L(s) = 1 | + 0.834i·2-s + 1.30·4-s + 1.92i·5-s − 1.08i·7-s + 2.75i·8-s − 1.60·10-s + 0.834i·11-s + (−0.302 + 3.59i)13-s + 0.908·14-s + 0.302·16-s + 3.90·17-s − 4.68i·19-s + 2.50i·20-s − 0.697·22-s − 6.90·23-s + ⋯ |
L(s) = 1 | + 0.590i·2-s + 0.651·4-s + 0.859i·5-s − 0.411i·7-s + 0.975i·8-s − 0.507·10-s + 0.251i·11-s + (−0.0839 + 0.996i)13-s + 0.242·14-s + 0.0756·16-s + 0.947·17-s − 1.07i·19-s + 0.560i·20-s − 0.148·22-s − 1.44·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0839 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0839 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.16062 + 1.06692i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.16062 + 1.06692i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (0.302 - 3.59i)T \) |
good | 2 | \( 1 - 0.834iT - 2T^{2} \) |
| 5 | \( 1 - 1.92iT - 5T^{2} \) |
| 7 | \( 1 + 1.08iT - 7T^{2} \) |
| 11 | \( 1 - 0.834iT - 11T^{2} \) |
| 17 | \( 1 - 3.90T + 17T^{2} \) |
| 19 | \( 1 + 4.68iT - 19T^{2} \) |
| 23 | \( 1 + 6.90T + 23T^{2} \) |
| 29 | \( 1 - 3T + 29T^{2} \) |
| 31 | \( 1 - 7.18iT - 31T^{2} \) |
| 37 | \( 1 + 6.09iT - 37T^{2} \) |
| 41 | \( 1 + 2.75iT - 41T^{2} \) |
| 43 | \( 1 + 4.90T + 43T^{2} \) |
| 47 | \( 1 + 5.26iT - 47T^{2} \) |
| 53 | \( 1 + 3.90T + 53T^{2} \) |
| 59 | \( 1 + 12.1iT - 59T^{2} \) |
| 61 | \( 1 - 2.39T + 61T^{2} \) |
| 67 | \( 1 - 5.76iT - 67T^{2} \) |
| 71 | \( 1 + 11.0iT - 71T^{2} \) |
| 73 | \( 1 + 10.7iT - 73T^{2} \) |
| 79 | \( 1 - 6.30T + 79T^{2} \) |
| 83 | \( 1 + 9.94iT - 83T^{2} \) |
| 89 | \( 1 + 11.0iT - 89T^{2} \) |
| 97 | \( 1 - 2.17iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.63384647152685889407677685548, −10.76124793049839915091860522652, −10.04624431999768610693338508783, −8.754111686848051270218513557382, −7.58638020979209194025753434969, −6.94363779676997666335468722464, −6.22033452059980029649527926257, −4.91309372780614003540004579981, −3.40178851514602004045499738586, −2.07998894306368308544518882492,
1.21972994149307260589189796226, 2.71459621845423622788610982830, 3.93818293060776003964499085978, 5.44076740166008921728038234956, 6.22528344089999355015508397554, 7.73330219730166271943306838566, 8.364132440250491637356021031561, 9.758387350549958605480792720823, 10.25095129729014016932868594002, 11.42352198109232754615445865708