Properties

Label 350.4.j.h.249.3
Level $350$
Weight $4$
Character 350.249
Analytic conductor $20.651$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,4,Mod(149,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.149"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,24,0,24,0,0,112,0,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 134x^{10} + 13467x^{8} - 530084x^{6} + 15364507x^{4} - 160351569x^{2} + 1275989841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 249.3
Root \(8.08868 - 4.67000i\) of defining polynomial
Character \(\chi\) \(=\) 350.249
Dual form 350.4.j.h.149.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 + 1.00000i) q^{2} +(7.22265 + 4.17000i) q^{3} +(2.00000 - 3.46410i) q^{4} -16.6800 q^{6} +(8.19644 - 16.6078i) q^{7} +8.00000i q^{8} +(21.2778 + 36.8542i) q^{9} +(13.1344 - 22.7495i) q^{11} +(28.8906 - 16.6800i) q^{12} -38.1623i q^{13} +(2.41113 + 36.9620i) q^{14} +(-8.00000 - 13.8564i) q^{16} +(2.07266 + 1.19665i) q^{17} +(-73.7084 - 42.5556i) q^{18} +(49.8966 + 86.4235i) q^{19} +(128.454 - 85.7730i) q^{21} +52.5377i q^{22} +(88.1421 - 50.8889i) q^{23} +(-33.3600 + 57.7812i) q^{24} +(38.1623 + 66.0990i) q^{26} +129.733i q^{27} +(-41.1382 - 61.6089i) q^{28} +223.936 q^{29} +(133.663 - 231.512i) q^{31} +(27.7128 + 16.0000i) q^{32} +(189.731 - 109.541i) q^{33} -4.78661 q^{34} +170.222 q^{36} +(-314.616 + 181.643i) q^{37} +(-172.847 - 99.7933i) q^{38} +(159.137 - 275.633i) q^{39} -94.9155 q^{41} +(-136.717 + 277.018i) q^{42} +406.093i q^{43} +(-52.5377 - 90.9980i) q^{44} +(-101.778 + 176.284i) q^{46} +(296.331 - 171.087i) q^{47} -133.440i q^{48} +(-208.637 - 272.249i) q^{49} +(9.98008 + 17.2860i) q^{51} +(-132.198 - 76.3245i) q^{52} +(-470.817 - 271.827i) q^{53} +(-129.733 - 224.705i) q^{54} +(132.862 + 65.5715i) q^{56} +832.276i q^{57} +(-387.868 + 223.936i) q^{58} +(-196.579 + 340.485i) q^{59} +(252.154 + 436.744i) q^{61} +534.653i q^{62} +(786.468 - 51.3034i) q^{63} -64.0000 q^{64} +(-219.082 + 379.462i) q^{66} +(47.5851 + 27.4733i) q^{67} +(8.29066 - 4.78661i) q^{68} +848.826 q^{69} +889.302 q^{71} +(-294.834 + 170.222i) q^{72} +(-442.281 - 255.351i) q^{73} +(363.287 - 629.231i) q^{74} +399.173 q^{76} +(-270.163 - 404.599i) q^{77} +636.546i q^{78} +(136.878 + 237.079i) q^{79} +(33.5123 - 58.0450i) q^{81} +(164.399 - 94.9155i) q^{82} -525.188i q^{83} +(-40.2176 - 616.525i) q^{84} +(-406.093 - 703.374i) q^{86} +(1617.41 + 933.811i) q^{87} +(181.996 + 105.075i) q^{88} +(827.936 + 1434.03i) q^{89} +(-633.790 - 312.795i) q^{91} -407.111i q^{92} +(1930.81 - 1114.75i) q^{93} +(-342.173 + 592.661i) q^{94} +(133.440 + 231.125i) q^{96} +5.76230i q^{97} +(633.619 + 262.913i) q^{98} +1117.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{4} + 24 q^{6} + 112 q^{9} + 52 q^{11} + 16 q^{14} - 96 q^{16} - 36 q^{19} + 370 q^{21} + 48 q^{24} + 320 q^{26} + 1616 q^{29} + 1230 q^{31} + 240 q^{34} + 896 q^{36} - 180 q^{39} - 404 q^{41}+ \cdots + 228 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 + 1.00000i −0.612372 + 0.353553i
\(3\) 7.22265 + 4.17000i 1.39000 + 0.802517i 0.993315 0.115438i \(-0.0368272\pi\)
0.396685 + 0.917955i \(0.370161\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 0 0
\(6\) −16.6800 −1.13493
\(7\) 8.19644 16.6078i 0.442566 0.896736i
\(8\) 8.00000i 0.353553i
\(9\) 21.2778 + 36.8542i 0.788066 + 1.36497i
\(10\) 0 0
\(11\) 13.1344 22.7495i 0.360016 0.623567i −0.627947 0.778256i \(-0.716104\pi\)
0.987963 + 0.154690i \(0.0494377\pi\)
\(12\) 28.8906 16.6800i 0.695000 0.401258i
\(13\) 38.1623i 0.814177i −0.913389 0.407089i \(-0.866544\pi\)
0.913389 0.407089i \(-0.133456\pi\)
\(14\) 2.41113 + 36.9620i 0.0460286 + 0.705607i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 2.07266 + 1.19665i 0.0295703 + 0.0170724i 0.514712 0.857363i \(-0.327899\pi\)
−0.485142 + 0.874435i \(0.661232\pi\)
\(18\) −73.7084 42.5556i −0.965180 0.557247i
\(19\) 49.8966 + 86.4235i 0.602478 + 1.04352i 0.992445 + 0.122693i \(0.0391531\pi\)
−0.389967 + 0.920829i \(0.627514\pi\)
\(20\) 0 0
\(21\) 128.454 85.7730i 1.33481 0.891296i
\(22\) 52.5377i 0.509140i
\(23\) 88.1421 50.8889i 0.799083 0.461351i −0.0440674 0.999029i \(-0.514032\pi\)
0.843150 + 0.537678i \(0.180698\pi\)
\(24\) −33.3600 + 57.7812i −0.283732 + 0.491439i
\(25\) 0 0
\(26\) 38.1623 + 66.0990i 0.287855 + 0.498580i
\(27\) 129.733i 0.924711i
\(28\) −41.1382 61.6089i −0.277656 0.415821i
\(29\) 223.936 1.43392 0.716962 0.697112i \(-0.245532\pi\)
0.716962 + 0.697112i \(0.245532\pi\)
\(30\) 0 0
\(31\) 133.663 231.512i 0.774408 1.34131i −0.160719 0.987000i \(-0.551381\pi\)
0.935127 0.354314i \(-0.115285\pi\)
\(32\) 27.7128 + 16.0000i 0.153093 + 0.0883883i
\(33\) 189.731 109.541i 1.00085 0.577838i
\(34\) −4.78661 −0.0241440
\(35\) 0 0
\(36\) 170.222 0.788066
\(37\) −314.616 + 181.643i −1.39790 + 0.807081i −0.994173 0.107797i \(-0.965620\pi\)
−0.403732 + 0.914877i \(0.632287\pi\)
\(38\) −172.847 99.7933i −0.737881 0.426016i
\(39\) 159.137 275.633i 0.653391 1.13171i
\(40\) 0 0
\(41\) −94.9155 −0.361544 −0.180772 0.983525i \(-0.557860\pi\)
−0.180772 + 0.983525i \(0.557860\pi\)
\(42\) −136.717 + 277.018i −0.502282 + 1.01773i
\(43\) 406.093i 1.44020i 0.693870 + 0.720101i \(0.255904\pi\)
−0.693870 + 0.720101i \(0.744096\pi\)
\(44\) −52.5377 90.9980i −0.180008 0.311783i
\(45\) 0 0
\(46\) −101.778 + 176.284i −0.326224 + 0.565037i
\(47\) 296.331 171.087i 0.919665 0.530969i 0.0361369 0.999347i \(-0.488495\pi\)
0.883528 + 0.468378i \(0.155161\pi\)
\(48\) 133.440i 0.401258i
\(49\) −208.637 272.249i −0.608270 0.793730i
\(50\) 0 0
\(51\) 9.98008 + 17.2860i 0.0274018 + 0.0474613i
\(52\) −132.198 76.3245i −0.352549 0.203544i
\(53\) −470.817 271.827i −1.22022 0.704495i −0.255256 0.966873i \(-0.582160\pi\)
−0.964965 + 0.262378i \(0.915493\pi\)
\(54\) −129.733 224.705i −0.326935 0.566267i
\(55\) 0 0
\(56\) 132.862 + 65.5715i 0.317044 + 0.156471i
\(57\) 832.276i 1.93399i
\(58\) −387.868 + 223.936i −0.878095 + 0.506969i
\(59\) −196.579 + 340.485i −0.433770 + 0.751311i −0.997194 0.0748565i \(-0.976150\pi\)
0.563425 + 0.826167i \(0.309483\pi\)
\(60\) 0 0
\(61\) 252.154 + 436.744i 0.529263 + 0.916711i 0.999418 + 0.0341268i \(0.0108650\pi\)
−0.470154 + 0.882584i \(0.655802\pi\)
\(62\) 534.653i 1.09518i
\(63\) 786.468 51.3034i 1.57279 0.102597i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −219.082 + 379.462i −0.408593 + 0.707705i
\(67\) 47.5851 + 27.4733i 0.0867678 + 0.0500954i 0.542756 0.839890i \(-0.317381\pi\)
−0.455988 + 0.889986i \(0.650714\pi\)
\(68\) 8.29066 4.78661i 0.0147851 0.00853621i
\(69\) 848.826 1.48097
\(70\) 0 0
\(71\) 889.302 1.48649 0.743245 0.669020i \(-0.233286\pi\)
0.743245 + 0.669020i \(0.233286\pi\)
\(72\) −294.834 + 170.222i −0.482590 + 0.278623i
\(73\) −442.281 255.351i −0.709111 0.409405i 0.101621 0.994823i \(-0.467597\pi\)
−0.810732 + 0.585418i \(0.800930\pi\)
\(74\) 363.287 629.231i 0.570692 0.988468i
\(75\) 0 0
\(76\) 399.173 0.602478
\(77\) −270.163 404.599i −0.399844 0.598809i
\(78\) 636.546i 0.924034i
\(79\) 136.878 + 237.079i 0.194936 + 0.337640i 0.946880 0.321588i \(-0.104217\pi\)
−0.751943 + 0.659228i \(0.770883\pi\)
\(80\) 0 0
\(81\) 33.5123 58.0450i 0.0459702 0.0796228i
\(82\) 164.399 94.9155i 0.221400 0.127825i
\(83\) 525.188i 0.694541i −0.937765 0.347271i \(-0.887109\pi\)
0.937765 0.347271i \(-0.112891\pi\)
\(84\) −40.2176 616.525i −0.0522393 0.800815i
\(85\) 0 0
\(86\) −406.093 703.374i −0.509188 0.881939i
\(87\) 1617.41 + 933.811i 1.99315 + 1.15075i
\(88\) 181.996 + 105.075i 0.220464 + 0.127285i
\(89\) 827.936 + 1434.03i 0.986079 + 1.70794i 0.637042 + 0.770829i \(0.280158\pi\)
0.349036 + 0.937109i \(0.386509\pi\)
\(90\) 0 0
\(91\) −633.790 312.795i −0.730102 0.360327i
\(92\) 407.111i 0.461351i
\(93\) 1930.81 1114.75i 2.15285 1.24295i
\(94\) −342.173 + 592.661i −0.375452 + 0.650301i
\(95\) 0 0
\(96\) 133.440 + 231.125i 0.141866 + 0.245720i
\(97\) 5.76230i 0.00603168i 0.999995 + 0.00301584i \(0.000959973\pi\)
−0.999995 + 0.00301584i \(0.999040\pi\)
\(98\) 633.619 + 262.913i 0.653114 + 0.271002i
\(99\) 1117.89 1.13487
\(100\) 0 0
\(101\) −577.490 + 1000.24i −0.568934 + 0.985423i 0.427737 + 0.903903i \(0.359311\pi\)
−0.996672 + 0.0815203i \(0.974022\pi\)
\(102\) −34.5720 19.9602i −0.0335602 0.0193760i
\(103\) −1416.65 + 817.906i −1.35521 + 0.782433i −0.988974 0.148087i \(-0.952688\pi\)
−0.366240 + 0.930520i \(0.619355\pi\)
\(104\) 305.298 0.287855
\(105\) 0 0
\(106\) 1087.31 0.996307
\(107\) 574.917 331.929i 0.519433 0.299895i −0.217269 0.976112i \(-0.569715\pi\)
0.736703 + 0.676217i \(0.236382\pi\)
\(108\) 449.409 + 259.467i 0.400411 + 0.231178i
\(109\) −903.003 + 1564.05i −0.793505 + 1.37439i 0.130280 + 0.991477i \(0.458412\pi\)
−0.923784 + 0.382913i \(0.874921\pi\)
\(110\) 0 0
\(111\) −3029.81 −2.59078
\(112\) −295.696 + 19.2890i −0.249470 + 0.0162736i
\(113\) 448.406i 0.373297i 0.982427 + 0.186648i \(0.0597625\pi\)
−0.982427 + 0.186648i \(0.940238\pi\)
\(114\) −832.276 1441.54i −0.683770 1.18432i
\(115\) 0 0
\(116\) 447.871 775.735i 0.358481 0.620907i
\(117\) 1406.44 812.008i 1.11133 0.641625i
\(118\) 786.316i 0.613443i
\(119\) 36.8622 24.6140i 0.0283963 0.0189611i
\(120\) 0 0
\(121\) 320.473 + 555.076i 0.240776 + 0.417037i
\(122\) −873.489 504.309i −0.648213 0.374246i
\(123\) −685.542 395.798i −0.502546 0.290145i
\(124\) −534.653 926.047i −0.387204 0.670657i
\(125\) 0 0
\(126\) −1310.90 + 875.329i −0.926859 + 0.618893i
\(127\) 1780.09i 1.24376i −0.783112 0.621881i \(-0.786369\pi\)
0.783112 0.621881i \(-0.213631\pi\)
\(128\) 110.851 64.0000i 0.0765466 0.0441942i
\(129\) −1693.41 + 2933.07i −1.15579 + 2.00188i
\(130\) 0 0
\(131\) −1470.44 2546.88i −0.980709 1.69864i −0.659640 0.751581i \(-0.729291\pi\)
−0.321068 0.947056i \(-0.604042\pi\)
\(132\) 876.329i 0.577838i
\(133\) 1844.28 120.307i 1.20240 0.0784357i
\(134\) −109.893 −0.0708456
\(135\) 0 0
\(136\) −9.57322 + 16.5813i −0.00603601 + 0.0104547i
\(137\) −1432.71 827.177i −0.893467 0.515843i −0.0183918 0.999831i \(-0.505855\pi\)
−0.875075 + 0.483988i \(0.839188\pi\)
\(138\) −1470.21 + 848.826i −0.906903 + 0.523601i
\(139\) −409.882 −0.250113 −0.125057 0.992150i \(-0.539911\pi\)
−0.125057 + 0.992150i \(0.539911\pi\)
\(140\) 0 0
\(141\) 2853.72 1.70445
\(142\) −1540.32 + 889.302i −0.910285 + 0.525553i
\(143\) −868.172 501.240i −0.507694 0.293117i
\(144\) 340.444 589.667i 0.197016 0.341243i
\(145\) 0 0
\(146\) 1021.40 0.578986
\(147\) −371.630 2836.38i −0.208514 1.59143i
\(148\) 1453.15i 0.807081i
\(149\) −1489.59 2580.05i −0.819008 1.41856i −0.906414 0.422390i \(-0.861191\pi\)
0.0874065 0.996173i \(-0.472142\pi\)
\(150\) 0 0
\(151\) 987.312 1710.07i 0.532095 0.921615i −0.467203 0.884150i \(-0.654738\pi\)
0.999298 0.0374653i \(-0.0119284\pi\)
\(152\) −691.388 + 399.173i −0.368941 + 0.213008i
\(153\) 101.848i 0.0538167i
\(154\) 872.535 + 430.622i 0.456564 + 0.225328i
\(155\) 0 0
\(156\) −636.546 1102.53i −0.326695 0.565853i
\(157\) −607.342 350.649i −0.308734 0.178247i 0.337626 0.941280i \(-0.390376\pi\)
−0.646360 + 0.763033i \(0.723709\pi\)
\(158\) −474.159 273.756i −0.238747 0.137841i
\(159\) −2267.03 3926.62i −1.13074 1.95850i
\(160\) 0 0
\(161\) −122.700 1880.95i −0.0600626 0.920745i
\(162\) 134.049i 0.0650117i
\(163\) −774.335 + 447.062i −0.372089 + 0.214826i −0.674371 0.738393i \(-0.735585\pi\)
0.302281 + 0.953219i \(0.402252\pi\)
\(164\) −189.831 + 328.797i −0.0903861 + 0.156553i
\(165\) 0 0
\(166\) 525.188 + 909.653i 0.245557 + 0.425318i
\(167\) 1037.45i 0.480719i −0.970684 0.240359i \(-0.922735\pi\)
0.970684 0.240359i \(-0.0772653\pi\)
\(168\) 686.184 + 1027.64i 0.315121 + 0.471927i
\(169\) 740.643 0.337115
\(170\) 0 0
\(171\) −2123.38 + 3677.80i −0.949584 + 1.64473i
\(172\) 1406.75 + 812.187i 0.623625 + 0.360050i
\(173\) −1590.96 + 918.538i −0.699180 + 0.403672i −0.807042 0.590494i \(-0.798933\pi\)
0.107862 + 0.994166i \(0.465599\pi\)
\(174\) −3735.24 −1.62740
\(175\) 0 0
\(176\) −420.302 −0.180008
\(177\) −2839.64 + 1639.47i −1.20588 + 0.696214i
\(178\) −2868.05 1655.87i −1.20769 0.697263i
\(179\) 24.8972 43.1233i 0.0103961 0.0180066i −0.860781 0.508976i \(-0.830024\pi\)
0.871177 + 0.490970i \(0.163357\pi\)
\(180\) 0 0
\(181\) 1000.59 0.410903 0.205452 0.978667i \(-0.434134\pi\)
0.205452 + 0.978667i \(0.434134\pi\)
\(182\) 1410.55 92.0140i 0.574489 0.0374755i
\(183\) 4205.93i 1.69897i
\(184\) 407.111 + 705.137i 0.163112 + 0.282518i
\(185\) 0 0
\(186\) −2229.50 + 3861.61i −0.878899 + 1.52230i
\(187\) 54.4465 31.4347i 0.0212916 0.0122927i
\(188\) 1368.69i 0.530969i
\(189\) 2154.58 + 1063.35i 0.829221 + 0.409246i
\(190\) 0 0
\(191\) 498.904 + 864.126i 0.189002 + 0.327361i 0.944918 0.327308i \(-0.106141\pi\)
−0.755916 + 0.654669i \(0.772808\pi\)
\(192\) −462.250 266.880i −0.173750 0.100315i
\(193\) −2219.67 1281.53i −0.827853 0.477961i 0.0252640 0.999681i \(-0.491957\pi\)
−0.853117 + 0.521720i \(0.825291\pi\)
\(194\) −5.76230 9.98060i −0.00213252 0.00369363i
\(195\) 0 0
\(196\) −1360.37 + 178.240i −0.495763 + 0.0649562i
\(197\) 821.223i 0.297004i −0.988912 0.148502i \(-0.952555\pi\)
0.988912 0.148502i \(-0.0474451\pi\)
\(198\) −1936.24 + 1117.89i −0.694961 + 0.401236i
\(199\) −1618.13 + 2802.69i −0.576413 + 0.998377i 0.419473 + 0.907768i \(0.362215\pi\)
−0.995886 + 0.0906096i \(0.971118\pi\)
\(200\) 0 0
\(201\) 229.127 + 396.860i 0.0804048 + 0.139265i
\(202\) 2309.96i 0.804595i
\(203\) 1835.47 3719.07i 0.634606 1.28585i
\(204\) 79.8407 0.0274018
\(205\) 0 0
\(206\) 1635.81 2833.31i 0.553264 0.958281i
\(207\) 3750.94 + 2165.61i 1.25946 + 0.727150i
\(208\) −528.792 + 305.298i −0.176275 + 0.101772i
\(209\) 2621.46 0.867607
\(210\) 0 0
\(211\) −3164.93 −1.03262 −0.516309 0.856402i \(-0.672695\pi\)
−0.516309 + 0.856402i \(0.672695\pi\)
\(212\) −1883.27 + 1087.31i −0.610111 + 0.352248i
\(213\) 6423.12 + 3708.39i 2.06622 + 1.19293i
\(214\) −663.857 + 1149.83i −0.212058 + 0.367295i
\(215\) 0 0
\(216\) −1037.87 −0.326935
\(217\) −2749.33 4117.42i −0.860077 1.28806i
\(218\) 3612.01i 1.12218i
\(219\) −2129.63 3688.62i −0.657109 1.13815i
\(220\) 0 0
\(221\) 45.6670 79.0975i 0.0139000 0.0240755i
\(222\) 5247.79 3029.81i 1.58652 0.915980i
\(223\) 4697.63i 1.41066i 0.708880 + 0.705329i \(0.249201\pi\)
−0.708880 + 0.705329i \(0.750799\pi\)
\(224\) 492.871 329.105i 0.147015 0.0981664i
\(225\) 0 0
\(226\) −448.406 776.662i −0.131980 0.228597i
\(227\) −644.273 371.971i −0.188378 0.108760i 0.402845 0.915268i \(-0.368021\pi\)
−0.591223 + 0.806508i \(0.701355\pi\)
\(228\) 2883.09 + 1664.55i 0.837444 + 0.483498i
\(229\) −478.567 828.903i −0.138099 0.239194i 0.788678 0.614806i \(-0.210766\pi\)
−0.926777 + 0.375612i \(0.877432\pi\)
\(230\) 0 0
\(231\) −264.118 4048.86i −0.0752280 1.15323i
\(232\) 1791.48i 0.506969i
\(233\) 742.980 428.960i 0.208902 0.120610i −0.391899 0.920008i \(-0.628182\pi\)
0.600801 + 0.799399i \(0.294848\pi\)
\(234\) −1624.02 + 2812.88i −0.453698 + 0.785827i
\(235\) 0 0
\(236\) 786.316 + 1361.94i 0.216885 + 0.375655i
\(237\) 2283.12i 0.625758i
\(238\) −39.2332 + 79.4950i −0.0106853 + 0.0216508i
\(239\) 1814.74 0.491154 0.245577 0.969377i \(-0.421023\pi\)
0.245577 + 0.969377i \(0.421023\pi\)
\(240\) 0 0
\(241\) 1840.55 3187.92i 0.491951 0.852084i −0.508006 0.861353i \(-0.669617\pi\)
0.999957 + 0.00926972i \(0.00295069\pi\)
\(242\) −1110.15 640.947i −0.294890 0.170255i
\(243\) 3517.61 2030.89i 0.928620 0.536139i
\(244\) 2017.24 0.529263
\(245\) 0 0
\(246\) 1583.19 0.410327
\(247\) 3298.12 1904.17i 0.849612 0.490524i
\(248\) 1852.09 + 1069.31i 0.474226 + 0.273795i
\(249\) 2190.03 3793.25i 0.557381 0.965412i
\(250\) 0 0
\(251\) −2588.41 −0.650913 −0.325457 0.945557i \(-0.605518\pi\)
−0.325457 + 0.945557i \(0.605518\pi\)
\(252\) 1395.22 2827.01i 0.348771 0.706687i
\(253\) 2673.59i 0.664375i
\(254\) 1780.09 + 3083.21i 0.439736 + 0.761645i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 962.625 555.772i 0.233645 0.134895i −0.378607 0.925557i \(-0.623597\pi\)
0.612253 + 0.790662i \(0.290264\pi\)
\(258\) 6773.63i 1.63453i
\(259\) 437.965 + 6713.89i 0.105073 + 1.61074i
\(260\) 0 0
\(261\) 4764.85 + 8252.96i 1.13003 + 1.95726i
\(262\) 5093.75 + 2940.88i 1.20112 + 0.693466i
\(263\) 2375.43 + 1371.45i 0.556939 + 0.321549i 0.751916 0.659259i \(-0.229130\pi\)
−0.194977 + 0.980808i \(0.562463\pi\)
\(264\) 876.329 + 1517.85i 0.204297 + 0.353852i
\(265\) 0 0
\(266\) −3074.08 + 2052.66i −0.708585 + 0.473144i
\(267\) 13810.0i 3.16538i
\(268\) 190.340 109.893i 0.0433839 0.0250477i
\(269\) −962.573 + 1667.23i −0.218175 + 0.377891i −0.954250 0.299010i \(-0.903344\pi\)
0.736075 + 0.676900i \(0.236677\pi\)
\(270\) 0 0
\(271\) 143.298 + 248.199i 0.0321207 + 0.0556347i 0.881639 0.471925i \(-0.156441\pi\)
−0.849518 + 0.527559i \(0.823107\pi\)
\(272\) 38.2929i 0.00853621i
\(273\) −3273.29 4902.11i −0.725673 1.08677i
\(274\) 3308.71 0.729512
\(275\) 0 0
\(276\) 1697.65 2940.42i 0.370242 0.641277i
\(277\) −1246.10 719.437i −0.270292 0.156053i 0.358728 0.933442i \(-0.383211\pi\)
−0.629020 + 0.777389i \(0.716544\pi\)
\(278\) 709.937 409.882i 0.153163 0.0884285i
\(279\) 11376.2 2.44114
\(280\) 0 0
\(281\) −2659.15 −0.564525 −0.282262 0.959337i \(-0.591085\pi\)
−0.282262 + 0.959337i \(0.591085\pi\)
\(282\) −4942.79 + 2853.72i −1.04376 + 0.602612i
\(283\) 288.512 + 166.573i 0.0606017 + 0.0349884i 0.529995 0.848001i \(-0.322194\pi\)
−0.469393 + 0.882989i \(0.655527\pi\)
\(284\) 1778.60 3080.63i 0.371622 0.643669i
\(285\) 0 0
\(286\) 2004.96 0.414530
\(287\) −777.970 + 1576.34i −0.160007 + 0.324210i
\(288\) 1361.78i 0.278623i
\(289\) −2453.64 4249.82i −0.499417 0.865016i
\(290\) 0 0
\(291\) −24.0288 + 41.6191i −0.00484052 + 0.00838403i
\(292\) −1769.12 + 1021.40i −0.354555 + 0.204703i
\(293\) 7675.26i 1.53035i −0.643821 0.765176i \(-0.722652\pi\)
0.643821 0.765176i \(-0.277348\pi\)
\(294\) 3480.06 + 4541.12i 0.690344 + 0.900828i
\(295\) 0 0
\(296\) −1453.15 2516.92i −0.285346 0.494234i
\(297\) 2951.37 + 1703.97i 0.576619 + 0.332911i
\(298\) 5160.10 + 2979.18i 1.00308 + 0.579126i
\(299\) −1942.03 3363.70i −0.375621 0.650595i
\(300\) 0 0
\(301\) 6744.31 + 3328.52i 1.29148 + 0.637384i
\(302\) 3949.25i 0.752496i
\(303\) −8342.01 + 4816.26i −1.58164 + 0.913159i
\(304\) 798.346 1382.78i 0.150619 0.260880i
\(305\) 0 0
\(306\) −101.848 176.407i −0.0190271 0.0329559i
\(307\) 3833.02i 0.712580i 0.934375 + 0.356290i \(0.115959\pi\)
−0.934375 + 0.356290i \(0.884041\pi\)
\(308\) −1941.90 + 126.675i −0.359253 + 0.0234350i
\(309\) −13642.7 −2.51166
\(310\) 0 0
\(311\) −220.933 + 382.667i −0.0402828 + 0.0697719i −0.885464 0.464708i \(-0.846159\pi\)
0.845181 + 0.534480i \(0.179493\pi\)
\(312\) 2205.06 + 1273.09i 0.400118 + 0.231009i
\(313\) −7210.56 + 4163.02i −1.30212 + 0.751781i −0.980768 0.195177i \(-0.937472\pi\)
−0.321356 + 0.946959i \(0.604138\pi\)
\(314\) 1402.60 0.252080
\(315\) 0 0
\(316\) 1095.02 0.194936
\(317\) 3003.47 1734.05i 0.532151 0.307237i −0.209741 0.977757i \(-0.567262\pi\)
0.741892 + 0.670520i \(0.233929\pi\)
\(318\) 7853.23 + 4534.07i 1.38487 + 0.799553i
\(319\) 2941.27 5094.42i 0.516236 0.894147i
\(320\) 0 0
\(321\) 5536.57 0.962683
\(322\) 2093.48 + 3135.21i 0.362313 + 0.542603i
\(323\) 238.836i 0.0411430i
\(324\) −134.049 232.180i −0.0229851 0.0398114i
\(325\) 0 0
\(326\) 894.125 1548.67i 0.151905 0.263107i
\(327\) −13044.1 + 7531.04i −2.20594 + 1.27360i
\(328\) 759.324i 0.127825i
\(329\) −412.511 6323.69i −0.0691261 1.05969i
\(330\) 0 0
\(331\) 5484.37 + 9499.21i 0.910720 + 1.57741i 0.813050 + 0.582194i \(0.197806\pi\)
0.0976697 + 0.995219i \(0.468861\pi\)
\(332\) −1819.31 1050.38i −0.300745 0.173635i
\(333\) −13388.6 7729.93i −2.20328 1.27207i
\(334\) 1037.45 + 1796.91i 0.169960 + 0.294379i
\(335\) 0 0
\(336\) −2216.14 1093.73i −0.359823 0.177583i
\(337\) 4317.34i 0.697865i 0.937148 + 0.348932i \(0.113456\pi\)
−0.937148 + 0.348932i \(0.886544\pi\)
\(338\) −1282.83 + 740.643i −0.206440 + 0.119188i
\(339\) −1869.85 + 3238.68i −0.299577 + 0.518882i
\(340\) 0 0
\(341\) −3511.18 6081.55i −0.557599 0.965790i
\(342\) 8493.52i 1.34291i
\(343\) −6231.54 + 1233.52i −0.980966 + 0.194180i
\(344\) −3248.75 −0.509188
\(345\) 0 0
\(346\) 1837.08 3181.91i 0.285439 0.494395i
\(347\) −7281.05 4203.72i −1.12642 0.650338i −0.183387 0.983041i \(-0.558706\pi\)
−0.943032 + 0.332703i \(0.892039\pi\)
\(348\) 6469.63 3735.24i 0.996577 0.575374i
\(349\) 6083.47 0.933068 0.466534 0.884503i \(-0.345503\pi\)
0.466534 + 0.884503i \(0.345503\pi\)
\(350\) 0 0
\(351\) 4950.91 0.752878
\(352\) 727.984 420.302i 0.110232 0.0636425i
\(353\) 10076.4 + 5817.60i 1.51930 + 0.877166i 0.999742 + 0.0227283i \(0.00723528\pi\)
0.519554 + 0.854438i \(0.326098\pi\)
\(354\) 3278.94 5679.28i 0.492298 0.852685i
\(355\) 0 0
\(356\) 6623.48 0.986079
\(357\) 368.883 24.0632i 0.0546873 0.00356740i
\(358\) 99.5889i 0.0147023i
\(359\) −839.170 1453.48i −0.123370 0.213682i 0.797725 0.603022i \(-0.206037\pi\)
−0.921094 + 0.389339i \(0.872703\pi\)
\(360\) 0 0
\(361\) −1549.85 + 2684.42i −0.225959 + 0.391372i
\(362\) −1733.08 + 1000.59i −0.251626 + 0.145276i
\(363\) 5345.49i 0.772908i
\(364\) −2351.13 + 1569.92i −0.338552 + 0.226062i
\(365\) 0 0
\(366\) −4205.93 7284.89i −0.600677 1.04040i
\(367\) 5904.34 + 3408.87i 0.839793 + 0.484854i 0.857194 0.514994i \(-0.172206\pi\)
−0.0174011 + 0.999849i \(0.505539\pi\)
\(368\) −1410.27 814.222i −0.199771 0.115338i
\(369\) −2019.59 3498.04i −0.284921 0.493497i
\(370\) 0 0
\(371\) −8373.46 + 5591.22i −1.17177 + 0.782430i
\(372\) 8918.02i 1.24295i
\(373\) −11499.0 + 6638.96i −1.59624 + 0.921588i −0.604034 + 0.796959i \(0.706441\pi\)
−0.992203 + 0.124629i \(0.960226\pi\)
\(374\) −62.8694 + 108.893i −0.00869225 + 0.0150554i
\(375\) 0 0
\(376\) 1368.69 + 2370.64i 0.187726 + 0.325151i
\(377\) 8545.88i 1.16747i
\(378\) −4795.20 + 312.803i −0.652482 + 0.0425632i
\(379\) −11844.1 −1.60525 −0.802623 0.596487i \(-0.796563\pi\)
−0.802623 + 0.596487i \(0.796563\pi\)
\(380\) 0 0
\(381\) 7422.99 12857.0i 0.998140 1.72883i
\(382\) −1728.25 997.807i −0.231479 0.133645i
\(383\) 5961.27 3441.74i 0.795318 0.459177i −0.0465135 0.998918i \(-0.514811\pi\)
0.841831 + 0.539741i \(0.181478\pi\)
\(384\) 1067.52 0.141866
\(385\) 0 0
\(386\) 5126.12 0.675939
\(387\) −14966.2 + 8640.76i −1.96583 + 1.13497i
\(388\) 19.9612 + 11.5246i 0.00261179 + 0.00150792i
\(389\) −2088.51 + 3617.41i −0.272215 + 0.471491i −0.969429 0.245373i \(-0.921090\pi\)
0.697213 + 0.716864i \(0.254423\pi\)
\(390\) 0 0
\(391\) 243.585 0.0315055
\(392\) 2178.00 1669.09i 0.280626 0.215056i
\(393\) 24526.9i 3.14814i
\(394\) 821.223 + 1422.40i 0.105007 + 0.181877i
\(395\) 0 0
\(396\) 2235.77 3872.47i 0.283717 0.491412i
\(397\) 5095.94 2942.14i 0.644227 0.371944i −0.142014 0.989865i \(-0.545358\pi\)
0.786241 + 0.617920i \(0.212025\pi\)
\(398\) 6472.52i 0.815172i
\(399\) 13822.3 + 6821.70i 1.73428 + 0.855920i
\(400\) 0 0
\(401\) 4698.92 + 8138.77i 0.585169 + 1.01354i 0.994854 + 0.101316i \(0.0323052\pi\)
−0.409685 + 0.912227i \(0.634361\pi\)
\(402\) −793.719 458.254i −0.0984754 0.0568548i
\(403\) −8835.01 5100.89i −1.09207 0.630505i
\(404\) 2309.96 + 4000.97i 0.284467 + 0.492712i
\(405\) 0 0
\(406\) 539.937 + 8277.10i 0.0660015 + 1.01179i
\(407\) 9543.13i 1.16225i
\(408\) −138.288 + 79.8407i −0.0167801 + 0.00968800i
\(409\) −4162.07 + 7208.91i −0.503181 + 0.871535i 0.496812 + 0.867858i \(0.334504\pi\)
−0.999993 + 0.00367699i \(0.998830\pi\)
\(410\) 0 0
\(411\) −6898.66 11948.8i −0.827945 1.43404i
\(412\) 6543.24i 0.782433i
\(413\) 4043.45 + 6055.50i 0.481756 + 0.721481i
\(414\) −8662.42 −1.02834
\(415\) 0 0
\(416\) 610.596 1057.58i 0.0719638 0.124645i
\(417\) −2960.44 1709.21i −0.347658 0.200720i
\(418\) −4540.50 + 2621.46i −0.531299 + 0.306746i
\(419\) 7948.44 0.926746 0.463373 0.886163i \(-0.346639\pi\)
0.463373 + 0.886163i \(0.346639\pi\)
\(420\) 0 0
\(421\) −7628.47 −0.883109 −0.441554 0.897235i \(-0.645573\pi\)
−0.441554 + 0.897235i \(0.645573\pi\)
\(422\) 5481.81 3164.93i 0.632347 0.365086i
\(423\) 12610.5 + 7280.68i 1.44951 + 0.836877i
\(424\) 2174.61 3766.54i 0.249077 0.431413i
\(425\) 0 0
\(426\) −14833.6 −1.68706
\(427\) 9320.12 607.976i 1.05628 0.0689041i
\(428\) 2655.43i 0.299895i
\(429\) −4180.34 7240.56i −0.470463 0.814866i
\(430\) 0 0
\(431\) −3496.19 + 6055.59i −0.390733 + 0.676769i −0.992546 0.121868i \(-0.961112\pi\)
0.601814 + 0.798636i \(0.294445\pi\)
\(432\) 1797.64 1037.87i 0.200206 0.115589i
\(433\) 10000.3i 1.10989i 0.831886 + 0.554947i \(0.187261\pi\)
−0.831886 + 0.554947i \(0.812739\pi\)
\(434\) 8879.40 + 4382.25i 0.982085 + 0.484689i
\(435\) 0 0
\(436\) 3612.01 + 6256.19i 0.396752 + 0.687195i
\(437\) 8795.99 + 5078.37i 0.962859 + 0.555907i
\(438\) 7377.24 + 4259.25i 0.804791 + 0.464646i
\(439\) 3365.41 + 5829.07i 0.365882 + 0.633727i 0.988917 0.148467i \(-0.0474339\pi\)
−0.623035 + 0.782194i \(0.714101\pi\)
\(440\) 0 0
\(441\) 5594.21 13482.0i 0.604061 1.45578i
\(442\) 182.668i 0.0196575i
\(443\) 6067.47 3503.05i 0.650731 0.375700i −0.138005 0.990432i \(-0.544069\pi\)
0.788736 + 0.614732i \(0.210736\pi\)
\(444\) −6059.62 + 10495.6i −0.647696 + 1.12184i
\(445\) 0 0
\(446\) −4697.63 8136.54i −0.498743 0.863848i
\(447\) 24846.4i 2.62907i
\(448\) −524.572 + 1062.90i −0.0553208 + 0.112092i
\(449\) −5307.59 −0.557863 −0.278932 0.960311i \(-0.589980\pi\)
−0.278932 + 0.960311i \(0.589980\pi\)
\(450\) 0 0
\(451\) −1246.66 + 2159.28i −0.130162 + 0.225447i
\(452\) 1553.32 + 896.813i 0.161642 + 0.0933241i
\(453\) 14262.0 8234.18i 1.47922 0.854030i
\(454\) 1487.88 0.153810
\(455\) 0 0
\(456\) −6658.21 −0.683770
\(457\) 10357.5 5979.89i 1.06018 0.612095i 0.134697 0.990887i \(-0.456994\pi\)
0.925482 + 0.378792i \(0.123660\pi\)
\(458\) 1657.81 + 957.135i 0.169136 + 0.0976506i
\(459\) −155.246 + 268.894i −0.0157870 + 0.0273440i
\(460\) 0 0
\(461\) −3761.36 −0.380009 −0.190004 0.981783i \(-0.560850\pi\)
−0.190004 + 0.981783i \(0.560850\pi\)
\(462\) 4506.32 + 6748.71i 0.453794 + 0.679607i
\(463\) 17527.2i 1.75930i 0.475617 + 0.879652i \(0.342225\pi\)
−0.475617 + 0.879652i \(0.657775\pi\)
\(464\) −1791.48 3102.94i −0.179240 0.310454i
\(465\) 0 0
\(466\) −857.919 + 1485.96i −0.0852840 + 0.147716i
\(467\) −8830.23 + 5098.13i −0.874977 + 0.505168i −0.868999 0.494814i \(-0.835236\pi\)
−0.00597804 + 0.999982i \(0.501903\pi\)
\(468\) 6496.06i 0.641625i
\(469\) 846.298 565.100i 0.0833229 0.0556373i
\(470\) 0 0
\(471\) −2924.41 5065.23i −0.286093 0.495528i
\(472\) −2723.88 1572.63i −0.265628 0.153361i
\(473\) 9238.42 + 5333.81i 0.898062 + 0.518496i
\(474\) −2283.12 3954.48i −0.221239 0.383197i
\(475\) 0 0
\(476\) −11.5411 176.923i −0.00111132 0.0170362i
\(477\) 23135.5i 2.22075i
\(478\) −3143.22 + 1814.74i −0.300769 + 0.173649i
\(479\) 8849.51 15327.8i 0.844143 1.46210i −0.0422211 0.999108i \(-0.513443\pi\)
0.886364 0.462990i \(-0.153223\pi\)
\(480\) 0 0
\(481\) 6931.92 + 12006.4i 0.657107 + 1.13814i
\(482\) 7362.19i 0.695723i
\(483\) 6957.36 14097.1i 0.655426 1.32804i
\(484\) 2563.79 0.240776
\(485\) 0 0
\(486\) −4061.78 + 7035.22i −0.379108 + 0.656634i
\(487\) −8556.16 4939.90i −0.796133 0.459647i 0.0459844 0.998942i \(-0.485358\pi\)
−0.842117 + 0.539295i \(0.818691\pi\)
\(488\) −3493.95 + 2017.24i −0.324106 + 0.187123i
\(489\) −7457.00 −0.689606
\(490\) 0 0
\(491\) −13584.5 −1.24860 −0.624299 0.781185i \(-0.714615\pi\)
−0.624299 + 0.781185i \(0.714615\pi\)
\(492\) −2742.17 + 1583.19i −0.251273 + 0.145073i
\(493\) 464.143 + 267.973i 0.0424015 + 0.0244805i
\(494\) −3808.34 + 6596.23i −0.346853 + 0.600766i
\(495\) 0 0
\(496\) −4277.23 −0.387204
\(497\) 7289.11 14769.3i 0.657870 1.33299i
\(498\) 8760.14i 0.788255i
\(499\) 5824.16 + 10087.7i 0.522495 + 0.904988i 0.999657 + 0.0261729i \(0.00833205\pi\)
−0.477162 + 0.878815i \(0.658335\pi\)
\(500\) 0 0
\(501\) 4326.15 7493.11i 0.385785 0.668199i
\(502\) 4483.27 2588.41i 0.398601 0.230133i
\(503\) 14501.5i 1.28547i 0.766091 + 0.642733i \(0.222199\pi\)
−0.766091 + 0.642733i \(0.777801\pi\)
\(504\) 410.427 + 6291.75i 0.0362736 + 0.556065i
\(505\) 0 0
\(506\) 2673.59 + 4630.79i 0.234892 + 0.406845i
\(507\) 5349.40 + 3088.48i 0.468590 + 0.270541i
\(508\) −6166.42 3560.19i −0.538565 0.310940i
\(509\) −1185.26 2052.93i −0.103214 0.178771i 0.809793 0.586715i \(-0.199579\pi\)
−0.913007 + 0.407944i \(0.866246\pi\)
\(510\) 0 0
\(511\) −7865.94 + 5252.33i −0.680957 + 0.454696i
\(512\) 512.000i 0.0441942i
\(513\) −11212.0 + 6473.26i −0.964956 + 0.557117i
\(514\) −1111.54 + 1925.25i −0.0953853 + 0.165212i
\(515\) 0 0
\(516\) 6773.63 + 11732.3i 0.577893 + 1.00094i
\(517\) 8988.50i 0.764630i
\(518\) −7472.47 11190.8i −0.633825 0.949223i
\(519\) −15321.2 −1.29581
\(520\) 0 0
\(521\) 3037.18 5260.55i 0.255396 0.442359i −0.709607 0.704598i \(-0.751127\pi\)
0.965003 + 0.262239i \(0.0844608\pi\)
\(522\) −16505.9 9529.70i −1.38399 0.799049i
\(523\) −1427.91 + 824.403i −0.119384 + 0.0689266i −0.558503 0.829502i \(-0.688624\pi\)
0.439119 + 0.898429i \(0.355291\pi\)
\(524\) −11763.5 −0.980709
\(525\) 0 0
\(526\) −5485.81 −0.454739
\(527\) 554.078 319.897i 0.0457989 0.0264420i
\(528\) −3035.69 1752.66i −0.250211 0.144460i
\(529\) −904.141 + 1566.02i −0.0743110 + 0.128710i
\(530\) 0 0
\(531\) −16731.1 −1.36736
\(532\) 3271.80 6629.38i 0.266636 0.540263i
\(533\) 3622.19i 0.294361i
\(534\) −13810.0 23919.6i −1.11913 1.93839i
\(535\) 0 0
\(536\) −219.786 + 380.681i −0.0177114 + 0.0306771i
\(537\) 359.648 207.643i 0.0289012 0.0166861i
\(538\) 3850.29i 0.308546i
\(539\) −8933.86 + 1170.54i −0.713931 + 0.0935413i
\(540\) 0 0
\(541\) −6879.27 11915.3i −0.546697 0.946907i −0.998498 0.0547883i \(-0.982552\pi\)
0.451801 0.892119i \(-0.350782\pi\)
\(542\) −496.397 286.595i −0.0393397 0.0227128i
\(543\) 7226.93 + 4172.47i 0.571155 + 0.329757i
\(544\) 38.2929 + 66.3252i 0.00301800 + 0.00522734i
\(545\) 0 0
\(546\) 10571.6 + 5217.41i 0.828614 + 0.408946i
\(547\) 4368.90i 0.341501i −0.985314 0.170750i \(-0.945381\pi\)
0.985314 0.170750i \(-0.0546192\pi\)
\(548\) −5730.85 + 3308.71i −0.446733 + 0.257922i
\(549\) −10730.6 + 18585.9i −0.834189 + 1.44486i
\(550\) 0 0
\(551\) 11173.6 + 19353.3i 0.863907 + 1.49633i
\(552\) 6790.61i 0.523601i
\(553\) 5059.27 330.030i 0.389046 0.0253785i
\(554\) 2877.75 0.220693
\(555\) 0 0
\(556\) −819.765 + 1419.87i −0.0625284 + 0.108302i
\(557\) 8917.62 + 5148.59i 0.678369 + 0.391657i 0.799240 0.601012i \(-0.205235\pi\)
−0.120871 + 0.992668i \(0.538569\pi\)
\(558\) −19704.2 + 11376.2i −1.49489 + 0.863072i
\(559\) 15497.4 1.17258
\(560\) 0 0
\(561\) 524.331 0.0394604
\(562\) 4605.78 2659.15i 0.345699 0.199590i
\(563\) −12270.6 7084.45i −0.918553 0.530327i −0.0353796 0.999374i \(-0.511264\pi\)
−0.883173 + 0.469047i \(0.844597\pi\)
\(564\) 5707.45 9885.59i 0.426111 0.738047i
\(565\) 0 0
\(566\) −666.290 −0.0494811
\(567\) −689.317 1032.33i −0.0510557 0.0764615i
\(568\) 7114.42i 0.525553i
\(569\) −11983.6 20756.1i −0.882912 1.52925i −0.848088 0.529856i \(-0.822246\pi\)
−0.0348246 0.999393i \(-0.511087\pi\)
\(570\) 0 0
\(571\) −10352.6 + 17931.3i −0.758745 + 1.31418i 0.184746 + 0.982786i \(0.440854\pi\)
−0.943491 + 0.331398i \(0.892480\pi\)
\(572\) −3472.69 + 2004.96i −0.253847 + 0.146559i
\(573\) 8321.71i 0.606709i
\(574\) −228.853 3508.26i −0.0166414 0.255108i
\(575\) 0 0
\(576\) −1361.78 2358.67i −0.0985082 0.170621i
\(577\) −1312.22 757.610i −0.0946766 0.0546616i 0.451914 0.892061i \(-0.350741\pi\)
−0.546591 + 0.837400i \(0.684075\pi\)
\(578\) 8499.64 + 4907.27i 0.611658 + 0.353141i
\(579\) −10688.0 18512.1i −0.767144 1.32873i
\(580\) 0 0
\(581\) −8722.21 4304.68i −0.622820 0.307380i
\(582\) 96.1151i 0.00684553i
\(583\) −12367.8 + 7140.58i −0.878600 + 0.507260i
\(584\) 2042.81 3538.25i 0.144747 0.250708i
\(585\) 0 0
\(586\) 7675.26 + 13293.9i 0.541061 + 0.937146i
\(587\) 25148.2i 1.76828i 0.467226 + 0.884138i \(0.345254\pi\)
−0.467226 + 0.884138i \(0.654746\pi\)
\(588\) −10568.8 4385.39i −0.741238 0.307569i
\(589\) 26677.4 1.86625
\(590\) 0 0
\(591\) 3424.50 5931.40i 0.238350 0.412835i
\(592\) 5033.85 + 2906.29i 0.349476 + 0.201770i
\(593\) 13605.1 7854.88i 0.942146 0.543948i 0.0515139 0.998672i \(-0.483595\pi\)
0.890633 + 0.454724i \(0.150262\pi\)
\(594\) −6815.89 −0.470807
\(595\) 0 0
\(596\) −11916.7 −0.819008
\(597\) −23374.4 + 13495.2i −1.60243 + 0.925163i
\(598\) 6727.41 + 3884.07i 0.460040 + 0.265604i
\(599\) −5243.91 + 9082.71i −0.357696 + 0.619548i −0.987576 0.157145i \(-0.949771\pi\)
0.629879 + 0.776693i \(0.283104\pi\)
\(600\) 0 0
\(601\) 19266.8 1.30767 0.653835 0.756637i \(-0.273159\pi\)
0.653835 + 0.756637i \(0.273159\pi\)
\(602\) −15010.0 + 979.142i −1.01622 + 0.0662905i
\(603\) 2338.28i 0.157914i
\(604\) −3949.25 6840.30i −0.266047 0.460808i
\(605\) 0 0
\(606\) 9632.53 16684.0i 0.645701 1.11839i
\(607\) −6046.38 + 3490.88i −0.404308 + 0.233427i −0.688341 0.725387i \(-0.741661\pi\)
0.284033 + 0.958814i \(0.408327\pi\)
\(608\) 3193.38i 0.213008i
\(609\) 28765.5 19207.6i 1.91402 1.27805i
\(610\) 0 0
\(611\) −6529.05 11308.6i −0.432303 0.748770i
\(612\) 352.813 + 203.697i 0.0233033 + 0.0134542i
\(613\) −574.820 331.873i −0.0378740 0.0218666i 0.480943 0.876752i \(-0.340294\pi\)
−0.518817 + 0.854885i \(0.673628\pi\)
\(614\) −3833.02 6638.99i −0.251935 0.436365i
\(615\) 0 0
\(616\) 3236.79 2161.31i 0.211711 0.141366i
\(617\) 7749.41i 0.505640i −0.967513 0.252820i \(-0.918642\pi\)
0.967513 0.252820i \(-0.0813580\pi\)
\(618\) 23629.8 13642.7i 1.53807 0.888007i
\(619\) −8215.93 + 14230.4i −0.533483 + 0.924020i 0.465752 + 0.884915i \(0.345784\pi\)
−0.999235 + 0.0391048i \(0.987549\pi\)
\(620\) 0 0
\(621\) 6601.98 + 11435.0i 0.426616 + 0.738920i
\(622\) 883.732i 0.0569685i
\(623\) 30602.1 1996.26i 1.96797 0.128376i
\(624\) −5092.37 −0.326695
\(625\) 0 0
\(626\) 8326.03 14421.1i 0.531590 0.920740i
\(627\) 18933.9 + 10931.5i 1.20597 + 0.696269i
\(628\) −2429.37 + 1402.60i −0.154367 + 0.0891237i
\(629\) −869.456 −0.0551153
\(630\) 0 0
\(631\) 14436.7 0.910804 0.455402 0.890286i \(-0.349496\pi\)
0.455402 + 0.890286i \(0.349496\pi\)
\(632\) −1896.64 + 1095.02i −0.119374 + 0.0689204i
\(633\) −22859.2 13197.7i −1.43534 0.828694i
\(634\) −3468.11 + 6006.94i −0.217250 + 0.376287i
\(635\) 0 0
\(636\) −18136.3 −1.13074
\(637\) −10389.6 + 7962.05i −0.646237 + 0.495240i
\(638\) 11765.1i 0.730068i
\(639\) 18922.4 + 32774.5i 1.17145 + 2.02901i
\(640\) 0 0
\(641\) −7444.58 + 12894.4i −0.458726 + 0.794537i −0.998894 0.0470206i \(-0.985027\pi\)
0.540168 + 0.841557i \(0.318361\pi\)
\(642\) −9589.62 + 5536.57i −0.589520 + 0.340360i
\(643\) 26252.6i 1.61011i −0.593198 0.805057i \(-0.702135\pi\)
0.593198 0.805057i \(-0.297865\pi\)
\(644\) −6761.21 3336.86i −0.413710 0.204178i
\(645\) 0 0
\(646\) −238.836 413.676i −0.0145462 0.0251948i
\(647\) 6113.60 + 3529.69i 0.371485 + 0.214477i 0.674107 0.738634i \(-0.264529\pi\)
−0.302622 + 0.953111i \(0.597862\pi\)
\(648\) 464.360 + 268.098i 0.0281509 + 0.0162529i
\(649\) 5163.91 + 8944.15i 0.312328 + 0.540969i
\(650\) 0 0
\(651\) −2687.81 41203.4i −0.161818 2.48063i
\(652\) 3576.50i 0.214826i
\(653\) −9284.04 + 5360.14i −0.556374 + 0.321223i −0.751689 0.659518i \(-0.770761\pi\)
0.195315 + 0.980741i \(0.437427\pi\)
\(654\) 15062.1 26088.3i 0.900572 1.55984i
\(655\) 0 0
\(656\) 759.324 + 1315.19i 0.0451930 + 0.0782766i
\(657\) 21733.2i 1.29055i
\(658\) 7038.18 + 10540.4i 0.416986 + 0.624482i
\(659\) −5021.59 −0.296834 −0.148417 0.988925i \(-0.547418\pi\)
−0.148417 + 0.988925i \(0.547418\pi\)
\(660\) 0 0
\(661\) 3169.37 5489.51i 0.186497 0.323022i −0.757583 0.652739i \(-0.773620\pi\)
0.944080 + 0.329717i \(0.106953\pi\)
\(662\) −18998.4 10968.7i −1.11540 0.643976i
\(663\) 659.673 380.862i 0.0386419 0.0223099i
\(664\) 4201.51 0.245557
\(665\) 0 0
\(666\) 30919.7 1.79897
\(667\) 19738.2 11395.8i 1.14582 0.661542i
\(668\) −3593.82 2074.89i −0.208157 0.120180i
\(669\) −19589.1 + 33929.3i −1.13208 + 1.96081i
\(670\) 0 0
\(671\) 13247.6 0.762174
\(672\) 4932.20 321.741i 0.283131 0.0184694i
\(673\) 6498.81i 0.372230i −0.982528 0.186115i \(-0.940410\pi\)
0.982528 0.186115i \(-0.0595897\pi\)
\(674\) −4317.34 7477.85i −0.246732 0.427353i
\(675\) 0 0
\(676\) 1481.29 2565.66i 0.0842789 0.145975i
\(677\) −773.013 + 446.299i −0.0438838 + 0.0253363i −0.521781 0.853079i \(-0.674732\pi\)
0.477898 + 0.878416i \(0.341399\pi\)
\(678\) 7479.41i 0.423665i
\(679\) 95.6990 + 47.2303i 0.00540882 + 0.00266942i
\(680\) 0 0
\(681\) −3102.24 5373.23i −0.174564 0.302354i
\(682\) 12163.1 + 7022.37i 0.682917 + 0.394282i
\(683\) −17901.9 10335.7i −1.00292 0.579038i −0.0938111 0.995590i \(-0.529905\pi\)
−0.909112 + 0.416552i \(0.863238\pi\)
\(684\) 8493.52 + 14711.2i 0.474792 + 0.822364i
\(685\) 0 0
\(686\) 9559.82 8368.05i 0.532064 0.465734i
\(687\) 7982.50i 0.443306i
\(688\) 5626.99 3248.75i 0.311813 0.180025i
\(689\) −10373.5 + 17967.4i −0.573584 + 0.993477i
\(690\) 0 0
\(691\) −5751.92 9962.61i −0.316662 0.548474i 0.663128 0.748506i \(-0.269229\pi\)
−0.979789 + 0.200032i \(0.935895\pi\)
\(692\) 7348.31i 0.403672i
\(693\) 9162.69 18565.6i 0.502254 1.01768i
\(694\) 16814.9 0.919717
\(695\) 0 0
\(696\) −7470.49 + 12939.3i −0.406851 + 0.704686i
\(697\) −196.728 113.581i −0.0106910 0.00617243i
\(698\) −10536.9 + 6083.47i −0.571385 + 0.329889i
\(699\) 7155.05 0.387165
\(700\) 0 0
\(701\) 9731.33 0.524318 0.262159 0.965025i \(-0.415565\pi\)
0.262159 + 0.965025i \(0.415565\pi\)
\(702\) −8575.24 + 4950.91i −0.461042 + 0.266183i
\(703\) −31396.5 18126.8i −1.68441 0.972496i
\(704\) −840.604 + 1455.97i −0.0450021 + 0.0779458i
\(705\) 0 0
\(706\) −23270.4 −1.24050
\(707\) 11878.4 + 17789.2i 0.631873 + 0.946299i
\(708\) 13115.7i 0.696214i
\(709\) 2181.10 + 3777.78i 0.115533 + 0.200110i 0.917993 0.396597i \(-0.129809\pi\)
−0.802460 + 0.596707i \(0.796476\pi\)
\(710\) 0 0
\(711\) −5824.91 + 10089.0i −0.307245 + 0.532164i
\(712\) −11472.2 + 6623.48i −0.603847 + 0.348631i
\(713\) 27207.9i 1.42909i
\(714\) −614.862 + 410.562i −0.0322278 + 0.0215195i
\(715\) 0 0
\(716\) −99.5889 172.493i −0.00519806 0.00900331i
\(717\) 13107.2 + 7567.47i 0.682704 + 0.394160i
\(718\) 2906.97 + 1678.34i 0.151096 + 0.0872355i
\(719\) 12574.0 + 21778.9i 0.652201 + 1.12965i 0.982588 + 0.185799i \(0.0594875\pi\)
−0.330387 + 0.943846i \(0.607179\pi\)
\(720\) 0 0
\(721\) 1972.07 + 30231.4i 0.101864 + 1.56155i
\(722\) 6199.40i 0.319554i
\(723\) 26587.3 15350.2i 1.36762 0.789597i
\(724\) 2001.19 3466.15i 0.102726 0.177926i
\(725\) 0 0
\(726\) −5345.49 9258.66i −0.273264 0.473308i
\(727\) 12965.7i 0.661446i −0.943728 0.330723i \(-0.892707\pi\)
0.943728 0.330723i \(-0.107293\pi\)
\(728\) 2502.36 5070.32i 0.127395 0.258130i
\(729\) 32065.6 1.62910
\(730\) 0 0
\(731\) −485.953 + 841.695i −0.0245877 + 0.0425872i
\(732\) 14569.8 + 8411.87i 0.735676 + 0.424743i
\(733\) 7886.94 4553.53i 0.397423 0.229452i −0.287949 0.957646i \(-0.592973\pi\)
0.685371 + 0.728194i \(0.259640\pi\)
\(734\) −13635.5 −0.685688
\(735\) 0 0
\(736\) 3256.89 0.163112
\(737\) 1250.01 721.692i 0.0624757 0.0360704i
\(738\) 6996.07 + 4039.18i 0.348955 + 0.201469i
\(739\) −3263.50 + 5652.54i −0.162449 + 0.281370i −0.935746 0.352674i \(-0.885273\pi\)
0.773298 + 0.634043i \(0.218606\pi\)
\(740\) 0 0
\(741\) 31761.5 1.57461
\(742\) 8912.04 18057.7i 0.440932 0.893424i
\(743\) 35778.0i 1.76658i 0.468827 + 0.883290i \(0.344677\pi\)
−0.468827 + 0.883290i \(0.655323\pi\)
\(744\) 8918.02 + 15446.5i 0.439449 + 0.761149i
\(745\) 0 0
\(746\) 13277.9 22998.0i 0.651661 1.12871i
\(747\) 19355.4 11174.8i 0.948028 0.547344i
\(748\) 251.478i 0.0122927i
\(749\) −800.322 12268.7i −0.0390429 0.598518i
\(750\) 0 0
\(751\) −14794.2 25624.3i −0.718838 1.24506i −0.961460 0.274943i \(-0.911341\pi\)
0.242622 0.970121i \(-0.421992\pi\)
\(752\) −4741.29 2737.38i −0.229916 0.132742i
\(753\) −18695.2 10793.7i −0.904769 0.522369i
\(754\) 8545.88 + 14801.9i 0.412762 + 0.714925i
\(755\) 0 0
\(756\) 7992.72 5336.99i 0.384514 0.256752i
\(757\) 7623.03i 0.366002i −0.983113 0.183001i \(-0.941419\pi\)
0.983113 0.183001i \(-0.0585812\pi\)
\(758\) 20514.5 11844.1i 0.983008 0.567540i
\(759\) 11148.9 19310.4i 0.533172 0.923482i
\(760\) 0 0
\(761\) −12592.8 21811.3i −0.599853 1.03898i −0.992842 0.119433i \(-0.961892\pi\)
0.392989 0.919543i \(-0.371441\pi\)
\(762\) 29691.9i 1.41158i
\(763\) 18573.9 + 27816.5i 0.881287 + 1.31982i
\(764\) 3991.23 0.189002
\(765\) 0 0
\(766\) −6883.48 + 11922.5i −0.324687 + 0.562375i
\(767\) 12993.7 + 7501.90i 0.611700 + 0.353165i
\(768\) −1849.00 + 1067.52i −0.0868750 + 0.0501573i
\(769\) 7545.46 0.353831 0.176916 0.984226i \(-0.443388\pi\)
0.176916 + 0.984226i \(0.443388\pi\)
\(770\) 0 0
\(771\) 9270.27 0.433023
\(772\) −8878.70 + 5126.12i −0.413927 + 0.238981i
\(773\) 20960.7 + 12101.7i 0.975298 + 0.563089i 0.900847 0.434136i \(-0.142946\pi\)
0.0744507 + 0.997225i \(0.476280\pi\)
\(774\) 17281.5 29932.5i 0.802547 1.39005i
\(775\) 0 0
\(776\) −46.0984 −0.00213252
\(777\) −24833.7 + 50318.4i −1.14659 + 2.32325i
\(778\) 8354.05i 0.384971i
\(779\) −4735.97 8202.94i −0.217822 0.377279i
\(780\) 0 0
\(781\) 11680.5 20231.2i 0.535160 0.926925i
\(782\) −421.902 + 243.585i −0.0192931 + 0.0111389i
\(783\) 29051.9i 1.32596i
\(784\) −2103.30 + 5068.95i −0.0958138 + 0.230911i
\(785\) 0 0
\(786\) 24526.9 + 42481.9i 1.11304 + 1.92783i
\(787\) −5423.80 3131.43i −0.245664 0.141834i 0.372113 0.928187i \(-0.378633\pi\)
−0.617777 + 0.786353i \(0.711967\pi\)
\(788\) −2844.80 1642.45i −0.128606 0.0742509i
\(789\) 11437.9 + 19811.1i 0.516097 + 0.893906i
\(790\) 0 0
\(791\) 7447.03 + 3675.34i 0.334748 + 0.165208i
\(792\) 8943.09i 0.401236i
\(793\) 16667.1 9622.78i 0.746365 0.430914i
\(794\) −5884.29 + 10191.9i −0.263004 + 0.455537i
\(795\) 0 0
\(796\) 6472.52 + 11210.7i 0.288207 + 0.499189i
\(797\) 41906.4i 1.86248i 0.364402 + 0.931242i \(0.381274\pi\)
−0.364402 + 0.931242i \(0.618726\pi\)
\(798\) −30762.5 + 2006.72i −1.36464 + 0.0890190i
\(799\) 818.925 0.0362597
\(800\) 0 0
\(801\) −35233.3 + 61025.8i −1.55419 + 2.69194i
\(802\) −16277.5 9397.84i −0.716683 0.413777i
\(803\) −11618.2 + 6707.78i −0.510583 + 0.294785i
\(804\) 1833.02 0.0804048
\(805\) 0 0
\(806\) 20403.6 0.891669
\(807\) −13904.7 + 8027.86i −0.606527 + 0.350179i
\(808\) −8001.93 4619.92i −0.348400 0.201149i
\(809\) 17243.3 29866.2i 0.749371 1.29795i −0.198753 0.980050i \(-0.563689\pi\)
0.948125 0.317899i \(-0.102977\pi\)
\(810\) 0 0
\(811\) 15173.9 0.657002 0.328501 0.944504i \(-0.393457\pi\)
0.328501 + 0.944504i \(0.393457\pi\)
\(812\) −9212.29 13796.4i −0.398138 0.596255i
\(813\) 2390.20i 0.103110i
\(814\) −9543.13 16529.2i −0.410917 0.711729i
\(815\) 0 0
\(816\) 159.681 276.576i 0.00685045 0.0118653i
\(817\) −35096.0 + 20262.7i −1.50288 + 0.867689i
\(818\) 16648.3i 0.711605i
\(819\) −1957.85 30013.4i −0.0835323 1.28053i
\(820\) 0 0
\(821\) 7607.33 + 13176.3i 0.323383 + 0.560117i 0.981184 0.193076i \(-0.0618463\pi\)
−0.657800 + 0.753192i \(0.728513\pi\)
\(822\) 23897.6 + 13797.3i 1.01402 + 0.585446i
\(823\) −19493.9 11254.8i −0.825657 0.476693i 0.0267063 0.999643i \(-0.491498\pi\)
−0.852363 + 0.522950i \(0.824831\pi\)
\(824\) −6543.24 11333.2i −0.276632 0.479141i
\(825\) 0 0
\(826\) −13059.0 6444.99i −0.550096 0.271489i
\(827\) 32024.2i 1.34654i 0.739395 + 0.673272i \(0.235112\pi\)
−0.739395 + 0.673272i \(0.764888\pi\)
\(828\) 15003.8 8662.42i 0.629730 0.363575i
\(829\) −9541.87 + 16527.0i −0.399762 + 0.692408i −0.993696 0.112105i \(-0.964241\pi\)
0.593934 + 0.804514i \(0.297574\pi\)
\(830\) 0 0
\(831\) −6000.10 10392.5i −0.250471 0.433828i
\(832\) 2442.38i 0.101772i
\(833\) −106.646 813.947i −0.00443584 0.0338555i
\(834\) 6836.84 0.283861
\(835\) 0 0
\(836\) 5242.91 9080.99i 0.216902 0.375685i
\(837\) 30034.8 + 17340.6i 1.24033 + 0.716103i
\(838\) −13767.1 + 7948.44i −0.567514 + 0.327654i
\(839\) −23198.0 −0.954568 −0.477284 0.878749i \(-0.658379\pi\)
−0.477284 + 0.878749i \(0.658379\pi\)
\(840\) 0 0
\(841\) 25758.1 1.05614
\(842\) 13212.9 7628.47i 0.540791 0.312226i
\(843\) −19206.1 11088.6i −0.784689 0.453040i
\(844\) −6329.85 + 10963.6i −0.258155 + 0.447137i
\(845\) 0 0
\(846\) −29122.7 −1.18352
\(847\) 11845.3 772.702i 0.480531 0.0313463i
\(848\) 8698.45i 0.352248i
\(849\) 1389.22 + 2406.19i 0.0561575 + 0.0972677i
\(850\) 0 0
\(851\) −18487.3 + 32020.9i −0.744695 + 1.28985i
\(852\) 25692.5 14833.6i 1.03311 0.596466i
\(853\) 26109.1i 1.04802i 0.851713 + 0.524009i \(0.175564\pi\)
−0.851713 + 0.524009i \(0.824436\pi\)
\(854\) −15534.9 + 10373.2i −0.622477 + 0.415647i
\(855\) 0 0
\(856\) 2655.43 + 4599.34i 0.106029 + 0.183647i
\(857\) −18156.7 10482.8i −0.723713 0.417836i 0.0924046 0.995722i \(-0.470545\pi\)
−0.816118 + 0.577885i \(0.803878\pi\)
\(858\) 14481.1 + 8360.67i 0.576197 + 0.332667i
\(859\) −15673.2 27146.7i −0.622540 1.07827i −0.989011 0.147841i \(-0.952768\pi\)
0.366472 0.930429i \(-0.380566\pi\)
\(860\) 0 0
\(861\) −12192.3 + 8141.19i −0.482594 + 0.322243i
\(862\) 13984.8i 0.552579i
\(863\) −12564.3 + 7254.00i −0.495589 + 0.286129i −0.726890 0.686754i \(-0.759035\pi\)
0.231301 + 0.972882i \(0.425702\pi\)
\(864\) −2075.73 + 3595.27i −0.0817336 + 0.141567i
\(865\) 0 0
\(866\) −10000.3 17321.0i −0.392407 0.679669i
\(867\) 40926.6i 1.60316i
\(868\) −19761.8 + 1289.12i −0.772765 + 0.0504095i
\(869\) 7191.25 0.280721
\(870\) 0 0
\(871\) 1048.44 1815.95i 0.0407866 0.0706444i
\(872\) −12512.4 7224.02i −0.485920 0.280546i
\(873\) −212.365 + 122.609i −0.00823306 + 0.00475336i
\(874\) −20313.5 −0.786171
\(875\) 0 0
\(876\) −17037.0 −0.657109
\(877\) −91.5298 + 52.8448i −0.00352422 + 0.00203471i −0.501761 0.865006i \(-0.667314\pi\)
0.498237 + 0.867041i \(0.333981\pi\)
\(878\) −11658.1 6730.83i −0.448113 0.258718i
\(879\) 32005.8 55435.7i 1.22813 2.12719i
\(880\) 0 0
\(881\) 22941.4 0.877316 0.438658 0.898654i \(-0.355454\pi\)
0.438658 + 0.898654i \(0.355454\pi\)
\(882\) 3792.55 + 28945.7i 0.144787 + 1.10505i
\(883\) 25169.9i 0.959267i −0.877469 0.479634i \(-0.840770\pi\)
0.877469 0.479634i \(-0.159230\pi\)
\(884\) −182.668 316.390i −0.00694998 0.0120377i
\(885\) 0 0
\(886\) −7006.11 + 12134.9i −0.265660 + 0.460137i
\(887\) 18411.9 10630.1i 0.696969 0.402395i −0.109249 0.994014i \(-0.534844\pi\)
0.806217 + 0.591619i \(0.201511\pi\)
\(888\) 24238.5i 0.915980i
\(889\) −29563.4 14590.4i −1.11533 0.550447i
\(890\) 0 0
\(891\) −880.330 1524.78i −0.0331001 0.0573310i
\(892\) 16273.1 + 9395.26i 0.610833 + 0.352664i
\(893\) 29571.8 + 17073.3i 1.10816 + 0.639794i
\(894\) 24846.4 + 43035.2i 0.929516 + 1.60997i
\(895\) 0 0
\(896\) −154.312 2365.57i −0.00575358 0.0882009i
\(897\) 32393.1i 1.20577i
\(898\) 9193.01 5307.59i 0.341620 0.197234i
\(899\) 29932.0 51843.7i 1.11044 1.92334i
\(900\) 0 0
\(901\) −650.564 1126.81i −0.0240549 0.0416642i
\(902\) 4986.65i 0.184077i
\(903\) 34831.9 + 52164.5i 1.28365 + 1.92240i
\(904\) −3587.25 −0.131980
\(905\) 0 0
\(906\) −16468.4 + 28524.0i −0.603890 + 1.04597i
\(907\) −46233.4 26692.9i −1.69256 0.977202i −0.952438 0.304732i \(-0.901433\pi\)
−0.740124 0.672470i \(-0.765233\pi\)
\(908\) −2577.09 + 1487.88i −0.0941892 + 0.0543802i
\(909\) −49150.8 −1.79343
\(910\) 0 0
\(911\) −3333.00 −0.121215 −0.0606076 0.998162i \(-0.519304\pi\)
−0.0606076 + 0.998162i \(0.519304\pi\)
\(912\) 11532.4 6658.21i 0.418722 0.241749i
\(913\) −11947.8 6898.05i −0.433093 0.250046i
\(914\) −11959.8 + 20714.9i −0.432816 + 0.749660i
\(915\) 0 0
\(916\) −3828.54 −0.138099
\(917\) −54350.3 + 3545.41i −1.95726 + 0.127677i
\(918\) 620.983i 0.0223262i
\(919\) −3111.62 5389.48i −0.111690 0.193452i 0.804762 0.593598i \(-0.202293\pi\)
−0.916452 + 0.400145i \(0.868960\pi\)
\(920\) 0 0
\(921\) −15983.7 + 27684.6i −0.571858 + 0.990486i
\(922\) 6514.87 3761.36i 0.232707 0.134353i
\(923\) 33937.8i 1.21027i
\(924\) −14553.9 7182.78i −0.518168 0.255732i
\(925\) 0 0
\(926\) −17527.2 30358.0i −0.622008 1.07735i
\(927\) −60286.5 34806.4i −2.13600 1.23322i
\(928\) 6205.88 + 3582.97i 0.219524 + 0.126742i
\(929\) 1873.99 + 3245.84i 0.0661825 + 0.114631i 0.897218 0.441588i \(-0.145585\pi\)
−0.831035 + 0.556219i \(0.812251\pi\)
\(930\) 0 0
\(931\) 13118.5 31615.4i 0.461805 1.11295i
\(932\) 3431.68i 0.120610i
\(933\) −3191.44 + 1842.58i −0.111986 + 0.0646553i
\(934\) 10196.3 17660.5i 0.357208 0.618702i
\(935\) 0 0
\(936\) 6496.06 + 11251.5i 0.226849 + 0.392914i
\(937\) 31970.1i 1.11464i 0.830298 + 0.557320i \(0.188170\pi\)
−0.830298 + 0.557320i \(0.811830\pi\)
\(938\) −900.732 + 1825.08i −0.0313539 + 0.0635298i
\(939\) −69439.1 −2.41327
\(940\) 0 0
\(941\) 19806.0 34305.1i 0.686141 1.18843i −0.286936 0.957950i \(-0.592637\pi\)
0.973077 0.230481i \(-0.0740300\pi\)
\(942\) 10130.5 + 5848.83i 0.350391 + 0.202298i
\(943\) −8366.06 + 4830.15i −0.288904 + 0.166799i
\(944\) 6290.53 0.216885
\(945\) 0 0
\(946\) −21335.2 −0.733264
\(947\) 28999.5 16742.9i 0.995098 0.574520i 0.0883040 0.996094i \(-0.471855\pi\)
0.906794 + 0.421573i \(0.138522\pi\)
\(948\) 7908.97 + 4566.24i 0.270961 + 0.156440i
\(949\) −9744.77 + 16878.4i −0.333328 + 0.577342i
\(950\) 0 0
\(951\) 28924.0 0.986252
\(952\) 196.912 + 294.898i 0.00670375 + 0.0100396i
\(953\) 2871.26i 0.0975963i 0.998809 + 0.0487981i \(0.0155391\pi\)
−0.998809 + 0.0487981i \(0.984461\pi\)
\(954\) 23135.5 + 40071.8i 0.785155 + 1.35993i
\(955\) 0 0
\(956\) 3629.48 6286.45i 0.122789 0.212676i
\(957\) 42487.5 24530.2i 1.43514 0.828576i
\(958\) 35398.0i 1.19380i
\(959\) −25480.7 + 17014.3i −0.857993 + 0.572909i
\(960\) 0 0
\(961\) −20836.3 36089.5i −0.699415 1.21142i
\(962\) −24012.9 13863.8i −0.804788 0.464645i
\(963\) 24465.9 + 14125.4i 0.818695 + 0.472674i
\(964\) −7362.19 12751.7i −0.245975 0.426042i
\(965\) 0 0
\(966\) 2046.63 + 31374.3i 0.0681669 + 1.04498i
\(967\) 39768.7i 1.32252i 0.750158 + 0.661259i \(0.229977\pi\)
−0.750158 + 0.661259i \(0.770023\pi\)
\(968\) −4440.61 + 2563.79i −0.147445 + 0.0851273i
\(969\) −995.945 + 1725.03i −0.0330179 + 0.0571887i
\(970\) 0 0
\(971\) 14076.5 + 24381.2i 0.465228 + 0.805799i 0.999212 0.0396960i \(-0.0126390\pi\)
−0.533984 + 0.845495i \(0.679306\pi\)
\(972\) 16247.1i 0.536139i
\(973\) −3359.58 + 6807.24i −0.110692 + 0.224286i
\(974\) 19759.6 0.650040
\(975\) 0 0
\(976\) 4034.47 6987.91i 0.132316 0.229178i
\(977\) 19977.7 + 11534.1i 0.654189 + 0.377696i 0.790059 0.613030i \(-0.210050\pi\)
−0.135870 + 0.990727i \(0.543383\pi\)
\(978\) 12915.9 7457.00i 0.422295 0.243812i
\(979\) 43497.9 1.42002
\(980\) 0 0
\(981\) −76855.6 −2.50134
\(982\) 23529.1 13584.5i 0.764607 0.441446i
\(983\) 2249.66 + 1298.84i 0.0729938 + 0.0421430i 0.536053 0.844185i \(-0.319915\pi\)
−0.463059 + 0.886328i \(0.653248\pi\)
\(984\) 3166.38 5484.33i 0.102582 0.177677i
\(985\) 0 0
\(986\) −1071.89 −0.0346207
\(987\) 23390.4 47394.0i 0.754330 1.52844i
\(988\) 15233.3i 0.490524i
\(989\) 20665.6 + 35793.9i 0.664438 + 1.15084i
\(990\) 0 0
\(991\) 12219.0 21163.9i 0.391674 0.678399i −0.600997 0.799252i \(-0.705229\pi\)
0.992670 + 0.120853i \(0.0385628\pi\)
\(992\) 7408.37 4277.23i 0.237113 0.136897i
\(993\) 91479.3i 2.92347i
\(994\) 2144.22 + 32870.3i 0.0684210 + 1.04888i
\(995\) 0 0
\(996\) −8760.14 15173.0i −0.278690 0.482706i
\(997\) −3653.44 2109.31i −0.116054 0.0670036i 0.440850 0.897581i \(-0.354677\pi\)
−0.556903 + 0.830577i \(0.688011\pi\)
\(998\) −20175.5 11648.3i −0.639923 0.369460i
\(999\) −23565.2 40816.1i −0.746316 1.29266i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.4.j.h.249.3 12
5.2 odd 4 350.4.e.i.151.3 yes 6
5.3 odd 4 350.4.e.j.151.1 yes 6
5.4 even 2 inner 350.4.j.h.249.4 12
7.2 even 3 inner 350.4.j.h.149.4 12
35.2 odd 12 350.4.e.i.51.3 6
35.3 even 12 2450.4.a.cd.1.1 3
35.9 even 6 inner 350.4.j.h.149.3 12
35.17 even 12 2450.4.a.ch.1.3 3
35.18 odd 12 2450.4.a.cc.1.3 3
35.23 odd 12 350.4.e.j.51.1 yes 6
35.32 odd 12 2450.4.a.ci.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.4.e.i.51.3 6 35.2 odd 12
350.4.e.i.151.3 yes 6 5.2 odd 4
350.4.e.j.51.1 yes 6 35.23 odd 12
350.4.e.j.151.1 yes 6 5.3 odd 4
350.4.j.h.149.3 12 35.9 even 6 inner
350.4.j.h.149.4 12 7.2 even 3 inner
350.4.j.h.249.3 12 1.1 even 1 trivial
350.4.j.h.249.4 12 5.4 even 2 inner
2450.4.a.cc.1.3 3 35.18 odd 12
2450.4.a.cd.1.1 3 35.3 even 12
2450.4.a.ch.1.3 3 35.17 even 12
2450.4.a.ci.1.1 3 35.32 odd 12