Defining parameters
Level: | \( N \) | \(=\) | \( 351 = 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 351.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(84\) | ||
Trace bound: | \(14\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(351, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 18 | 30 |
Cusp forms | 36 | 18 | 18 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(351, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
351.2.b.a | $2$ | $2.803$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2 q^{4}+(2\beta-1)q^{7}+(\beta-3)q^{13}+\cdots\) |
351.2.b.b | $4$ | $2.803$ | 4.0.8112.1 | \(\Q(\sqrt{-39}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-4+\beta _{3})q^{4}+\beta _{2}q^{5}+(-2\beta _{1}+\cdots)q^{8}+\cdots\) |
351.2.b.c | $4$ | $2.803$ | 4.0.8112.1 | \(\Q(\sqrt{-39}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}-\beta _{3}q^{5}+\beta _{3}q^{8}+\cdots\) |
351.2.b.d | $4$ | $2.803$ | 4.0.8112.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}+(-\beta _{1}+\beta _{3})q^{5}+\cdots\) |
351.2.b.e | $4$ | $2.803$ | 4.0.8112.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}+(-\beta _{1}+\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(351, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(351, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)