\pi\)
\(308\) 22.8167 1.30010
\(309\) 0 0
\(310\) 16.2142i 0.920904i
\(311\) −5.09167 −0.288722 −0.144361 0.989525i \(-0.546113\pi\)
−0.144361 + 0.989525i \(0.546113\pi\)
\(312\) 0 0
\(313\) −9.02776 −0.510279 −0.255139 0.966904i \(-0.582121\pi\)
−0.255139 + 0.966904i \(0.582121\pi\)
\(314\) 16.0240i 0.904288i
\(315\) 0 0
\(316\) −6.21110 −0.349402
\(317\) 3.08268i 0.173141i −0.996246 0.0865703i \(-0.972409\pi\)
0.996246 0.0865703i \(-0.0275907\pi\)
\(318\) 0 0
\(319\) 6.22294i 0.348418i
\(320\) 27.5941i 1.54256i
\(321\) 0 0
\(322\) −38.7250 −2.15806
\(323\) 23.0076i 1.28018i
\(324\) 0 0
\(325\) −7.60555 + 3.33042i −0.421880 + 0.184738i
\(326\) 4.81665 0.266770
\(327\) 0 0
\(328\) 0.394449 0.0217798
\(329\) 26.7250 1.47340
\(330\) 0 0
\(331\) 2.75994i 0.151700i −0.997119 0.0758500i \(-0.975833\pi\)
0.997119 0.0758500i \(-0.0241670\pi\)
\(332\) 5.21457i 0.286187i
\(333\) 0 0
\(334\) 12.5139 0.684729
\(335\) −21.9083 −1.19698
\(336\) 0 0
\(337\) −16.2111 −0.883075 −0.441538 0.897243i \(-0.645567\pi\)
−0.441538 + 0.897243i \(0.645567\pi\)
\(338\) −19.8167 18.2885i −1.07788 0.994763i
\(339\) 0 0
\(340\) 42.9901i 2.33147i
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) 42.1143i 2.27396i
\(344\) 3.71073i 0.200069i
\(345\) 0 0
\(346\) 8.10709i 0.435840i
\(347\) −16.8167 −0.902765 −0.451383 0.892330i \(-0.649069\pi\)
−0.451383 + 0.892330i \(0.649069\pi\)
\(348\) 0 0
\(349\) 10.1238i 0.541916i −0.962591 0.270958i \(-0.912659\pi\)
0.962591 0.270958i \(-0.0873405\pi\)
\(350\) 22.8167 1.21960
\(351\) 0 0
\(352\) 16.8167 0.896331
\(353\) 4.39636i 0.233995i −0.993132 0.116997i \(-0.962673\pi\)
0.993132 0.116997i \(-0.0373269\pi\)
\(354\) 0 0
\(355\) 6.78890 0.360317
\(356\) 5.78505i 0.306607i
\(357\) 0 0
\(358\) 23.0076i 1.21599i
\(359\) 10.1814i 0.537354i −0.963230 0.268677i \(-0.913414\pi\)
0.963230 0.268677i \(-0.0865864\pi\)
\(360\) 0 0
\(361\) 7.90833 0.416228
\(362\) 18.4787i 0.971217i
\(363\) 0 0
\(364\) 15.9083 + 36.3293i 0.833823 + 1.90417i
\(365\) −11.7250 −0.613714
\(366\) 0 0
\(367\) −5.18335 −0.270568 −0.135284 0.990807i \(-0.543195\pi\)
−0.135284 + 0.990807i \(0.543195\pi\)
\(368\) −12.9083 −0.672893
\(369\) 0 0
\(370\) 42.9901i 2.23495i
\(371\) 32.9989i 1.71322i
\(372\) 0 0
\(373\) −4.48612 −0.232283 −0.116141 0.993233i \(-0.537053\pi\)
−0.116141 + 0.993233i \(0.537053\pi\)
\(374\) 29.7250 1.53704
\(375\) 0 0
\(376\) −3.51388 −0.181214
\(377\) 9.90833 4.33879i 0.510305 0.223459i
\(378\) 0 0
\(379\) 29.6684i 1.52397i −0.647597 0.761983i \(-0.724226\pi\)
0.647597 0.761983i \(-0.275774\pi\)
\(380\) −20.7250 −1.06317
\(381\) 0 0
\(382\) 18.0983i 0.925992i
\(383\) 34.9406i 1.78538i −0.450671 0.892690i \(-0.648815\pi\)
0.450671 0.892690i \(-0.351185\pi\)
\(384\) 0 0
\(385\) 26.7759i 1.36463i
\(386\) 46.5416 2.36891
\(387\) 0 0
\(388\) 21.9992i 1.11684i
\(389\) −33.6333 −1.70528 −0.852638 0.522502i \(-0.824999\pi\)
−0.852638 + 0.522502i \(0.824999\pi\)
\(390\) 0 0
\(391\) −27.0000 −1.36545
\(392\) 9.93367i 0.501726i
\(393\) 0 0
\(394\) −55.0278 −2.77226
\(395\) 7.28888i 0.366744i
\(396\) 0 0
\(397\) 12.3133i 0.617987i −0.951064 0.308993i \(-0.900008\pi\)
0.951064 0.308993i \(-0.0999921\pi\)
\(398\) 54.1799i 2.71579i
\(399\) 0 0
\(400\) 7.60555 0.380278
\(401\) 20.3628i 1.01687i 0.861100 + 0.508435i \(0.169776\pi\)
−0.861100 + 0.508435i \(0.830224\pi\)
\(402\) 0 0
\(403\) −4.18335 9.55336i −0.208387 0.475887i
\(404\) 34.5416 1.71851
\(405\) 0 0
\(406\) −29.7250 −1.47523
\(407\) 15.9083 0.788546
\(408\) 0 0
\(409\) 25.7675i 1.27412i 0.770813 + 0.637062i \(0.219850\pi\)
−0.770813 + 0.637062i \(0.780150\pi\)
\(410\) 3.52058i 0.173869i
\(411\) 0 0
\(412\) 25.1194 1.23755
\(413\) −34.8167 −1.71322
\(414\) 0 0
\(415\) −6.11943 −0.300391
\(416\) 11.7250 + 26.7759i 0.574864 + 1.31280i
\(417\) 0 0
\(418\) 14.3300i 0.700905i
\(419\) 19.8167 0.968107 0.484053 0.875038i \(-0.339164\pi\)
0.484053 + 0.875038i \(0.339164\pi\)
\(420\) 0 0
\(421\) 18.2309i 0.888521i 0.895898 + 0.444261i \(0.146534\pi\)
−0.895898 + 0.444261i \(0.853466\pi\)
\(422\) 10.6193i 0.516939i
\(423\) 0 0
\(424\) 4.33879i 0.210710i
\(425\) 15.9083 0.771667
\(426\) 0 0
\(427\) 45.8826i 2.22042i
\(428\) −4.81665 −0.232822
\(429\) 0 0
\(430\) 33.1194 1.59716
\(431\) 18.8590i 0.908405i −0.890898 0.454203i \(-0.849924\pi\)
0.890898 0.454203i \(-0.150076\pi\)
\(432\) 0 0
\(433\) 15.3305 0.736738 0.368369 0.929680i \(-0.379916\pi\)
0.368369 + 0.929680i \(0.379916\pi\)
\(434\) 28.6601i 1.37573i
\(435\) 0 0
\(436\) 7.66920i 0.367288i
\(437\) 13.0164i 0.622657i
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 3.52058i 0.167837i
\(441\) 0 0
\(442\) 20.7250 + 47.3289i 0.985787 + 2.25121i
\(443\) 16.8167 0.798983 0.399492 0.916737i \(-0.369187\pi\)
0.399492 + 0.916737i \(0.369187\pi\)
\(444\) 0 0
\(445\) 6.78890 0.321825
\(446\) −0.908327 −0.0430105
\(447\) 0 0
\(448\) 48.7752i 2.30441i
\(449\) 27.1562i 1.28158i 0.767715 + 0.640791i \(0.221393\pi\)
−0.767715 + 0.640791i \(0.778607\pi\)
\(450\) 0 0
\(451\) −1.30278 −0.0613453
\(452\) −34.5416 −1.62470
\(453\) 0 0
\(454\) −6.39445 −0.300106
\(455\) 42.6333 18.6688i 1.99868 0.875208i
\(456\) 0 0
\(457\) 0.132583i 0.00620198i −0.999995 0.00310099i \(-0.999013\pi\)
0.999995 0.00310099i \(-0.000987078\pi\)
\(458\) −40.5416 −1.89439
\(459\) 0 0
\(460\) 24.3213i 1.13399i
\(461\) 17.9082i 0.834067i 0.908891 + 0.417034i \(0.136930\pi\)
−0.908891 + 0.417034i \(0.863070\pi\)
\(462\) 0 0
\(463\) 8.23968i 0.382930i −0.981499 0.191465i \(-0.938676\pi\)
0.981499 0.191465i \(-0.0613239\pi\)
\(464\) −9.90833 −0.459983
\(465\) 0 0
\(466\) 9.99125i 0.462836i
\(467\) −36.6333 −1.69519 −0.847594 0.530646i \(-0.821949\pi\)
−0.847594 + 0.530646i \(0.821949\pi\)
\(468\) 0 0
\(469\) 38.7250 1.78815
\(470\) 31.3624i 1.44664i
\(471\) 0 0
\(472\) 4.57779 0.210710
\(473\) 12.2557i 0.563519i
\(474\) 0 0
\(475\) 7.66920i 0.351887i
\(476\) 75.9890i 3.48295i
\(477\) 0 0
\(478\) 44.3305 2.02763
\(479\) 4.58652i 0.209563i 0.994495 + 0.104782i \(0.0334144\pi\)
−0.994495 + 0.104782i \(0.966586\pi\)
\(480\) 0 0
\(481\) 11.0917 + 25.3297i 0.505737 + 1.15493i
\(482\) −32.7250 −1.49058
\(483\) 0 0
\(484\) −15.4222 −0.701009
\(485\) −25.8167 −1.17227
\(486\) 0 0
\(487\) 6.66083i 0.301831i −0.988547 0.150916i \(-0.951778\pi\)
0.988547 0.150916i \(-0.0482222\pi\)
\(488\) 6.03278i 0.273091i
\(489\) 0 0
\(490\) −88.6611 −4.00530
\(491\) −9.90833 −0.447157 −0.223578 0.974686i \(-0.571774\pi\)
−0.223578 + 0.974686i \(0.571774\pi\)
\(492\) 0 0
\(493\) −20.7250 −0.933406
\(494\) −22.8167 + 9.99125i −1.02657 + 0.449528i
\(495\) 0 0
\(496\) 9.55336i 0.428958i
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 2.45463i 0.109884i 0.998490 + 0.0549422i \(0.0174974\pi\)
−0.998490 + 0.0549422i \(0.982503\pi\)
\(500\) 16.7847i 0.750633i
\(501\) 0 0
\(502\) 51.6677i 2.30604i
\(503\) 18.6333 0.830818 0.415409 0.909635i \(-0.363638\pi\)
0.415409 + 0.909635i \(0.363638\pi\)
\(504\) 0 0
\(505\) 40.5355i 1.80380i
\(506\) −16.8167 −0.747591
\(507\) 0 0
\(508\) −40.1194 −1.78001
\(509\) 21.6189i 0.958242i −0.877749 0.479121i \(-0.840956\pi\)
0.877749 0.479121i \(-0.159044\pi\)
\(510\) 0 0
\(511\) 20.7250 0.916819
\(512\) 30.9245i 1.36668i
\(513\) 0 0
\(514\) 29.2305i 1.28930i
\(515\) 29.4783i 1.29897i
\(516\) 0 0
\(517\) 11.6056 0.510412
\(518\) 75.9890i 3.33876i
\(519\) 0 0
\(520\) −5.60555 + 2.45463i −0.245820 + 0.107643i
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 0 0
\(523\) −13.9083 −0.608169 −0.304084 0.952645i \(-0.598350\pi\)
−0.304084 + 0.952645i \(0.598350\pi\)
\(524\) −24.9083 −1.08813
\(525\) 0 0
\(526\) 39.2218i 1.71015i
\(527\) 19.9825i 0.870451i
\(528\) 0 0
\(529\) −7.72498 −0.335869
\(530\) 38.7250 1.68211
\(531\) 0 0
\(532\) 36.6333 1.58826
\(533\) −0.908327 2.07431i −0.0393440 0.0898485i
\(534\) 0 0
\(535\) 5.65246i 0.244377i
\(536\) −5.09167 −0.219927
\(537\) 0 0
\(538\) 52.9814i 2.28419i
\(539\) 32.8087i 1.41317i
\(540\) 0 0
\(541\) 17.6605i 0.759282i 0.925134 + 0.379641i \(0.123952\pi\)
−0.925134 + 0.379641i \(0.876048\pi\)
\(542\) −47.7250 −2.04996
\(543\) 0 0
\(544\) 56.0065i 2.40126i
\(545\) −9.00000 −0.385518
\(546\) 0 0
\(547\) 19.0917 0.816301 0.408150 0.912915i \(-0.366174\pi\)
0.408150 + 0.912915i \(0.366174\pi\)
\(548\) 32.4284i 1.38527i
\(549\) 0 0
\(550\) 9.90833 0.422492
\(551\) 9.99125i 0.425642i
\(552\) 0 0
\(553\) 12.8838i 0.547874i
\(554\) 20.7431i 0.881291i
\(555\) 0 0
\(556\) 29.9361 1.26957
\(557\) 23.1228i 0.979743i 0.871795 + 0.489871i \(0.162956\pi\)
−0.871795 + 0.489871i \(0.837044\pi\)
\(558\) 0 0
\(559\) 19.5139 8.54499i 0.825349 0.361414i
\(560\) −42.6333 −1.80159
\(561\) 0 0
\(562\) 34.4222 1.45201
\(563\) −12.6333 −0.532430 −0.266215 0.963914i \(-0.585773\pi\)
−0.266215 + 0.963914i \(0.585773\pi\)
\(564\) 0 0
\(565\) 40.5355i 1.70534i
\(566\) 28.0320i 1.17827i
\(567\) 0 0
\(568\) 1.57779 0.0662028
\(569\) 30.6333 1.28422 0.642108 0.766615i \(-0.278060\pi\)
0.642108 + 0.766615i \(0.278060\pi\)
\(570\) 0 0
\(571\) 16.2389 0.679575 0.339788 0.940502i \(-0.389645\pi\)
0.339788 + 0.940502i \(0.389645\pi\)
\(572\) 6.90833 + 15.7763i 0.288852 + 0.659640i
\(573\) 0 0
\(574\) 6.22294i 0.259740i
\(575\) −9.00000 −0.375326
\(576\) 0 0
\(577\) 13.0164i 0.541878i 0.962597 + 0.270939i \(0.0873342\pi\)
−0.962597 + 0.270939i \(0.912666\pi\)
\(578\) 63.7332i 2.65095i
\(579\) 0 0
\(580\) 18.6688i 0.775181i
\(581\) 10.8167 0.448750
\(582\) 0 0
\(583\) 14.3300i 0.593489i
\(584\) −2.72498 −0.112761
\(585\) 0 0
\(586\) 12.5139 0.516944
\(587\) 27.5941i 1.13893i 0.822015 + 0.569466i \(0.192850\pi\)
−0.822015 + 0.569466i \(0.807150\pi\)
\(588\) 0 0
\(589\) −9.63331 −0.396934
\(590\) 40.8582i 1.68211i
\(591\) 0 0
\(592\) 25.3297i 1.04104i
\(593\) 45.8251i 1.88181i 0.338672 + 0.940905i \(0.390022\pi\)
−0.338672 + 0.940905i \(0.609978\pi\)
\(594\) 0 0
\(595\) −89.1749 −3.65582
\(596\) 11.4375i 0.468499i
\(597\) 0 0
\(598\) −11.7250 26.7759i −0.479470 1.09495i
\(599\) −21.6333 −0.883913 −0.441956 0.897036i \(-0.645715\pi\)
−0.441956 + 0.897036i \(0.645715\pi\)
\(600\) 0 0
\(601\) −33.3028 −1.35845 −0.679224 0.733931i \(-0.737684\pi\)
−0.679224 + 0.733931i \(0.737684\pi\)
\(602\) −58.5416 −2.38598
\(603\) 0 0
\(604\) 24.3213i 0.989619i
\(605\) 18.0983i 0.735802i
\(606\) 0 0
\(607\) 7.72498 0.313547 0.156774 0.987635i \(-0.449891\pi\)
0.156774 + 0.987635i \(0.449891\pi\)
\(608\) 27.0000 1.09499
\(609\) 0 0
\(610\) 53.8444 2.18010
\(611\) 8.09167 + 18.4787i 0.327354 + 0.747567i
\(612\) 0 0
\(613\) 5.65246i 0.228301i −0.993463 0.114150i \(-0.963585\pi\)
0.993463 0.114150i \(-0.0364146\pi\)
\(614\) 50.4500 2.03599
\(615\) 0 0
\(616\) 6.22294i 0.250729i
\(617\) 24.9493i 1.00442i −0.864745 0.502211i \(-0.832520\pi\)
0.864745 0.502211i \(-0.167480\pi\)
\(618\) 0 0
\(619\) 16.2142i 0.651703i 0.945421 + 0.325852i \(0.105651\pi\)
−0.945421 + 0.325852i \(0.894349\pi\)
\(620\) −18.0000 −0.722897
\(621\) 0 0
\(622\) 10.5617i 0.423487i
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −31.2111 −1.24844
\(626\) 18.7264i 0.748457i
\(627\) 0 0
\(628\) −17.7889 −0.709854
\(629\) 52.9814i 2.11250i
\(630\) 0 0
\(631\) 27.6517i 1.10080i 0.834902 + 0.550398i \(0.185524\pi\)
−0.834902 + 0.550398i \(0.814476\pi\)
\(632\) 1.69400i 0.0673835i
\(633\) 0 0
\(634\) −6.39445 −0.253956
\(635\) 47.0812i 1.86836i
\(636\) 0 0
\(637\) −52.2389 + 22.8750i −2.06978 + 0.906341i
\(638\) −12.9083 −0.511046
\(639\) 0 0
\(640\) 13.4222 0.530559
\(641\) −1.81665 −0.0717535 −0.0358768 0.999356i \(-0.511422\pi\)
−0.0358768 + 0.999356i \(0.511422\pi\)
\(642\) 0 0
\(643\) 26.7759i 1.05594i 0.849263 + 0.527969i \(0.177046\pi\)
−0.849263 + 0.527969i \(0.822954\pi\)
\(644\) 42.9901i 1.69405i
\(645\) 0 0
\(646\) 47.7250 1.87771
\(647\) 34.5416 1.35797 0.678986 0.734151i \(-0.262420\pi\)
0.678986 + 0.734151i \(0.262420\pi\)
\(648\) 0 0
\(649\) −15.1194 −0.593490
\(650\) 6.90833 + 15.7763i 0.270967 + 0.618797i
\(651\) 0 0
\(652\) 5.34715i 0.209411i
\(653\) 1.81665 0.0710912 0.0355456 0.999368i \(-0.488683\pi\)
0.0355456 + 0.999368i \(0.488683\pi\)
\(654\) 0 0
\(655\) 29.2305i 1.14213i
\(656\) 2.07431i 0.0809883i
\(657\) 0 0
\(658\) 55.4360i 2.16112i
\(659\) 12.6333 0.492124 0.246062 0.969254i \(-0.420863\pi\)
0.246062 + 0.969254i \(0.420863\pi\)
\(660\) 0 0
\(661\) 46.7584i 1.81869i 0.416041 + 0.909346i \(0.363417\pi\)
−0.416041 + 0.909346i \(0.636583\pi\)
\(662\) −5.72498 −0.222508
\(663\) 0 0
\(664\) −1.42221 −0.0551923
\(665\) 42.9901i 1.66708i
\(666\) 0 0
\(667\) 11.7250 0.453993
\(668\) 13.8921i 0.537503i
\(669\) 0 0
\(670\) 45.4447i 1.75568i
\(671\) 19.9249i 0.769193i
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 33.6269i 1.29526i
\(675\) 0 0
\(676\) −20.3028 + 21.9992i −0.780876 + 0.846124i
\(677\) 39.0000 1.49889 0.749446 0.662066i \(-0.230320\pi\)
0.749446 + 0.662066i \(0.230320\pi\)
\(678\) 0 0
\(679\) 45.6333 1.75125
\(680\) 11.7250 0.449632
\(681\) 0 0
\(682\) 12.4459i 0.476577i
\(683\) 19.4870i 0.745650i 0.927902 + 0.372825i \(0.121611\pi\)
−0.927902 + 0.372825i \(0.878389\pi\)
\(684\) 0 0
\(685\) 38.0555 1.45403
\(686\) 87.3583 3.33535
\(687\) 0 0
\(688\) −19.5139 −0.743960
\(689\) 22.8167 9.99125i 0.869245 0.380636i
\(690\) 0 0
\(691\) 25.7675i 0.980244i −0.871654 0.490122i \(-0.836952\pi\)
0.871654 0.490122i \(-0.163048\pi\)
\(692\) 9.00000 0.342129
\(693\) 0 0
\(694\) 34.8830i 1.32414i
\(695\) 35.1307i 1.33259i
\(696\) 0 0
\(697\) 4.33879i 0.164343i
\(698\) −21.0000 −0.794862
\(699\) 0 0
\(700\) 25.3297i 0.957371i
\(701\) 4.81665 0.181923 0.0909613 0.995854i \(-0.471006\pi\)
0.0909613 + 0.995854i \(0.471006\pi\)
\(702\) 0 0
\(703\) 25.5416 0.963321
\(704\) 21.1810i 0.798290i
\(705\) 0 0
\(706\) −9.11943 −0.343214
\(707\) 71.6502i 2.69468i
\(708\) 0 0
\(709\) 10.1238i 0.380209i −0.981764 0.190104i \(-0.939117\pi\)
0.981764 0.190104i \(-0.0608826\pi\)
\(710\) 14.0823i 0.528499i
\(711\) 0 0
\(712\) 1.57779 0.0591304
\(713\) 11.3049i 0.423373i
\(714\) 0 0
\(715\) 18.5139 8.10709i 0.692380 0.303188i
\(716\) 25.5416 0.954536
\(717\) 0 0
\(718\) −21.1194 −0.788170
\(719\) 45.6333 1.70184 0.850918 0.525299i \(-0.176047\pi\)
0.850918 + 0.525299i \(0.176047\pi\)
\(720\) 0 0
\(721\) 52.1056i 1.94051i
\(722\) 16.4043i 0.610507i
\(723\) 0 0
\(724\) −20.5139 −0.762392
\(725\) −6.90833 −0.256569
\(726\) 0 0
\(727\) −49.8444 −1.84863 −0.924313 0.381634i \(-0.875361\pi\)
−0.924313 + 0.381634i \(0.875361\pi\)
\(728\) 9.90833 4.33879i 0.367227 0.160806i
\(729\) 0 0
\(730\) 24.3213i 0.900171i
\(731\) −40.8167 −1.50966
\(732\) 0 0
\(733\) 27.7843i 1.02624i 0.858318 + 0.513118i \(0.171510\pi\)
−0.858318 + 0.513118i \(0.828490\pi\)
\(734\) 10.7519i 0.396859i
\(735\) 0 0
\(736\) 31.6852i 1.16793i
\(737\) 16.8167 0.619449
\(738\) 0 0
\(739\) 16.6521i 0.612557i 0.951942 + 0.306278i \(0.0990838\pi\)
−0.951942 + 0.306278i \(0.900916\pi\)
\(740\) 47.7250 1.75441
\(741\) 0 0
\(742\) −68.4500 −2.51288
\(743\) 26.7183i 0.980201i 0.871666 + 0.490100i \(0.163040\pi\)
−0.871666 + 0.490100i \(0.836960\pi\)
\(744\) 0 0
\(745\) 13.4222 0.491752
\(746\) 9.30562i 0.340703i
\(747\) 0 0
\(748\) 32.9989i 1.20656i
\(749\) 9.99125i 0.365072i
\(750\) 0 0
\(751\) −24.7250 −0.902227 −0.451114 0.892466i \(-0.648973\pi\)
−0.451114 + 0.892466i \(0.648973\pi\)
\(752\) 18.4787i 0.673847i
\(753\) 0 0
\(754\) −9.00000 20.5530i −0.327761 0.748495i
\(755\) −28.5416 −1.03874
\(756\) 0 0
\(757\) −3.93608 −0.143059 −0.0715297 0.997438i \(-0.522788\pi\)
−0.0715297 + 0.997438i \(0.522788\pi\)
\(758\) −61.5416 −2.23529
\(759\) 0 0
\(760\) 5.65246i 0.205036i
\(761\) 2.39706i 0.0868932i 0.999056 + 0.0434466i \(0.0138338\pi\)
−0.999056 + 0.0434466i \(0.986166\pi\)
\(762\) 0 0
\(763\) 15.9083 0.575920
\(764\) 20.0917 0.726891
\(765\) 0 0
\(766\) −72.4777 −2.61873
\(767\) −10.5416 24.0735i −0.380636 0.869245i
\(768\) 0 0
\(769\) 28.5275i 1.02873i −0.857572 0.514364i \(-0.828028\pi\)
0.857572 0.514364i \(-0.171972\pi\)
\(770\) −55.5416 −2.00158
\(771\) 0 0
\(772\) 51.6677i 1.85956i
\(773\) 22.8174i 0.820686i 0.911931 + 0.410343i \(0.134591\pi\)
−0.911931 + 0.410343i \(0.865409\pi\)
\(774\) 0 0
\(775\) 6.66083i 0.239264i
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) 69.7660i 2.50123i
\(779\) −2.09167 −0.0749420
\(780\) 0 0
\(781\) −5.21110 −0.186468
\(782\) 56.0065i 2.00279i
\(783\) 0 0
\(784\) 52.2389 1.86567
\(785\) 20.8757i 0.745086i
\(786\) 0 0
\(787\) 1.88415i 0.0671629i −0.999436 0.0335814i \(-0.989309\pi\)
0.999436 0.0335814i \(-0.0106913\pi\)
\(788\) 61.0884i 2.17619i
\(789\) 0 0
\(790\) 15.1194 0.537925
\(791\) 71.6502i 2.54759i
\(792\) 0 0
\(793\) 31.7250 13.8921i 1.12659 0.493324i
\(794\) −25.5416 −0.906439
\(795\) 0 0
\(796\) 60.1472 2.13186
\(797\) −39.0000 −1.38145 −0.690725 0.723117i \(-0.742709\pi\)
−0.690725 + 0.723117i \(0.742709\pi\)
\(798\) 0 0
\(799\) 38.6513i 1.36739i
\(800\) 18.6688i 0.660042i
\(801\) 0 0
\(802\) 42.2389 1.49151
\(803\) 9.00000 0.317603
\(804\) 0 0
\(805\) 50.4500 1.77813
\(806\) −19.8167 + 8.67757i −0.698012 + 0.305654i
\(807\) 0 0
\(808\) 9.42077i 0.331422i
\(809\) 21.3583 0.750917 0.375459 0.926839i \(-0.377485\pi\)
0.375459 + 0.926839i \(0.377485\pi\)
\(810\) 0 0
\(811\) 25.0243i 0.878724i −0.898310 0.439362i \(-0.855205\pi\)
0.898310 0.439362i \(-0.144795\pi\)
\(812\) 32.9989i 1.15803i
\(813\) 0 0
\(814\) 32.9989i 1.15661i
\(815\) −6.27502 −0.219804
\(816\) 0 0
\(817\) 19.6772i 0.688418i
\(818\) 53.4500 1.86883
\(819\) 0 0
\(820\) −3.90833 −0.136485
\(821\) 7.42147i 0.259011i −0.991579 0.129506i \(-0.958661\pi\)
0.991579 0.129506i \(-0.0413390\pi\)
\(822\) 0 0
\(823\) −18.4500 −0.643125 −0.321563 0.946888i \(-0.604208\pi\)
−0.321563 + 0.946888i \(0.604208\pi\)
\(824\) 6.85099i 0.238666i
\(825\) 0 0
\(826\) 72.2206i 2.51288i
\(827\) 36.8247i 1.28052i −0.768158 0.640261i \(-0.778826\pi\)
0.768158 0.640261i \(-0.221174\pi\)
\(828\) 0 0
\(829\) −5.39445 −0.187357 −0.0936785 0.995603i \(-0.529863\pi\)
−0.0936785 + 0.995603i \(0.529863\pi\)
\(830\) 12.6936i 0.440602i
\(831\) 0 0
\(832\) 33.7250 14.7679i 1.16920 0.511986i
\(833\) 109.267 3.78586
\(834\) 0 0
\(835\) −16.3028 −0.564181
\(836\) 15.9083 0.550201
\(837\) 0 0
\(838\) 41.1059i 1.41998i
\(839\) 48.5850i 1.67734i 0.544640 + 0.838670i \(0.316666\pi\)
−0.544640 + 0.838670i \(0.683334\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 37.8167 1.30325
\(843\) 0 0
\(844\) 11.7889 0.405791
\(845\) 25.8167 + 23.8258i 0.888120 + 0.819633i
\(846\) 0 0
\(847\) 31.9905i 1.09921i
\(848\) −22.8167 −0.783527
\(849\) 0 0
\(850\) 32.9989i 1.13185i
\(851\) 29.9737i 1.02749i
\(852\) 0 0
\(853\) 16.7847i 0.574696i −0.957826 0.287348i \(-0.907226\pi\)
0.957826 0.287348i \(-0.0927736\pi\)
\(854\) −95.1749 −3.25682
\(855\) 0 0
\(856\) 1.31368i 0.0449006i
\(857\) 32.7250 1.11786 0.558932 0.829213i \(-0.311211\pi\)
0.558932 + 0.829213i \(0.311211\pi\)
\(858\) 0 0
\(859\) 25.2389 0.861139 0.430569 0.902557i \(-0.358313\pi\)
0.430569 + 0.902557i \(0.358313\pi\)
\(860\) 36.7672i 1.25375i
\(861\) 0 0
\(862\) −39.1194 −1.33241
\(863\) 2.13189i 0.0725703i 0.999341 + 0.0362852i \(0.0115525\pi\)
−0.999341 + 0.0362852i \(0.988448\pi\)
\(864\) 0 0
\(865\) 10.5617i 0.359109i
\(866\) 31.8003i 1.08062i
\(867\) 0 0
\(868\) 31.8167 1.07993
\(869\) 5.59489i 0.189794i
\(870\) 0 0
\(871\) 11.7250 + 26.7759i 0.397286 + 0.907267i
\(872\) −2.09167 −0.0708330
\(873\) 0 0
\(874\) −27.0000 −0.913289
\(875\) 34.8167 1.17702
\(876\) 0 0
\(877\) 28.5275i 0.963305i −0.876362 0.481652i \(-0.840037\pi\)
0.876362 0.481652i \(-0.159963\pi\)
\(878\) 16.5945i 0.560037i
\(879\) 0 0
\(880\) −18.5139 −0.624103
\(881\) −14.4500 −0.486832 −0.243416 0.969922i \(-0.578268\pi\)
−0.243416 + 0.969922i \(0.578268\pi\)
\(882\) 0 0
\(883\) −8.11943 −0.273241 −0.136620 0.990623i \(-0.543624\pi\)
−0.136620 + 0.990623i \(0.543624\pi\)
\(884\) 52.5416 23.0076i 1.76717 0.773829i
\(885\) 0 0
\(886\) 34.8830i 1.17192i
\(887\) −3.00000 −0.100730 −0.0503651 0.998731i \(-0.516038\pi\)
−0.0503651 + 0.998731i \(0.516038\pi\)
\(888\) 0 0
\(889\) 83.2203i 2.79112i
\(890\) 14.0823i 0.472040i
\(891\) 0 0
\(892\) 1.00837i 0.0337627i
\(893\) 18.6333 0.623540
\(894\) 0 0
\(895\) 29.9737i 1.00191i
\(896\) −23.7250 −0.792596
\(897\) 0 0
\(898\) 56.3305 1.87977
\(899\) 8.67757i 0.289413i
\(900\) 0 0
\(901\) −47.7250 −1.58995
\(902\) 2.70236i 0.0899789i
\(903\) 0 0
\(904\) 9.42077i 0.313330i
\(905\) 24.0735i 0.800232i
\(906\) 0 0
\(907\) 50.4222 1.67424 0.837121 0.547018i \(-0.184237\pi\)
0.837121 + 0.547018i \(0.184237\pi\)
\(908\) 7.09873i 0.235579i
\(909\) 0 0
\(910\) −38.7250 88.4348i −1.28372 2.93159i
\(911\) 23.7250 0.786044 0.393022 0.919529i \(-0.371430\pi\)
0.393022 + 0.919529i \(0.371430\pi\)
\(912\) 0 0
\(913\) 4.69722 0.155455
\(914\) −0.275019 −0.00909683
\(915\) 0 0
\(916\) 45.0068i 1.48707i
\(917\) 51.6677i 1.70622i
\(918\) 0 0
\(919\) −42.6611 −1.40726 −0.703629 0.710567i \(-0.748438\pi\)
−0.703629 + 0.710567i \(0.748438\pi\)
\(920\) −6.63331 −0.218694
\(921\) 0 0
\(922\) 37.1472 1.22338
\(923\) −3.63331 8.29725i −0.119592 0.273107i
\(924\) 0 0
\(925\) 17.6605i 0.580672i
\(926\) −17.0917 −0.561667
\(927\) 0 0
\(928\) 24.3213i 0.798385i
\(929\) 46.2629i 1.51784i 0.651185 + 0.758919i \(0.274272\pi\)
−0.651185 + 0.758919i \(0.725728\pi\)
\(930\) 0 0
\(931\) 52.6760i 1.72639i
\(932\) −11.0917 −0.363320
\(933\) 0 0
\(934\) 75.9890i 2.48643i
\(935\) −38.7250 −1.26644
\(936\) 0 0
\(937\) 0.880571 0.0287670 0.0143835 0.999897i \(-0.495421\pi\)
0.0143835 + 0.999897i \(0.495421\pi\)
\(938\) 80.3277i 2.62279i
\(939\) 0 0
\(940\) 34.8167 1.13559
\(941\) 1.63642i 0.0533458i −0.999644 0.0266729i \(-0.991509\pi\)
0.999644 0.0266729i \(-0.00849125\pi\)
\(942\) 0 0
\(943\) 2.45463i 0.0799338i
\(944\) 24.0735i 0.783527i
\(945\) 0 0
\(946\) −25.4222 −0.826547
\(947\) 28.9078i 0.939377i 0.882832 + 0.469689i \(0.155634\pi\)
−0.882832 + 0.469689i \(0.844366\pi\)
\(948\) 0 0
\(949\) 6.27502 + 14.3300i 0.203696 + 0.465173i
\(950\) 15.9083 0.516134
\(951\) 0 0
\(952\) −20.7250 −0.671700
\(953\) 27.6333 0.895131 0.447565 0.894251i \(-0.352291\pi\)
0.447565 + 0.894251i \(0.352291\pi\)
\(954\) 0 0
\(955\) 23.5781i 0.762969i
\(956\) 49.2130i 1.59166i
\(957\) 0 0
\(958\) 9.51388 0.307379
\(959\) −67.2666 −2.17215
\(960\) 0 0
\(961\) 22.6333 0.730107
\(962\) 52.5416 23.0076i 1.69401 0.741795i
\(963\) 0 0
\(964\) 36.3293i 1.17009i
\(965\) −60.6333 −1.95186
\(966\) 0 0
\(967\) 24.8918i 0.800465i −0.916414 0.400233i \(-0.868929\pi\)
0.916414 0.400233i \(-0.131071\pi\)
\(968\) 4.20620i 0.135192i
\(969\) 0 0
\(970\) 53.5518i 1.71945i
\(971\) −49.8167 −1.59869 −0.799346 0.600871i \(-0.794821\pi\)
−0.799346 + 0.600871i \(0.794821\pi\)
\(972\) 0 0
\(973\) 62.0968i 1.99073i
\(974\) −13.8167 −0.442714
\(975\) 0 0
\(976\) −31.7250 −1.01549
\(977\) 29.0404i 0.929084i 0.885551 + 0.464542i \(0.153781\pi\)
−0.885551 + 0.464542i \(0.846219\pi\)
\(978\) 0 0
\(979\) −5.21110 −0.166548
\(980\) 98.4261i 3.14411i
\(981\) 0 0
\(982\) 20.5530i 0.655872i
\(983\) 43.2378i 1.37907i 0.724251 + 0.689536i \(0.242186\pi\)
−0.724251 + 0.689536i \(0.757814\pi\)
\(984\) 0 0
\(985\) 71.6888 2.28420
\(986\) 42.9901i 1.36908i
\(987\) 0 0
\(988\) 11.0917 + 25.3297i 0.352873 + 0.805844i
\(989\) 23.0917 0.734272
\(990\) 0 0
\(991\) −34.6333 −1.10016 −0.550082 0.835111i \(-0.685403\pi\)
−0.550082 + 0.835111i \(0.685403\pi\)
\(992\) 23.4500 0.744537
\(993\) 0 0
\(994\) 24.8918i 0.789519i
\(995\) 70.5842i 2.23767i
\(996\) 0 0
\(997\) −22.3583 −0.708094 −0.354047 0.935228i \(-0.615195\pi\)
−0.354047 + 0.935228i \(0.615195\pi\)
\(998\) 5.09167 0.161174
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.b.d.298.1 4
3.2 odd 2 351.2.b.e.298.4 yes 4
13.5 odd 4 4563.2.a.w.1.1 4
13.8 odd 4 4563.2.a.w.1.4 4
13.12 even 2 inner 351.2.b.d.298.4 yes 4
39.5 even 4 4563.2.a.x.1.4 4
39.8 even 4 4563.2.a.x.1.1 4
39.38 odd 2 351.2.b.e.298.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.b.d.298.1 4 1.1 even 1 trivial
351.2.b.d.298.4 yes 4 13.12 even 2 inner
351.2.b.e.298.1 yes 4 39.38 odd 2
351.2.b.e.298.4 yes 4 3.2 odd 2
4563.2.a.w.1.1 4 13.5 odd 4
4563.2.a.w.1.4 4 13.8 odd 4
4563.2.a.x.1.1 4 39.8 even 4
4563.2.a.x.1.4 4 39.5 even 4