Properties

Label 351.2.b.d
Level $351$
Weight $2$
Character orbit 351.b
Analytic conductor $2.803$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(298,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.298"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-2,0,0,0,0,0,8,0,0,6,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.8112.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 5x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} - 1) q^{4} + (\beta_{3} - \beta_1) q^{5} + ( - \beta_{3} + 2 \beta_1) q^{7} + \beta_{3} q^{8} + ( - 2 \beta_{2} + 3) q^{10} + \beta_1 q^{11} + (\beta_{3} - \beta_{2} + \beta_1 + 2) q^{13}+ \cdots + (6 \beta_{3} - 14 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} + 8 q^{10} + 6 q^{13} - 18 q^{14} - 6 q^{16} - 6 q^{17} - 10 q^{22} - 6 q^{23} - 2 q^{25} - 12 q^{26} + 12 q^{29} + 30 q^{35} - 6 q^{38} - 14 q^{40} + 2 q^{43} - 20 q^{49} - 16 q^{52} + 6 q^{53}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 5x^{2} + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 4\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
298.1
2.07431i
0.835000i
0.835000i
2.07431i
2.07431i 0 −2.30278 2.70236i 0 4.77668i 0.628052i 0 5.60555
298.2 0.835000i 0 1.30278 1.92282i 0 1.08782i 2.75782i 0 −1.60555
298.3 0.835000i 0 1.30278 1.92282i 0 1.08782i 2.75782i 0 −1.60555
298.4 2.07431i 0 −2.30278 2.70236i 0 4.77668i 0.628052i 0 5.60555
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 351.2.b.d 4
3.b odd 2 1 351.2.b.e yes 4
13.b even 2 1 inner 351.2.b.d 4
13.d odd 4 2 4563.2.a.w 4
39.d odd 2 1 351.2.b.e yes 4
39.f even 4 2 4563.2.a.x 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
351.2.b.d 4 1.a even 1 1 trivial
351.2.b.d 4 13.b even 2 1 inner
351.2.b.e yes 4 3.b odd 2 1
351.2.b.e yes 4 39.d odd 2 1
4563.2.a.w 4 13.d odd 4 2
4563.2.a.x 4 39.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(351, [\chi])\):

\( T_{2}^{4} + 5T_{2}^{2} + 3 \) Copy content Toggle raw display
\( T_{5}^{4} + 11T_{5}^{2} + 27 \) Copy content Toggle raw display
\( T_{17}^{2} + 3T_{17} - 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 5T^{2} + 3 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 11T^{2} + 27 \) Copy content Toggle raw display
$7$ \( T^{4} + 24T^{2} + 27 \) Copy content Toggle raw display
$11$ \( T^{4} + 5T^{2} + 3 \) Copy content Toggle raw display
$13$ \( T^{4} - 6 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$17$ \( (T^{2} + 3 T - 27)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 33T^{2} + 243 \) Copy content Toggle raw display
$23$ \( (T^{2} + 3 T - 27)^{2} \) Copy content Toggle raw display
$29$ \( (T - 3)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 60T^{2} + 432 \) Copy content Toggle raw display
$37$ \( T^{4} + 96T^{2} + 2187 \) Copy content Toggle raw display
$41$ \( T^{4} + 8T^{2} + 3 \) Copy content Toggle raw display
$43$ \( (T^{2} - T - 29)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 59T^{2} + 867 \) Copy content Toggle raw display
$53$ \( (T^{2} - 3 T - 27)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 200T^{2} + 7803 \) Copy content Toggle raw display
$61$ \( (T^{2} - 12 T + 23)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 99T^{2} + 2187 \) Copy content Toggle raw display
$71$ \( T^{4} + 128T^{2} + 768 \) Copy content Toggle raw display
$73$ \( T^{4} + 135T^{2} + 2187 \) Copy content Toggle raw display
$79$ \( (T^{2} - 9 T + 17)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 104T^{2} + 507 \) Copy content Toggle raw display
$89$ \( T^{4} + 128T^{2} + 768 \) Copy content Toggle raw display
$97$ \( T^{4} + 96T^{2} + 432 \) Copy content Toggle raw display
show more
show less