Properties

Label 351.2.b
Level $351$
Weight $2$
Character orbit 351.b
Rep. character $\chi_{351}(298,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $5$
Sturm bound $84$
Trace bound $14$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(84\)
Trace bound: \(14\)
Distinguishing \(T_p\): \(2\), \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(351, [\chi])\).

Total New Old
Modular forms 48 18 30
Cusp forms 36 18 18
Eisenstein series 12 0 12

Trace form

\( 18 q - 16 q^{4} + 20 q^{10} + 7 q^{13} + 8 q^{16} + 8 q^{22} - 34 q^{25} - 80 q^{40} + 36 q^{43} - 24 q^{49} + 10 q^{52} - 16 q^{55} + 50 q^{61} + 16 q^{64} + 2 q^{79} - 64 q^{82} - 68 q^{88} - 39 q^{91}+ \cdots + 104 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(351, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
351.2.b.a 351.b 13.b $2$ $2.803$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 351.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2 q^{4}+(2\beta-1)q^{7}+(\beta-3)q^{13}+\cdots\)
351.2.b.b 351.b 13.b $4$ $2.803$ 4.0.8112.1 \(\Q(\sqrt{-39}) \) 351.2.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{1}q^{2}+(-4+\beta _{3})q^{4}+\beta _{2}q^{5}+(-2\beta _{1}+\cdots)q^{8}+\cdots\)
351.2.b.c 351.b 13.b $4$ $2.803$ 4.0.8112.1 \(\Q(\sqrt{-39}) \) 351.2.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}-\beta _{3}q^{5}+\beta _{3}q^{8}+\cdots\)
351.2.b.d 351.b 13.b $4$ $2.803$ 4.0.8112.1 None 351.2.b.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}+(-\beta _{1}+\beta _{3})q^{5}+\cdots\)
351.2.b.e 351.b 13.b $4$ $2.803$ 4.0.8112.1 None 351.2.b.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}+(-\beta _{1}+\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(351, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(351, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)