Properties

Label 350.4.j.h.149.5
Level $350$
Weight $4$
Character 350.149
Analytic conductor $20.651$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,4,Mod(149,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.149"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,24,0,24,0,0,112,0,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 134x^{10} + 13467x^{8} - 530084x^{6} + 15364507x^{4} - 160351569x^{2} + 1275989841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 149.5
Root \(2.95806 + 1.70784i\) of defining polynomial
Character \(\chi\) \(=\) 350.149
Dual form 350.4.j.h.249.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 + 1.00000i) q^{2} +(3.82408 - 2.20784i) q^{3} +(2.00000 + 3.46410i) q^{4} +8.83134 q^{6} +(-18.4072 + 2.04309i) q^{7} +8.00000i q^{8} +(-3.75092 + 6.49679i) q^{9} +(18.5470 + 32.1243i) q^{11} +(15.2963 + 8.83134i) q^{12} +47.2663i q^{13} +(-33.9253 - 14.8685i) q^{14} +(-8.00000 + 13.8564i) q^{16} +(-32.7050 + 18.8822i) q^{17} +(-12.9936 + 7.50184i) q^{18} +(3.80388 - 6.58852i) q^{19} +(-65.8800 + 48.4531i) q^{21} +74.1880i q^{22} +(128.613 + 74.2546i) q^{23} +(17.6627 + 30.5927i) q^{24} +(-47.2663 + 81.8677i) q^{26} +152.349i q^{27} +(-43.8919 - 59.6783i) q^{28} +84.5885 q^{29} +(64.9551 + 112.505i) q^{31} +(-27.7128 + 16.0000i) q^{32} +(141.851 + 81.8974i) q^{33} -75.5290 q^{34} -30.0074 q^{36} +(-128.269 - 74.0562i) q^{37} +(13.1770 - 7.60777i) q^{38} +(104.356 + 180.750i) q^{39} +6.16453 q^{41} +(-162.560 + 18.0432i) q^{42} -523.347i q^{43} +(-74.1880 + 128.497i) q^{44} +(148.509 + 257.226i) q^{46} +(-367.149 - 211.974i) q^{47} +70.6507i q^{48} +(334.652 - 75.2151i) q^{49} +(-83.3778 + 144.415i) q^{51} +(-163.735 + 94.5327i) q^{52} +(298.608 - 172.401i) q^{53} +(-152.349 + 263.876i) q^{54} +(-16.3447 - 147.258i) q^{56} -33.5934i q^{57} +(146.512 + 84.5885i) q^{58} +(330.093 + 571.737i) q^{59} +(-5.95832 + 10.3201i) q^{61} +259.820i q^{62} +(55.7706 - 127.251i) q^{63} -64.0000 q^{64} +(163.795 + 283.701i) q^{66} +(-624.046 + 360.293i) q^{67} +(-130.820 - 75.5290i) q^{68} +655.768 q^{69} +161.471 q^{71} +(-51.9743 - 30.0074i) q^{72} +(-526.488 + 303.968i) q^{73} +(-148.112 - 256.538i) q^{74} +30.4311 q^{76} +(-407.031 - 553.427i) q^{77} +417.425i q^{78} +(107.781 - 186.682i) q^{79} +(235.086 + 407.181i) q^{81} +(10.6773 + 6.16453i) q^{82} -390.531i q^{83} +(-299.606 - 131.309i) q^{84} +(523.347 - 906.464i) q^{86} +(323.473 - 186.757i) q^{87} +(-256.995 + 148.376i) q^{88} +(-756.595 + 1310.46i) q^{89} +(-96.5692 - 870.042i) q^{91} +594.037i q^{92} +(496.787 + 286.820i) q^{93} +(-423.948 - 734.299i) q^{94} +(-70.6507 + 122.371i) q^{96} -853.143i q^{97} +(654.849 + 204.375i) q^{98} -278.273 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{4} + 24 q^{6} + 112 q^{9} + 52 q^{11} + 16 q^{14} - 96 q^{16} - 36 q^{19} + 370 q^{21} + 48 q^{24} + 320 q^{26} + 1616 q^{29} + 1230 q^{31} + 240 q^{34} + 896 q^{36} - 180 q^{39} - 404 q^{41}+ \cdots + 228 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 + 1.00000i 0.612372 + 0.353553i
\(3\) 3.82408 2.20784i 0.735945 0.424898i −0.0846479 0.996411i \(-0.526977\pi\)
0.820593 + 0.571513i \(0.193643\pi\)
\(4\) 2.00000 + 3.46410i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 8.83134 0.600897
\(7\) −18.4072 + 2.04309i −0.993897 + 0.110316i
\(8\) 8.00000i 0.353553i
\(9\) −3.75092 + 6.49679i −0.138923 + 0.240622i
\(10\) 0 0
\(11\) 18.5470 + 32.1243i 0.508375 + 0.880532i 0.999953 + 0.00969816i \(0.00308707\pi\)
−0.491578 + 0.870834i \(0.663580\pi\)
\(12\) 15.2963 + 8.83134i 0.367973 + 0.212449i
\(13\) 47.2663i 1.00841i 0.863584 + 0.504205i \(0.168214\pi\)
−0.863584 + 0.504205i \(0.831786\pi\)
\(14\) −33.9253 14.8685i −0.647638 0.283841i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −32.7050 + 18.8822i −0.466596 + 0.269389i −0.714814 0.699315i \(-0.753488\pi\)
0.248218 + 0.968704i \(0.420155\pi\)
\(18\) −12.9936 + 7.50184i −0.170145 + 0.0982334i
\(19\) 3.80388 6.58852i 0.0459300 0.0795532i −0.842146 0.539249i \(-0.818708\pi\)
0.888076 + 0.459696i \(0.152042\pi\)
\(20\) 0 0
\(21\) −65.8800 + 48.4531i −0.684580 + 0.503492i
\(22\) 74.1880i 0.718951i
\(23\) 128.613 + 74.2546i 1.16598 + 0.673181i 0.952731 0.303816i \(-0.0982609\pi\)
0.213253 + 0.976997i \(0.431594\pi\)
\(24\) 17.6627 + 30.5927i 0.150224 + 0.260196i
\(25\) 0 0
\(26\) −47.2663 + 81.8677i −0.356527 + 0.617522i
\(27\) 152.349i 1.08591i
\(28\) −43.8919 59.6783i −0.296242 0.402791i
\(29\) 84.5885 0.541644 0.270822 0.962629i \(-0.412704\pi\)
0.270822 + 0.962629i \(0.412704\pi\)
\(30\) 0 0
\(31\) 64.9551 + 112.505i 0.376331 + 0.651825i 0.990525 0.137330i \(-0.0438521\pi\)
−0.614194 + 0.789155i \(0.710519\pi\)
\(32\) −27.7128 + 16.0000i −0.153093 + 0.0883883i
\(33\) 141.851 + 81.8974i 0.748273 + 0.432016i
\(34\) −75.5290 −0.380974
\(35\) 0 0
\(36\) −30.0074 −0.138923
\(37\) −128.269 74.0562i −0.569927 0.329048i 0.187193 0.982323i \(-0.440061\pi\)
−0.757120 + 0.653275i \(0.773394\pi\)
\(38\) 13.1770 7.60777i 0.0562526 0.0324774i
\(39\) 104.356 + 180.750i 0.428471 + 0.742134i
\(40\) 0 0
\(41\) 6.16453 0.0234814 0.0117407 0.999931i \(-0.496263\pi\)
0.0117407 + 0.999931i \(0.496263\pi\)
\(42\) −162.560 + 18.0432i −0.597229 + 0.0662887i
\(43\) 523.347i 1.85604i −0.372532 0.928020i \(-0.621510\pi\)
0.372532 0.928020i \(-0.378490\pi\)
\(44\) −74.1880 + 128.497i −0.254188 + 0.440266i
\(45\) 0 0
\(46\) 148.509 + 257.226i 0.476011 + 0.824475i
\(47\) −367.149 211.974i −1.13945 0.657863i −0.193157 0.981168i \(-0.561873\pi\)
−0.946295 + 0.323305i \(0.895206\pi\)
\(48\) 70.6507i 0.212449i
\(49\) 334.652 75.2151i 0.975661 0.219286i
\(50\) 0 0
\(51\) −83.3778 + 144.415i −0.228926 + 0.396511i
\(52\) −163.735 + 94.5327i −0.436654 + 0.252102i
\(53\) 298.608 172.401i 0.773905 0.446814i −0.0603608 0.998177i \(-0.519225\pi\)
0.834266 + 0.551362i \(0.185892\pi\)
\(54\) −152.349 + 263.876i −0.383927 + 0.664981i
\(55\) 0 0
\(56\) −16.3447 147.258i −0.0390027 0.351395i
\(57\) 33.5934i 0.0780624i
\(58\) 146.512 + 84.5885i 0.331688 + 0.191500i
\(59\) 330.093 + 571.737i 0.728379 + 1.26159i 0.957568 + 0.288208i \(0.0930595\pi\)
−0.229188 + 0.973382i \(0.573607\pi\)
\(60\) 0 0
\(61\) −5.95832 + 10.3201i −0.0125063 + 0.0216616i −0.872211 0.489130i \(-0.837314\pi\)
0.859705 + 0.510792i \(0.170648\pi\)
\(62\) 259.820i 0.532213i
\(63\) 55.7706 127.251i 0.111531 0.254479i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 163.795 + 283.701i 0.305481 + 0.529109i
\(67\) −624.046 + 360.293i −1.13790 + 0.656967i −0.945910 0.324430i \(-0.894828\pi\)
−0.191991 + 0.981397i \(0.561494\pi\)
\(68\) −130.820 75.5290i −0.233298 0.134695i
\(69\) 655.768 1.14413
\(70\) 0 0
\(71\) 161.471 0.269902 0.134951 0.990852i \(-0.456912\pi\)
0.134951 + 0.990852i \(0.456912\pi\)
\(72\) −51.9743 30.0074i −0.0850726 0.0491167i
\(73\) −526.488 + 303.968i −0.844120 + 0.487353i −0.858662 0.512542i \(-0.828704\pi\)
0.0145428 + 0.999894i \(0.495371\pi\)
\(74\) −148.112 256.538i −0.232672 0.403000i
\(75\) 0 0
\(76\) 30.4311 0.0459300
\(77\) −407.031 553.427i −0.602409 0.819076i
\(78\) 417.425i 0.605950i
\(79\) 107.781 186.682i 0.153498 0.265866i −0.779013 0.627007i \(-0.784280\pi\)
0.932511 + 0.361142i \(0.117613\pi\)
\(80\) 0 0
\(81\) 235.086 + 407.181i 0.322478 + 0.558548i
\(82\) 10.6773 + 6.16453i 0.0143794 + 0.00830193i
\(83\) 390.531i 0.516462i −0.966083 0.258231i \(-0.916861\pi\)
0.966083 0.258231i \(-0.0831395\pi\)
\(84\) −299.606 131.309i −0.389163 0.170559i
\(85\) 0 0
\(86\) 523.347 906.464i 0.656209 1.13659i
\(87\) 323.473 186.757i 0.398620 0.230144i
\(88\) −256.995 + 148.376i −0.311315 + 0.179738i
\(89\) −756.595 + 1310.46i −0.901111 + 1.56077i −0.0750572 + 0.997179i \(0.523914\pi\)
−0.826054 + 0.563591i \(0.809419\pi\)
\(90\) 0 0
\(91\) −96.5692 870.042i −0.111244 1.00225i
\(92\) 594.037i 0.673181i
\(93\) 496.787 + 286.820i 0.553919 + 0.319805i
\(94\) −423.948 734.299i −0.465179 0.805714i
\(95\) 0 0
\(96\) −70.6507 + 122.371i −0.0751121 + 0.130098i
\(97\) 853.143i 0.893026i −0.894777 0.446513i \(-0.852666\pi\)
0.894777 0.446513i \(-0.147334\pi\)
\(98\) 654.849 + 204.375i 0.674997 + 0.210663i
\(99\) −278.273 −0.282500
\(100\) 0 0
\(101\) 134.794 + 233.469i 0.132797 + 0.230011i 0.924754 0.380566i \(-0.124271\pi\)
−0.791957 + 0.610577i \(0.790938\pi\)
\(102\) −288.829 + 166.756i −0.280376 + 0.161875i
\(103\) −838.254 483.966i −0.801899 0.462977i 0.0422358 0.999108i \(-0.486552\pi\)
−0.844135 + 0.536131i \(0.819885\pi\)
\(104\) −378.131 −0.356527
\(105\) 0 0
\(106\) 689.606 0.631891
\(107\) 879.072 + 507.532i 0.794234 + 0.458551i 0.841451 0.540333i \(-0.181702\pi\)
−0.0472169 + 0.998885i \(0.515035\pi\)
\(108\) −527.752 + 304.698i −0.470212 + 0.271477i
\(109\) −34.4801 59.7213i −0.0302991 0.0524795i 0.850478 0.526010i \(-0.176313\pi\)
−0.880777 + 0.473531i \(0.842979\pi\)
\(110\) 0 0
\(111\) −654.016 −0.559247
\(112\) 118.948 271.403i 0.100353 0.228974i
\(113\) 1755.43i 1.46139i −0.682705 0.730694i \(-0.739197\pi\)
0.682705 0.730694i \(-0.260803\pi\)
\(114\) 33.5934 58.1855i 0.0275992 0.0478032i
\(115\) 0 0
\(116\) 169.177 + 293.023i 0.135411 + 0.234539i
\(117\) −307.079 177.292i −0.242645 0.140091i
\(118\) 1320.37i 1.03008i
\(119\) 563.430 414.389i 0.434030 0.319218i
\(120\) 0 0
\(121\) −22.4819 + 38.9397i −0.0168910 + 0.0292560i
\(122\) −20.6402 + 11.9166i −0.0153170 + 0.00884329i
\(123\) 23.5737 13.6103i 0.0172810 0.00997721i
\(124\) −259.820 + 450.022i −0.188166 + 0.325913i
\(125\) 0 0
\(126\) 223.849 164.635i 0.158270 0.116404i
\(127\) 1852.45i 1.29432i 0.762356 + 0.647158i \(0.224042\pi\)
−0.762356 + 0.647158i \(0.775958\pi\)
\(128\) −110.851 64.0000i −0.0765466 0.0441942i
\(129\) −1155.46 2001.32i −0.788628 1.36594i
\(130\) 0 0
\(131\) −216.970 + 375.803i −0.144708 + 0.250642i −0.929264 0.369416i \(-0.879558\pi\)
0.784556 + 0.620058i \(0.212891\pi\)
\(132\) 655.179i 0.432016i
\(133\) −56.5580 + 129.048i −0.0368737 + 0.0841345i
\(134\) −1441.17 −0.929092
\(135\) 0 0
\(136\) −151.058 261.640i −0.0952435 0.164967i
\(137\) 2211.96 1277.07i 1.37942 0.796407i 0.387329 0.921942i \(-0.373398\pi\)
0.992089 + 0.125534i \(0.0400645\pi\)
\(138\) 1135.82 + 655.768i 0.700636 + 0.404512i
\(139\) 2743.94 1.67437 0.837187 0.546917i \(-0.184199\pi\)
0.837187 + 0.546917i \(0.184199\pi\)
\(140\) 0 0
\(141\) −1872.01 −1.11810
\(142\) 279.675 + 161.471i 0.165280 + 0.0954247i
\(143\) −1518.40 + 876.648i −0.887937 + 0.512650i
\(144\) −60.0147 103.949i −0.0347308 0.0601554i
\(145\) 0 0
\(146\) −1215.87 −0.689221
\(147\) 1113.67 1026.48i 0.624859 0.575939i
\(148\) 592.450i 0.329048i
\(149\) 413.244 715.759i 0.227210 0.393539i −0.729770 0.683692i \(-0.760373\pi\)
0.956980 + 0.290153i \(0.0937064\pi\)
\(150\) 0 0
\(151\) −830.302 1438.13i −0.447477 0.775053i 0.550744 0.834674i \(-0.314344\pi\)
−0.998221 + 0.0596212i \(0.981011\pi\)
\(152\) 52.7082 + 30.4311i 0.0281263 + 0.0162387i
\(153\) 283.303i 0.149697i
\(154\) −151.572 1365.59i −0.0793120 0.714563i
\(155\) 0 0
\(156\) −417.425 + 723.002i −0.214236 + 0.371067i
\(157\) 3170.37 1830.41i 1.61161 0.930464i 0.622613 0.782530i \(-0.286071\pi\)
0.988997 0.147934i \(-0.0472622\pi\)
\(158\) 373.364 215.562i 0.187995 0.108539i
\(159\) 761.268 1318.56i 0.379701 0.657662i
\(160\) 0 0
\(161\) −2519.11 1104.05i −1.23313 0.540445i
\(162\) 940.345i 0.456052i
\(163\) 1900.27 + 1097.12i 0.913131 + 0.527196i 0.881437 0.472301i \(-0.156577\pi\)
0.0316935 + 0.999498i \(0.489910\pi\)
\(164\) 12.3291 + 21.3546i 0.00587035 + 0.0101677i
\(165\) 0 0
\(166\) 390.531 676.419i 0.182597 0.316267i
\(167\) 2021.98i 0.936918i −0.883485 0.468459i \(-0.844809\pi\)
0.883485 0.468459i \(-0.155191\pi\)
\(168\) −387.624 527.040i −0.178011 0.242036i
\(169\) −37.1059 −0.0168893
\(170\) 0 0
\(171\) 28.5361 + 49.4261i 0.0127615 + 0.0221035i
\(172\) 1812.93 1046.69i 0.803688 0.464010i
\(173\) 132.011 + 76.2166i 0.0580151 + 0.0334950i 0.528727 0.848792i \(-0.322670\pi\)
−0.470712 + 0.882287i \(0.656003\pi\)
\(174\) 747.030 0.325472
\(175\) 0 0
\(176\) −593.504 −0.254188
\(177\) 2524.60 + 1457.58i 1.07209 + 0.618974i
\(178\) −2620.92 + 1513.19i −1.10363 + 0.637182i
\(179\) 2136.82 + 3701.09i 0.892255 + 1.54543i 0.837165 + 0.546950i \(0.184211\pi\)
0.0550903 + 0.998481i \(0.482455\pi\)
\(180\) 0 0
\(181\) 2607.33 1.07072 0.535362 0.844623i \(-0.320175\pi\)
0.535362 + 0.844623i \(0.320175\pi\)
\(182\) 702.779 1603.53i 0.286228 0.653084i
\(183\) 52.6200i 0.0212556i
\(184\) −594.037 + 1028.90i −0.238005 + 0.412237i
\(185\) 0 0
\(186\) 573.641 + 993.575i 0.226136 + 0.391680i
\(187\) −1213.16 700.418i −0.474412 0.273902i
\(188\) 1695.79i 0.657863i
\(189\) −311.262 2804.32i −0.119793 1.07928i
\(190\) 0 0
\(191\) 1754.48 3038.84i 0.664657 1.15122i −0.314721 0.949184i \(-0.601911\pi\)
0.979378 0.202036i \(-0.0647557\pi\)
\(192\) −244.741 + 141.301i −0.0919932 + 0.0531123i
\(193\) −56.9105 + 32.8573i −0.0212254 + 0.0122545i −0.510575 0.859833i \(-0.670567\pi\)
0.489350 + 0.872088i \(0.337234\pi\)
\(194\) 853.143 1477.69i 0.315732 0.546865i
\(195\) 0 0
\(196\) 929.856 + 1008.84i 0.338869 + 0.367652i
\(197\) 504.468i 0.182446i 0.995830 + 0.0912230i \(0.0290776\pi\)
−0.995830 + 0.0912230i \(0.970922\pi\)
\(198\) −481.983 278.273i −0.172995 0.0998789i
\(199\) −2474.42 4285.81i −0.881441 1.52670i −0.849740 0.527203i \(-0.823241\pi\)
−0.0317011 0.999497i \(-0.510092\pi\)
\(200\) 0 0
\(201\) −1590.94 + 2755.58i −0.558288 + 0.966984i
\(202\) 539.174i 0.187803i
\(203\) −1557.04 + 172.821i −0.538338 + 0.0597522i
\(204\) −667.022 −0.228926
\(205\) 0 0
\(206\) −967.932 1676.51i −0.327374 0.567028i
\(207\) −964.833 + 557.046i −0.323964 + 0.187041i
\(208\) −654.941 378.131i −0.218327 0.126051i
\(209\) 282.202 0.0933988
\(210\) 0 0
\(211\) 3941.91 1.28613 0.643063 0.765813i \(-0.277663\pi\)
0.643063 + 0.765813i \(0.277663\pi\)
\(212\) 1194.43 + 689.606i 0.386953 + 0.223407i
\(213\) 617.477 356.501i 0.198633 0.114681i
\(214\) 1015.06 + 1758.14i 0.324245 + 0.561608i
\(215\) 0 0
\(216\) −1218.79 −0.383927
\(217\) −1425.50 1938.20i −0.445941 0.606331i
\(218\) 137.921i 0.0428493i
\(219\) −1342.22 + 2324.80i −0.414151 + 0.717330i
\(220\) 0 0
\(221\) −892.494 1545.85i −0.271655 0.470520i
\(222\) −1132.79 654.016i −0.342468 0.197724i
\(223\) 938.296i 0.281762i 0.990027 + 0.140881i \(0.0449935\pi\)
−0.990027 + 0.140881i \(0.955006\pi\)
\(224\) 477.427 351.135i 0.142408 0.104738i
\(225\) 0 0
\(226\) 1755.43 3040.49i 0.516679 0.894914i
\(227\) −5179.15 + 2990.18i −1.51433 + 0.874297i −0.514469 + 0.857509i \(0.672011\pi\)
−0.999859 + 0.0167883i \(0.994656\pi\)
\(228\) 116.371 67.1868i 0.0338020 0.0195156i
\(229\) −2189.24 + 3791.88i −0.631743 + 1.09421i 0.355452 + 0.934694i \(0.384327\pi\)
−0.987195 + 0.159517i \(0.949006\pi\)
\(230\) 0 0
\(231\) −2778.40 1217.69i −0.791364 0.346832i
\(232\) 676.708i 0.191500i
\(233\) 2666.46 + 1539.48i 0.749724 + 0.432853i 0.825594 0.564265i \(-0.190840\pi\)
−0.0758704 + 0.997118i \(0.524174\pi\)
\(234\) −354.585 614.159i −0.0990595 0.171576i
\(235\) 0 0
\(236\) −1320.37 + 2286.95i −0.364190 + 0.630795i
\(237\) 951.851i 0.260883i
\(238\) 1390.28 154.312i 0.378649 0.0420276i
\(239\) −2572.87 −0.696339 −0.348169 0.937432i \(-0.613197\pi\)
−0.348169 + 0.937432i \(0.613197\pi\)
\(240\) 0 0
\(241\) 1956.11 + 3388.08i 0.522838 + 0.905583i 0.999647 + 0.0265754i \(0.00846021\pi\)
−0.476808 + 0.879007i \(0.658206\pi\)
\(242\) −77.8795 + 44.9637i −0.0206871 + 0.0119437i
\(243\) −1764.35 1018.65i −0.465773 0.268914i
\(244\) −47.6665 −0.0125063
\(245\) 0 0
\(246\) 54.4411 0.0141099
\(247\) 311.415 + 179.796i 0.0802222 + 0.0463163i
\(248\) −900.044 + 519.641i −0.230455 + 0.133053i
\(249\) −862.228 1493.42i −0.219444 0.380087i
\(250\) 0 0
\(251\) 1658.26 0.417005 0.208503 0.978022i \(-0.433141\pi\)
0.208503 + 0.978022i \(0.433141\pi\)
\(252\) 552.352 61.3076i 0.138075 0.0153255i
\(253\) 5508.80i 1.36891i
\(254\) −1852.45 + 3208.53i −0.457610 + 0.792603i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −223.746 129.180i −0.0543070 0.0313541i 0.472601 0.881277i \(-0.343315\pi\)
−0.526908 + 0.849923i \(0.676649\pi\)
\(258\) 4621.86i 1.11529i
\(259\) 2512.38 + 1101.10i 0.602748 + 0.264167i
\(260\) 0 0
\(261\) −317.285 + 549.553i −0.0752469 + 0.130331i
\(262\) −751.606 + 433.940i −0.177230 + 0.102324i
\(263\) 4038.31 2331.52i 0.946817 0.546645i 0.0547265 0.998501i \(-0.482571\pi\)
0.892091 + 0.451856i \(0.149238\pi\)
\(264\) −655.179 + 1134.80i −0.152741 + 0.264554i
\(265\) 0 0
\(266\) −227.009 + 166.960i −0.0523265 + 0.0384848i
\(267\) 6681.75i 1.53152i
\(268\) −2496.18 1441.17i −0.568950 0.328484i
\(269\) −2060.73 3569.29i −0.467082 0.809010i 0.532211 0.846612i \(-0.321361\pi\)
−0.999293 + 0.0376018i \(0.988028\pi\)
\(270\) 0 0
\(271\) 1244.28 2155.16i 0.278911 0.483088i −0.692203 0.721703i \(-0.743360\pi\)
0.971114 + 0.238614i \(0.0766932\pi\)
\(272\) 604.232i 0.134695i
\(273\) −2290.20 3113.90i −0.507726 0.690337i
\(274\) 5108.30 1.12629
\(275\) 0 0
\(276\) 1311.54 + 2271.65i 0.286033 + 0.495424i
\(277\) −5502.62 + 3176.94i −1.19358 + 0.689111i −0.959116 0.283015i \(-0.908665\pi\)
−0.234460 + 0.972126i \(0.575332\pi\)
\(278\) 4752.64 + 2743.94i 1.02534 + 0.591981i
\(279\) −974.566 −0.209124
\(280\) 0 0
\(281\) 7495.75 1.59131 0.795656 0.605748i \(-0.207126\pi\)
0.795656 + 0.605748i \(0.207126\pi\)
\(282\) −3242.42 1872.01i −0.684693 0.395308i
\(283\) −7528.91 + 4346.82i −1.58144 + 0.913044i −0.586789 + 0.809740i \(0.699608\pi\)
−0.994650 + 0.103304i \(0.967059\pi\)
\(284\) 322.941 + 559.350i 0.0674755 + 0.116871i
\(285\) 0 0
\(286\) −3506.59 −0.724997
\(287\) −113.472 + 12.5947i −0.0233381 + 0.00259038i
\(288\) 240.059i 0.0491167i
\(289\) −1743.42 + 3019.70i −0.354859 + 0.614634i
\(290\) 0 0
\(291\) −1883.60 3262.49i −0.379445 0.657218i
\(292\) −2105.95 1215.87i −0.422060 0.243676i
\(293\) 8086.06i 1.61226i −0.591737 0.806131i \(-0.701558\pi\)
0.591737 0.806131i \(-0.298442\pi\)
\(294\) 2955.42 664.250i 0.586271 0.131768i
\(295\) 0 0
\(296\) 592.450 1026.15i 0.116336 0.201500i
\(297\) −4894.10 + 2825.61i −0.956178 + 0.552049i
\(298\) 1431.52 826.488i 0.278274 0.160662i
\(299\) −3509.74 + 6079.05i −0.678842 + 1.17579i
\(300\) 0 0
\(301\) 1069.24 + 9633.37i 0.204751 + 1.84471i
\(302\) 3321.21i 0.632828i
\(303\) 1030.92 + 595.204i 0.195462 + 0.112850i
\(304\) 60.8621 + 105.416i 0.0114825 + 0.0198883i
\(305\) 0 0
\(306\) 283.303 490.696i 0.0529260 0.0916706i
\(307\) 6235.13i 1.15915i −0.814920 0.579573i \(-0.803219\pi\)
0.814920 0.579573i \(-0.196781\pi\)
\(308\) 1103.06 2516.85i 0.204068 0.465620i
\(309\) −4274.07 −0.786872
\(310\) 0 0
\(311\) −1288.41 2231.59i −0.234917 0.406888i 0.724332 0.689452i \(-0.242148\pi\)
−0.959248 + 0.282564i \(0.908815\pi\)
\(312\) −1446.00 + 834.850i −0.262384 + 0.151487i
\(313\) 6834.07 + 3945.65i 1.23414 + 0.712529i 0.967889 0.251376i \(-0.0808831\pi\)
0.266247 + 0.963905i \(0.414216\pi\)
\(314\) 7321.65 1.31587
\(315\) 0 0
\(316\) 862.248 0.153498
\(317\) 5596.26 + 3231.00i 0.991538 + 0.572464i 0.905734 0.423848i \(-0.139321\pi\)
0.0858040 + 0.996312i \(0.472654\pi\)
\(318\) 2637.11 1522.54i 0.465037 0.268489i
\(319\) 1568.86 + 2717.35i 0.275359 + 0.476935i
\(320\) 0 0
\(321\) 4482.19 0.779351
\(322\) −3259.18 4431.39i −0.564058 0.766931i
\(323\) 287.303i 0.0494922i
\(324\) −940.345 + 1628.73i −0.161239 + 0.279274i
\(325\) 0 0
\(326\) 2194.24 + 3800.53i 0.372784 + 0.645681i
\(327\) −263.710 152.253i −0.0445969 0.0257480i
\(328\) 49.3162i 0.00830193i
\(329\) 7191.28 + 3151.73i 1.20507 + 0.528148i
\(330\) 0 0
\(331\) −2638.51 + 4570.04i −0.438144 + 0.758888i −0.997546 0.0700081i \(-0.977697\pi\)
0.559402 + 0.828896i \(0.311031\pi\)
\(332\) 1352.84 781.061i 0.223634 0.129115i
\(333\) 962.255 555.558i 0.158352 0.0914246i
\(334\) 2021.98 3502.17i 0.331251 0.573743i
\(335\) 0 0
\(336\) −144.346 1300.48i −0.0234366 0.211152i
\(337\) 1009.76i 0.163220i 0.996664 + 0.0816101i \(0.0260062\pi\)
−0.996664 + 0.0816101i \(0.973994\pi\)
\(338\) −64.2692 37.1059i −0.0103426 0.00597128i
\(339\) −3875.70 6712.91i −0.620941 1.07550i
\(340\) 0 0
\(341\) −2409.44 + 4173.28i −0.382635 + 0.662744i
\(342\) 114.145i 0.0180475i
\(343\) −6006.34 + 2068.22i −0.945515 + 0.325579i
\(344\) 4186.78 0.656209
\(345\) 0 0
\(346\) 152.433 + 264.022i 0.0236846 + 0.0410229i
\(347\) −7418.45 + 4283.05i −1.14768 + 0.662611i −0.948320 0.317316i \(-0.897218\pi\)
−0.199356 + 0.979927i \(0.563885\pi\)
\(348\) 1293.89 + 747.030i 0.199310 + 0.115072i
\(349\) 10372.3 1.59087 0.795437 0.606036i \(-0.207241\pi\)
0.795437 + 0.606036i \(0.207241\pi\)
\(350\) 0 0
\(351\) −7200.97 −1.09504
\(352\) −1027.98 593.504i −0.155658 0.0898689i
\(353\) 3873.74 2236.51i 0.584075 0.337216i −0.178676 0.983908i \(-0.557181\pi\)
0.762751 + 0.646692i \(0.223848\pi\)
\(354\) 2915.16 + 5049.21i 0.437681 + 0.758086i
\(355\) 0 0
\(356\) −6052.76 −0.901111
\(357\) 1239.70 2828.62i 0.183787 0.419346i
\(358\) 8547.30i 1.26184i
\(359\) −5431.59 + 9407.79i −0.798519 + 1.38308i 0.122061 + 0.992523i \(0.461050\pi\)
−0.920580 + 0.390553i \(0.872284\pi\)
\(360\) 0 0
\(361\) 3400.56 + 5889.94i 0.495781 + 0.858718i
\(362\) 4516.02 + 2607.33i 0.655682 + 0.378558i
\(363\) 198.545i 0.0287078i
\(364\) 2820.77 2074.61i 0.406178 0.298734i
\(365\) 0 0
\(366\) −52.6200 + 91.1404i −0.00751500 + 0.0130164i
\(367\) −10039.3 + 5796.21i −1.42793 + 0.824414i −0.996957 0.0779523i \(-0.975162\pi\)
−0.430970 + 0.902366i \(0.641828\pi\)
\(368\) −2057.80 + 1188.07i −0.291496 + 0.168295i
\(369\) −23.1227 + 40.0496i −0.00326211 + 0.00565014i
\(370\) 0 0
\(371\) −5144.31 + 3783.51i −0.719891 + 0.529462i
\(372\) 2294.56i 0.319805i
\(373\) 8712.20 + 5029.99i 1.20939 + 0.698239i 0.962625 0.270838i \(-0.0873006\pi\)
0.246760 + 0.969077i \(0.420634\pi\)
\(374\) −1400.84 2426.32i −0.193678 0.335460i
\(375\) 0 0
\(376\) 1695.79 2937.20i 0.232590 0.402857i
\(377\) 3998.19i 0.546199i
\(378\) 2265.20 5168.48i 0.308225 0.703275i
\(379\) 3791.02 0.513804 0.256902 0.966438i \(-0.417298\pi\)
0.256902 + 0.966438i \(0.417298\pi\)
\(380\) 0 0
\(381\) 4089.90 + 7083.91i 0.549952 + 0.952545i
\(382\) 6077.69 3508.95i 0.814035 0.469983i
\(383\) 920.728 + 531.582i 0.122838 + 0.0709206i 0.560160 0.828384i \(-0.310740\pi\)
−0.437322 + 0.899305i \(0.644073\pi\)
\(384\) −565.206 −0.0751121
\(385\) 0 0
\(386\) −131.429 −0.0173305
\(387\) 3400.07 + 1963.03i 0.446603 + 0.257847i
\(388\) 2955.37 1706.29i 0.386692 0.223257i
\(389\) −3283.82 5687.75i −0.428011 0.741338i 0.568685 0.822555i \(-0.307452\pi\)
−0.996696 + 0.0812179i \(0.974119\pi\)
\(390\) 0 0
\(391\) −5608.37 −0.725390
\(392\) 601.721 + 2677.21i 0.0775293 + 0.344948i
\(393\) 1916.14i 0.245945i
\(394\) −504.468 + 873.765i −0.0645044 + 0.111725i
\(395\) 0 0
\(396\) −556.547 963.967i −0.0706250 0.122326i
\(397\) 4576.10 + 2642.01i 0.578509 + 0.334002i 0.760540 0.649291i \(-0.224934\pi\)
−0.182032 + 0.983293i \(0.558267\pi\)
\(398\) 9897.66i 1.24655i
\(399\) 68.6342 + 618.361i 0.00861155 + 0.0775859i
\(400\) 0 0
\(401\) −456.959 + 791.475i −0.0569063 + 0.0985646i −0.893075 0.449907i \(-0.851457\pi\)
0.836169 + 0.548472i \(0.184790\pi\)
\(402\) −5511.16 + 3181.87i −0.683761 + 0.394769i
\(403\) −5317.72 + 3070.19i −0.657307 + 0.379496i
\(404\) −539.174 + 933.877i −0.0663983 + 0.115005i
\(405\) 0 0
\(406\) −2869.69 1257.70i −0.350789 0.153741i
\(407\) 5494.08i 0.669119i
\(408\) −1155.32 667.022i −0.140188 0.0809376i
\(409\) −6003.44 10398.3i −0.725797 1.25712i −0.958645 0.284604i \(-0.908138\pi\)
0.232849 0.972513i \(-0.425195\pi\)
\(410\) 0 0
\(411\) 5639.14 9767.28i 0.676784 1.17222i
\(412\) 3871.73i 0.462977i
\(413\) −7244.19 9849.68i −0.863108 1.17354i
\(414\) −2228.19 −0.264515
\(415\) 0 0
\(416\) −756.261 1309.88i −0.0891316 0.154381i
\(417\) 10493.1 6058.17i 1.23225 0.711439i
\(418\) 488.789 + 282.202i 0.0571949 + 0.0330215i
\(419\) −2545.07 −0.296742 −0.148371 0.988932i \(-0.547403\pi\)
−0.148371 + 0.988932i \(0.547403\pi\)
\(420\) 0 0
\(421\) 7564.36 0.875688 0.437844 0.899051i \(-0.355742\pi\)
0.437844 + 0.899051i \(0.355742\pi\)
\(422\) 6827.60 + 3941.91i 0.787588 + 0.454714i
\(423\) 2754.30 1590.19i 0.316592 0.182785i
\(424\) 1379.21 + 2388.86i 0.157973 + 0.273617i
\(425\) 0 0
\(426\) 1426.00 0.162183
\(427\) 88.5912 202.138i 0.0100403 0.0229090i
\(428\) 4060.26i 0.458551i
\(429\) −3870.99 + 6704.75i −0.435648 + 0.754565i
\(430\) 0 0
\(431\) −8082.76 13999.7i −0.903324 1.56460i −0.823151 0.567823i \(-0.807786\pi\)
−0.0801735 0.996781i \(-0.525547\pi\)
\(432\) −2111.01 1218.79i −0.235106 0.135739i
\(433\) 14107.6i 1.56574i 0.622183 + 0.782872i \(0.286246\pi\)
−0.622183 + 0.782872i \(0.713754\pi\)
\(434\) −530.835 4782.57i −0.0587118 0.528965i
\(435\) 0 0
\(436\) 137.921 238.885i 0.0151495 0.0262398i
\(437\) 978.456 564.912i 0.107107 0.0618384i
\(438\) −4649.59 + 2684.44i −0.507229 + 0.292849i
\(439\) 2052.48 3555.00i 0.223142 0.386494i −0.732618 0.680640i \(-0.761702\pi\)
0.955760 + 0.294146i \(0.0950352\pi\)
\(440\) 0 0
\(441\) −766.596 + 2456.29i −0.0827768 + 0.265229i
\(442\) 3569.98i 0.384178i
\(443\) −1670.81 964.645i −0.179194 0.103457i 0.407720 0.913107i \(-0.366324\pi\)
−0.586914 + 0.809649i \(0.699657\pi\)
\(444\) −1308.03 2265.58i −0.139812 0.242161i
\(445\) 0 0
\(446\) −938.296 + 1625.18i −0.0996180 + 0.172543i
\(447\) 3649.50i 0.386164i
\(448\) 1178.06 130.757i 0.124237 0.0137895i
\(449\) −18750.0 −1.97075 −0.985375 0.170398i \(-0.945495\pi\)
−0.985375 + 0.170398i \(0.945495\pi\)
\(450\) 0 0
\(451\) 114.333 + 198.031i 0.0119374 + 0.0206761i
\(452\) 6080.98 3510.86i 0.632800 0.365347i
\(453\) −6350.29 3666.34i −0.658637 0.380264i
\(454\) −11960.7 −1.23644
\(455\) 0 0
\(456\) 268.747 0.0275992
\(457\) 5751.54 + 3320.65i 0.588722 + 0.339899i 0.764592 0.644515i \(-0.222941\pi\)
−0.175870 + 0.984413i \(0.556274\pi\)
\(458\) −7583.76 + 4378.48i −0.773724 + 0.446710i
\(459\) −2876.69 4982.57i −0.292532 0.506681i
\(460\) 0 0
\(461\) 2904.35 0.293425 0.146712 0.989179i \(-0.453131\pi\)
0.146712 + 0.989179i \(0.453131\pi\)
\(462\) −3594.63 4887.50i −0.361986 0.492180i
\(463\) 6750.67i 0.677603i 0.940858 + 0.338801i \(0.110022\pi\)
−0.940858 + 0.338801i \(0.889978\pi\)
\(464\) −676.708 + 1172.09i −0.0677055 + 0.117269i
\(465\) 0 0
\(466\) 3078.96 + 5332.92i 0.306073 + 0.530135i
\(467\) 2274.14 + 1312.98i 0.225342 + 0.130101i 0.608421 0.793614i \(-0.291803\pi\)
−0.383079 + 0.923715i \(0.625136\pi\)
\(468\) 1418.34i 0.140091i
\(469\) 10750.8 7906.97i 1.05848 0.778486i
\(470\) 0 0
\(471\) 8082.50 13999.3i 0.790705 1.36954i
\(472\) −4573.90 + 2640.74i −0.446040 + 0.257521i
\(473\) 16812.2 9706.51i 1.63430 0.943564i
\(474\) 951.851 1648.65i 0.0922362 0.159758i
\(475\) 0 0
\(476\) 2562.35 + 1123.00i 0.246733 + 0.108136i
\(477\) 2586.66i 0.248291i
\(478\) −4456.34 2572.87i −0.426419 0.246193i
\(479\) −4809.51 8330.31i −0.458773 0.794617i 0.540124 0.841586i \(-0.318377\pi\)
−0.998896 + 0.0469682i \(0.985044\pi\)
\(480\) 0 0
\(481\) 3500.37 6062.81i 0.331815 0.574720i
\(482\) 7824.44i 0.739405i
\(483\) −12070.9 + 1339.79i −1.13715 + 0.126216i
\(484\) −179.855 −0.0168910
\(485\) 0 0
\(486\) −2037.29 3528.69i −0.190151 0.329351i
\(487\) 9895.69 5713.28i 0.920773 0.531608i 0.0368913 0.999319i \(-0.488254\pi\)
0.883882 + 0.467711i \(0.154921\pi\)
\(488\) −82.5609 47.6665i −0.00765852 0.00442165i
\(489\) 9689.03 0.896019
\(490\) 0 0
\(491\) −7139.55 −0.656219 −0.328110 0.944640i \(-0.606412\pi\)
−0.328110 + 0.944640i \(0.606412\pi\)
\(492\) 94.2947 + 54.4411i 0.00864052 + 0.00498860i
\(493\) −2766.47 + 1597.22i −0.252729 + 0.145913i
\(494\) 359.591 + 622.830i 0.0327506 + 0.0567256i
\(495\) 0 0
\(496\) −2078.56 −0.188166
\(497\) −2972.22 + 329.898i −0.268255 + 0.0297746i
\(498\) 3448.91i 0.310340i
\(499\) −2830.47 + 4902.51i −0.253926 + 0.439813i −0.964603 0.263705i \(-0.915055\pi\)
0.710677 + 0.703518i \(0.248389\pi\)
\(500\) 0 0
\(501\) −4464.20 7732.21i −0.398095 0.689521i
\(502\) 2872.19 + 1658.26i 0.255362 + 0.147434i
\(503\) 4802.55i 0.425716i 0.977083 + 0.212858i \(0.0682771\pi\)
−0.977083 + 0.212858i \(0.931723\pi\)
\(504\) 1018.01 + 446.164i 0.0899718 + 0.0394320i
\(505\) 0 0
\(506\) −5508.80 + 9541.52i −0.483984 + 0.838285i
\(507\) −141.896 + 81.9236i −0.0124296 + 0.00717624i
\(508\) −6417.06 + 3704.89i −0.560455 + 0.323579i
\(509\) 5361.57 9286.52i 0.466891 0.808679i −0.532394 0.846497i \(-0.678707\pi\)
0.999285 + 0.0378179i \(0.0120407\pi\)
\(510\) 0 0
\(511\) 9070.14 6670.86i 0.785205 0.577498i
\(512\) 512.000i 0.0441942i
\(513\) 1003.75 + 579.517i 0.0863875 + 0.0498759i
\(514\) −258.360 447.492i −0.0221707 0.0384008i
\(515\) 0 0
\(516\) 4621.86 8005.29i 0.394314 0.682972i
\(517\) 15725.9i 1.33777i
\(518\) 3250.47 + 4419.55i 0.275709 + 0.374872i
\(519\) 673.095 0.0569279
\(520\) 0 0
\(521\) −2943.23 5097.82i −0.247496 0.428675i 0.715335 0.698782i \(-0.246274\pi\)
−0.962830 + 0.270107i \(0.912941\pi\)
\(522\) −1099.11 + 634.569i −0.0921582 + 0.0532076i
\(523\) −8914.47 5146.77i −0.745320 0.430311i 0.0786803 0.996900i \(-0.474929\pi\)
−0.824000 + 0.566589i \(0.808263\pi\)
\(524\) −1735.76 −0.144708
\(525\) 0 0
\(526\) 9326.08 0.773073
\(527\) −4248.71 2452.99i −0.351189 0.202759i
\(528\) −2269.61 + 1310.36i −0.187068 + 0.108004i
\(529\) 4943.99 + 8563.25i 0.406345 + 0.703809i
\(530\) 0 0
\(531\) −4952.61 −0.404755
\(532\) −560.152 + 62.1733i −0.0456497 + 0.00506683i
\(533\) 291.375i 0.0236789i
\(534\) −6681.75 + 11573.1i −0.541475 + 0.937862i
\(535\) 0 0
\(536\) −2882.34 4992.37i −0.232273 0.402309i
\(537\) 16342.8 + 9435.51i 1.31330 + 0.758235i
\(538\) 8242.93i 0.660554i
\(539\) 8623.01 + 9355.45i 0.689090 + 0.747621i
\(540\) 0 0
\(541\) −893.487 + 1547.56i −0.0710056 + 0.122985i −0.899342 0.437245i \(-0.855954\pi\)
0.828337 + 0.560231i \(0.189287\pi\)
\(542\) 4310.33 2488.57i 0.341595 0.197220i
\(543\) 9970.63 5756.55i 0.787994 0.454949i
\(544\) 604.232 1046.56i 0.0476217 0.0824833i
\(545\) 0 0
\(546\) −852.836 7683.64i −0.0668461 0.602252i
\(547\) 20022.3i 1.56507i −0.622607 0.782535i \(-0.713926\pi\)
0.622607 0.782535i \(-0.286074\pi\)
\(548\) 8847.83 + 5108.30i 0.689709 + 0.398204i
\(549\) −44.6984 77.4199i −0.00347483 0.00601858i
\(550\) 0 0
\(551\) 321.765 557.313i 0.0248777 0.0430895i
\(552\) 5246.14i 0.404512i
\(553\) −1602.54 + 3656.51i −0.123231 + 0.281176i
\(554\) −12707.8 −0.974550
\(555\) 0 0
\(556\) 5487.88 + 9505.29i 0.418594 + 0.725025i
\(557\) 9295.77 5366.91i 0.707135 0.408265i −0.102864 0.994695i \(-0.532801\pi\)
0.809999 + 0.586431i \(0.199467\pi\)
\(558\) −1688.00 974.566i −0.128062 0.0739366i
\(559\) 24736.7 1.87165
\(560\) 0 0
\(561\) −6185.63 −0.465521
\(562\) 12983.0 + 7495.75i 0.974476 + 0.562614i
\(563\) −14533.4 + 8390.87i −1.08794 + 0.628122i −0.933027 0.359806i \(-0.882843\pi\)
−0.154913 + 0.987928i \(0.549510\pi\)
\(564\) −3744.03 6484.85i −0.279525 0.484151i
\(565\) 0 0
\(566\) −17387.3 −1.29124
\(567\) −5159.19 7014.78i −0.382126 0.519564i
\(568\) 1291.76i 0.0954247i
\(569\) 7996.61 13850.5i 0.589166 1.02047i −0.405176 0.914239i \(-0.632790\pi\)
0.994342 0.106226i \(-0.0338768\pi\)
\(570\) 0 0
\(571\) −455.006 788.094i −0.0333475 0.0577596i 0.848870 0.528602i \(-0.177283\pi\)
−0.882217 + 0.470842i \(0.843950\pi\)
\(572\) −6073.60 3506.59i −0.443968 0.256325i
\(573\) 15494.4i 1.12965i
\(574\) −209.134 91.6573i −0.0152074 0.00666498i
\(575\) 0 0
\(576\) 240.059 415.794i 0.0173654 0.0300777i
\(577\) 7551.24 4359.71i 0.544822 0.314553i −0.202209 0.979342i \(-0.564812\pi\)
0.747031 + 0.664789i \(0.231479\pi\)
\(578\) −6039.39 + 3486.84i −0.434612 + 0.250923i
\(579\) −145.087 + 251.298i −0.0104138 + 0.0180373i
\(580\) 0 0
\(581\) 797.888 + 7188.58i 0.0569741 + 0.513309i
\(582\) 7534.40i 0.536616i
\(583\) 11076.6 + 6395.06i 0.786869 + 0.454299i
\(584\) −2431.74 4211.90i −0.172305 0.298441i
\(585\) 0 0
\(586\) 8086.06 14005.5i 0.570021 0.987305i
\(587\) 10075.6i 0.708460i −0.935158 0.354230i \(-0.884743\pi\)
0.935158 0.354230i \(-0.115257\pi\)
\(588\) 5783.19 + 1804.91i 0.405604 + 0.126587i
\(589\) 988.326 0.0691397
\(590\) 0 0
\(591\) 1113.78 + 1929.13i 0.0775210 + 0.134270i
\(592\) 2052.31 1184.90i 0.142482 0.0822619i
\(593\) −18087.4 10442.8i −1.25255 0.723159i −0.280933 0.959727i \(-0.590644\pi\)
−0.971615 + 0.236568i \(0.923977\pi\)
\(594\) −11302.4 −0.780716
\(595\) 0 0
\(596\) 3305.95 0.227210
\(597\) −18924.7 10926.2i −1.29738 0.749045i
\(598\) −12158.1 + 7019.49i −0.831408 + 0.480014i
\(599\) −5579.76 9664.44i −0.380606 0.659229i 0.610543 0.791983i \(-0.290951\pi\)
−0.991149 + 0.132754i \(0.957618\pi\)
\(600\) 0 0
\(601\) −5881.15 −0.399163 −0.199582 0.979881i \(-0.563958\pi\)
−0.199582 + 0.979881i \(0.563958\pi\)
\(602\) −7781.38 + 17754.7i −0.526820 + 1.20204i
\(603\) 5405.72i 0.365071i
\(604\) 3321.21 5752.50i 0.223739 0.387527i
\(605\) 0 0
\(606\) 1190.41 + 2061.85i 0.0797971 + 0.138213i
\(607\) 7204.74 + 4159.66i 0.481765 + 0.278147i 0.721152 0.692777i \(-0.243613\pi\)
−0.239387 + 0.970924i \(0.576946\pi\)
\(608\) 243.449i 0.0162387i
\(609\) −5572.68 + 4098.57i −0.370799 + 0.272713i
\(610\) 0 0
\(611\) 10019.2 17353.8i 0.663395 1.14903i
\(612\) 981.391 566.607i 0.0648209 0.0374244i
\(613\) 14227.9 8214.50i 0.937456 0.541241i 0.0482942 0.998833i \(-0.484621\pi\)
0.889162 + 0.457593i \(0.151288\pi\)
\(614\) 6235.13 10799.6i 0.409820 0.709829i
\(615\) 0 0
\(616\) 4427.41 3256.25i 0.289587 0.212984i
\(617\) 7721.15i 0.503796i 0.967754 + 0.251898i \(0.0810547\pi\)
−0.967754 + 0.251898i \(0.918945\pi\)
\(618\) −7402.91 4274.07i −0.481859 0.278201i
\(619\) 3950.16 + 6841.87i 0.256495 + 0.444262i 0.965300 0.261142i \(-0.0840990\pi\)
−0.708806 + 0.705404i \(0.750766\pi\)
\(620\) 0 0
\(621\) −11312.6 + 19594.0i −0.731013 + 1.26615i
\(622\) 5153.64i 0.332222i
\(623\) 11249.4 25667.7i 0.723433 1.65065i
\(624\) −3339.40 −0.214236
\(625\) 0 0
\(626\) 7891.31 + 13668.1i 0.503834 + 0.872666i
\(627\) 1079.17 623.057i 0.0687364 0.0396850i
\(628\) 12681.5 + 7321.65i 0.805805 + 0.465232i
\(629\) 5593.39 0.354568
\(630\) 0 0
\(631\) −14817.0 −0.934794 −0.467397 0.884047i \(-0.654808\pi\)
−0.467397 + 0.884047i \(0.654808\pi\)
\(632\) 1493.46 + 862.248i 0.0939977 + 0.0542696i
\(633\) 15074.2 8703.10i 0.946518 0.546473i
\(634\) 6462.01 + 11192.5i 0.404794 + 0.701123i
\(635\) 0 0
\(636\) 6090.15 0.379701
\(637\) 3555.14 + 15817.8i 0.221130 + 0.983865i
\(638\) 6275.45i 0.389416i
\(639\) −605.664 + 1049.04i −0.0374956 + 0.0649443i
\(640\) 0 0
\(641\) 6770.92 + 11727.6i 0.417216 + 0.722639i 0.995658 0.0930841i \(-0.0296725\pi\)
−0.578442 + 0.815723i \(0.696339\pi\)
\(642\) 7763.38 + 4482.19i 0.477253 + 0.275542i
\(643\) 24926.1i 1.52876i 0.644767 + 0.764379i \(0.276954\pi\)
−0.644767 + 0.764379i \(0.723046\pi\)
\(644\) −1213.67 10934.6i −0.0742628 0.669072i
\(645\) 0 0
\(646\) −287.303 + 497.624i −0.0174981 + 0.0303077i
\(647\) −23761.5 + 13718.7i −1.44384 + 0.833599i −0.998103 0.0615667i \(-0.980390\pi\)
−0.445733 + 0.895166i \(0.647057\pi\)
\(648\) −3257.45 + 1880.69i −0.197476 + 0.114013i
\(649\) −12244.4 + 21208.0i −0.740580 + 1.28272i
\(650\) 0 0
\(651\) −9730.47 4264.59i −0.585818 0.256747i
\(652\) 8776.95i 0.527196i
\(653\) 521.045 + 300.825i 0.0312252 + 0.0180279i 0.515531 0.856871i \(-0.327595\pi\)
−0.484306 + 0.874899i \(0.660928\pi\)
\(654\) −304.506 527.420i −0.0182066 0.0315348i
\(655\) 0 0
\(656\) −49.3162 + 85.4182i −0.00293518 + 0.00508387i
\(657\) 4560.64i 0.270818i
\(658\) 9303.93 + 12650.2i 0.551224 + 0.749480i
\(659\) −137.545 −0.00813047 −0.00406523 0.999992i \(-0.501294\pi\)
−0.00406523 + 0.999992i \(0.501294\pi\)
\(660\) 0 0
\(661\) 3251.91 + 5632.47i 0.191354 + 0.331434i 0.945699 0.325044i \(-0.105379\pi\)
−0.754346 + 0.656478i \(0.772046\pi\)
\(662\) −9140.08 + 5277.03i −0.536615 + 0.309815i
\(663\) −6825.95 3940.96i −0.399846 0.230851i
\(664\) 3124.25 0.182597
\(665\) 0 0
\(666\) 2222.23 0.129294
\(667\) 10879.2 + 6281.08i 0.631548 + 0.364624i
\(668\) 7004.34 4043.96i 0.405697 0.234230i
\(669\) 2071.60 + 3588.12i 0.119720 + 0.207362i
\(670\) 0 0
\(671\) −442.036 −0.0254316
\(672\) 1050.47 2396.85i 0.0603017 0.137590i
\(673\) 5426.84i 0.310831i −0.987849 0.155416i \(-0.950328\pi\)
0.987849 0.155416i \(-0.0496717\pi\)
\(674\) −1009.76 + 1748.96i −0.0577070 + 0.0999515i
\(675\) 0 0
\(676\) −74.2117 128.538i −0.00422233 0.00731329i
\(677\) −2603.30 1503.02i −0.147789 0.0853259i 0.424282 0.905530i \(-0.360526\pi\)
−0.572071 + 0.820204i \(0.693860\pi\)
\(678\) 15502.8i 0.878143i
\(679\) 1743.04 + 15704.0i 0.0985153 + 0.887575i
\(680\) 0 0
\(681\) −13203.7 + 22869.4i −0.742975 + 1.28687i
\(682\) −8346.55 + 4818.88i −0.468631 + 0.270564i
\(683\) −12982.1 + 7495.20i −0.727298 + 0.419906i −0.817433 0.576024i \(-0.804604\pi\)
0.0901347 + 0.995930i \(0.471270\pi\)
\(684\) −114.145 + 197.704i −0.00638074 + 0.0110518i
\(685\) 0 0
\(686\) −12471.5 2424.07i −0.694117 0.134915i
\(687\) 19333.9i 1.07371i
\(688\) 7251.71 + 4186.78i 0.401844 + 0.232005i
\(689\) 8148.78 + 14114.1i 0.450572 + 0.780413i
\(690\) 0 0
\(691\) −11923.5 + 20652.1i −0.656427 + 1.13697i 0.325107 + 0.945677i \(0.394600\pi\)
−0.981534 + 0.191288i \(0.938734\pi\)
\(692\) 609.733i 0.0334950i
\(693\) 5122.24 568.536i 0.280776 0.0311644i
\(694\) −17132.2 −0.937073
\(695\) 0 0
\(696\) 1494.06 + 2587.79i 0.0813681 + 0.140934i
\(697\) −201.611 + 116.400i −0.0109563 + 0.00632564i
\(698\) 17965.3 + 10372.3i 0.974208 + 0.562459i
\(699\) 13595.7 0.735674
\(700\) 0 0
\(701\) −6891.65 −0.371318 −0.185659 0.982614i \(-0.559442\pi\)
−0.185659 + 0.982614i \(0.559442\pi\)
\(702\) −12472.4 7200.97i −0.670573 0.387155i
\(703\) −975.842 + 563.403i −0.0523536 + 0.0302264i
\(704\) −1187.01 2055.96i −0.0635469 0.110066i
\(705\) 0 0
\(706\) 8946.02 0.476895
\(707\) −2958.17 4022.13i −0.157360 0.213957i
\(708\) 11660.6i 0.618974i
\(709\) 9356.79 16206.4i 0.495630 0.858456i −0.504357 0.863495i \(-0.668271\pi\)
0.999987 + 0.00503882i \(0.00160391\pi\)
\(710\) 0 0
\(711\) 808.556 + 1400.46i 0.0426487 + 0.0738697i
\(712\) −10483.7 6052.76i −0.551816 0.318591i
\(713\) 19292.9i 1.01336i
\(714\) 4975.85 3659.61i 0.260807 0.191817i
\(715\) 0 0
\(716\) −8547.30 + 14804.3i −0.446128 + 0.772716i
\(717\) −9838.86 + 5680.47i −0.512467 + 0.295873i
\(718\) −18815.6 + 10863.2i −0.977982 + 0.564638i
\(719\) −524.836 + 909.043i −0.0272227 + 0.0471510i −0.879316 0.476239i \(-0.842000\pi\)
0.852093 + 0.523390i \(0.175333\pi\)
\(720\) 0 0
\(721\) 16418.7 + 7195.84i 0.848078 + 0.371688i
\(722\) 13602.2i 0.701140i
\(723\) 14960.6 + 8637.53i 0.769561 + 0.444306i
\(724\) 5214.65 + 9032.04i 0.267681 + 0.463637i
\(725\) 0 0
\(726\) −198.545 + 343.890i −0.0101497 + 0.0175798i
\(727\) 28893.5i 1.47401i 0.675890 + 0.737003i \(0.263760\pi\)
−0.675890 + 0.737003i \(0.736240\pi\)
\(728\) 6960.33 772.553i 0.354350 0.0393307i
\(729\) −21690.7 −1.10200
\(730\) 0 0
\(731\) 9881.97 + 17116.1i 0.499997 + 0.866020i
\(732\) −182.281 + 105.240i −0.00920395 + 0.00531391i
\(733\) 8035.71 + 4639.42i 0.404919 + 0.233780i 0.688604 0.725137i \(-0.258224\pi\)
−0.283685 + 0.958917i \(0.591557\pi\)
\(734\) −23184.9 −1.16590
\(735\) 0 0
\(736\) −4752.29 −0.238005
\(737\) −23148.3 13364.7i −1.15696 0.667972i
\(738\) −80.0993 + 46.2453i −0.00399525 + 0.00230666i
\(739\) −414.012 717.090i −0.0206085 0.0356950i 0.855537 0.517741i \(-0.173227\pi\)
−0.876146 + 0.482046i \(0.839894\pi\)
\(740\) 0 0
\(741\) 1587.84 0.0787188
\(742\) −12693.7 + 1408.92i −0.628034 + 0.0697078i
\(743\) 36020.2i 1.77854i −0.457385 0.889269i \(-0.651214\pi\)
0.457385 0.889269i \(-0.348786\pi\)
\(744\) −2294.56 + 3974.30i −0.113068 + 0.195840i
\(745\) 0 0
\(746\) 10060.0 + 17424.4i 0.493729 + 0.855165i
\(747\) 2537.19 + 1464.85i 0.124272 + 0.0717484i
\(748\) 5603.34i 0.273902i
\(749\) −17218.2 7546.24i −0.839972 0.368136i
\(750\) 0 0
\(751\) 8475.57 14680.1i 0.411822 0.713296i −0.583267 0.812280i \(-0.698226\pi\)
0.995089 + 0.0989842i \(0.0315593\pi\)
\(752\) 5874.39 3391.58i 0.284863 0.164466i
\(753\) 6341.32 3661.16i 0.306893 0.177185i
\(754\) −3998.19 + 6925.06i −0.193111 + 0.334477i
\(755\) 0 0
\(756\) 9091.92 6686.88i 0.437394 0.321692i
\(757\) 18313.3i 0.879273i −0.898176 0.439636i \(-0.855107\pi\)
0.898176 0.439636i \(-0.144893\pi\)
\(758\) 6566.24 + 3791.02i 0.314639 + 0.181657i
\(759\) 12162.5 + 21066.1i 0.581649 + 1.00745i
\(760\) 0 0
\(761\) 14615.6 25314.9i 0.696207 1.20587i −0.273565 0.961853i \(-0.588203\pi\)
0.969772 0.244012i \(-0.0784638\pi\)
\(762\) 16359.6i 0.777750i
\(763\) 756.699 + 1028.86i 0.0359035 + 0.0488167i
\(764\) 14035.8 0.664657
\(765\) 0 0
\(766\) 1063.16 + 1841.46i 0.0501484 + 0.0868597i
\(767\) −27023.9 + 15602.3i −1.27220 + 0.734505i
\(768\) −978.965 565.206i −0.0459966 0.0265561i
\(769\) 15569.7 0.730116 0.365058 0.930985i \(-0.381049\pi\)
0.365058 + 0.930985i \(0.381049\pi\)
\(770\) 0 0
\(771\) −1140.83 −0.0532893
\(772\) −227.642 131.429i −0.0106127 0.00612726i
\(773\) −17125.8 + 9887.58i −0.796859 + 0.460067i −0.842372 0.538897i \(-0.818841\pi\)
0.0455126 + 0.998964i \(0.485508\pi\)
\(774\) 3926.07 + 6800.15i 0.182325 + 0.315796i
\(775\) 0 0
\(776\) 6825.14 0.315732
\(777\) 12038.6 1336.21i 0.555834 0.0616941i
\(778\) 13135.3i 0.605300i
\(779\) 23.4492 40.6151i 0.00107850 0.00186802i
\(780\) 0 0
\(781\) 2994.79 + 5187.13i 0.137211 + 0.237657i
\(782\) −9713.99 5608.37i −0.444209 0.256464i
\(783\) 12887.0i 0.588176i
\(784\) −1635.00 + 5238.79i −0.0744808 + 0.238647i
\(785\) 0 0
\(786\) −1916.14 + 3318.84i −0.0869546 + 0.150610i
\(787\) 2037.05 1176.09i 0.0922654 0.0532694i −0.453157 0.891431i \(-0.649702\pi\)
0.545423 + 0.838161i \(0.316369\pi\)
\(788\) −1747.53 + 1008.94i −0.0790015 + 0.0456115i
\(789\) 10295.2 17831.9i 0.464537 0.804602i
\(790\) 0 0
\(791\) 3586.49 + 32312.6i 0.161215 + 1.45247i
\(792\) 2226.19i 0.0998789i
\(793\) −487.794 281.628i −0.0218437 0.0126115i
\(794\) 5284.03 + 9152.20i 0.236175 + 0.409067i
\(795\) 0 0
\(796\) 9897.66 17143.3i 0.440720 0.763350i
\(797\) 22204.6i 0.986858i −0.869786 0.493429i \(-0.835743\pi\)
0.869786 0.493429i \(-0.164257\pi\)
\(798\) −499.483 + 1139.67i −0.0221573 + 0.0505561i
\(799\) 16010.2 0.708885
\(800\) 0 0
\(801\) −5675.86 9830.87i −0.250370 0.433654i
\(802\) −1582.95 + 913.917i −0.0696957 + 0.0402388i
\(803\) −19529.5 11275.4i −0.858259 0.495516i
\(804\) −12727.5 −0.558288
\(805\) 0 0
\(806\) −12280.8 −0.536689
\(807\) −15760.8 9099.52i −0.687494 0.396925i
\(808\) −1867.75 + 1078.35i −0.0813210 + 0.0469507i
\(809\) 2216.30 + 3838.75i 0.0963178 + 0.166827i 0.910158 0.414262i \(-0.135960\pi\)
−0.813840 + 0.581089i \(0.802627\pi\)
\(810\) 0 0
\(811\) 38921.6 1.68523 0.842615 0.538517i \(-0.181015\pi\)
0.842615 + 0.538517i \(0.181015\pi\)
\(812\) −3712.75 5048.10i −0.160458 0.218169i
\(813\) 10988.7i 0.474035i
\(814\) 5494.08 9516.03i 0.236569 0.409750i
\(815\) 0 0
\(816\) −1334.04 2310.63i −0.0572315 0.0991279i
\(817\) −3448.08 1990.75i −0.147654 0.0852480i
\(818\) 24013.7i 1.02643i
\(819\) 6014.70 + 2636.07i 0.256619 + 0.112469i
\(820\) 0 0
\(821\) 18684.6 32362.7i 0.794272 1.37572i −0.129028 0.991641i \(-0.541186\pi\)
0.923300 0.384079i \(-0.125481\pi\)
\(822\) 19534.6 11278.3i 0.828888 0.478559i
\(823\) 15334.3 8853.29i 0.649479 0.374977i −0.138777 0.990324i \(-0.544317\pi\)
0.788257 + 0.615346i \(0.210984\pi\)
\(824\) 3871.73 6706.03i 0.163687 0.283514i
\(825\) 0 0
\(826\) −2697.63 24304.3i −0.113635 1.02380i
\(827\) 1336.91i 0.0562141i 0.999605 + 0.0281070i \(0.00894793\pi\)
−0.999605 + 0.0281070i \(0.991052\pi\)
\(828\) −3859.33 2228.19i −0.161982 0.0935203i
\(829\) 9366.66 + 16223.5i 0.392422 + 0.679694i 0.992768 0.120045i \(-0.0383040\pi\)
−0.600347 + 0.799740i \(0.704971\pi\)
\(830\) 0 0
\(831\) −14028.3 + 24297.8i −0.585604 + 1.01430i
\(832\) 3025.05i 0.126051i
\(833\) −9524.55 + 8778.88i −0.396166 + 0.365150i
\(834\) 24232.7 1.00613
\(835\) 0 0
\(836\) 564.405 + 977.578i 0.0233497 + 0.0404429i
\(837\) −17140.1 + 9895.83i −0.707823 + 0.408662i
\(838\) −4408.19 2545.07i −0.181716 0.104914i
\(839\) −33497.2 −1.37837 −0.689185 0.724585i \(-0.742031\pi\)
−0.689185 + 0.724585i \(0.742031\pi\)
\(840\) 0 0
\(841\) −17233.8 −0.706622
\(842\) 13101.9 + 7564.36i 0.536247 + 0.309602i
\(843\) 28664.4 16549.4i 1.17112 0.676146i
\(844\) 7883.83 + 13655.2i 0.321531 + 0.556909i
\(845\) 0 0
\(846\) 6360.78 0.258497
\(847\) 334.272 762.705i 0.0135605 0.0309408i
\(848\) 5516.85i 0.223407i
\(849\) −19194.1 + 33245.2i −0.775901 + 1.34390i
\(850\) 0 0
\(851\) −10998.0 19049.1i −0.443017 0.767328i
\(852\) 2469.91 + 1426.00i 0.0993165 + 0.0573404i
\(853\) 32741.3i 1.31423i 0.753789 + 0.657117i \(0.228224\pi\)
−0.753789 + 0.657117i \(0.771776\pi\)
\(854\) 355.582 261.522i 0.0142480 0.0104790i
\(855\) 0 0
\(856\) −4060.26 + 7032.57i −0.162122 + 0.280804i
\(857\) 32692.6 18875.1i 1.30310 0.752346i 0.322166 0.946683i \(-0.395589\pi\)
0.980935 + 0.194338i \(0.0622557\pi\)
\(858\) −13409.5 + 7741.98i −0.533558 + 0.308050i
\(859\) −7664.57 + 13275.4i −0.304438 + 0.527301i −0.977136 0.212615i \(-0.931802\pi\)
0.672698 + 0.739917i \(0.265135\pi\)
\(860\) 0 0
\(861\) −406.119 + 298.690i −0.0160749 + 0.0118227i
\(862\) 32331.0i 1.27749i
\(863\) −16521.5 9538.67i −0.651677 0.376246i 0.137422 0.990513i \(-0.456119\pi\)
−0.789098 + 0.614267i \(0.789452\pi\)
\(864\) −2437.58 4222.01i −0.0959817 0.166245i
\(865\) 0 0
\(866\) −14107.6 + 24435.0i −0.553574 + 0.958818i
\(867\) 15396.8i 0.603116i
\(868\) 3863.14 8814.49i 0.151064 0.344681i
\(869\) 7996.05 0.312138
\(870\) 0 0
\(871\) −17029.7 29496.4i −0.662492 1.14747i
\(872\) 477.771 275.841i 0.0185543 0.0107123i
\(873\) 5542.69 + 3200.07i 0.214881 + 0.124062i
\(874\) 2259.65 0.0874528
\(875\) 0 0
\(876\) −10737.8 −0.414151
\(877\) −23577.7 13612.6i −0.907826 0.524134i −0.0280952 0.999605i \(-0.508944\pi\)
−0.879731 + 0.475471i \(0.842278\pi\)
\(878\) 7110.00 4104.96i 0.273292 0.157785i
\(879\) −17852.7 30921.8i −0.685047 1.18654i
\(880\) 0 0
\(881\) 8754.14 0.334773 0.167386 0.985891i \(-0.446467\pi\)
0.167386 + 0.985891i \(0.446467\pi\)
\(882\) −3784.07 + 3487.82i −0.144463 + 0.133153i
\(883\) 32353.2i 1.23304i −0.787340 0.616519i \(-0.788542\pi\)
0.787340 0.616519i \(-0.211458\pi\)
\(884\) 3569.98 6183.38i 0.135827 0.235260i
\(885\) 0 0
\(886\) −1929.29 3341.63i −0.0731555 0.126709i
\(887\) −16978.2 9802.39i −0.642698 0.371062i 0.142955 0.989729i \(-0.454340\pi\)
−0.785653 + 0.618667i \(0.787673\pi\)
\(888\) 5232.13i 0.197724i
\(889\) −3784.71 34098.4i −0.142784 1.28642i
\(890\) 0 0
\(891\) −8720.29 + 15104.0i −0.327879 + 0.567904i
\(892\) −3250.35 + 1876.59i −0.122007 + 0.0704405i
\(893\) −2793.19 + 1612.65i −0.104670 + 0.0604314i
\(894\) 3649.50 6321.12i 0.136530 0.236476i
\(895\) 0 0
\(896\) 2171.22 + 951.584i 0.0809547 + 0.0354801i
\(897\) 30995.7i 1.15375i
\(898\) −32475.9 18750.0i −1.20683 0.696766i
\(899\) 5494.45 + 9516.66i 0.203838 + 0.353057i
\(900\) 0 0
\(901\) −6510.65 + 11276.8i −0.240734 + 0.416963i
\(902\) 457.334i 0.0168820i
\(903\) 25357.8 + 34478.1i 0.934500 + 1.27061i
\(904\) 14043.4 0.516679
\(905\) 0 0
\(906\) −7332.68 12700.6i −0.268888 0.465727i
\(907\) 4806.82 2775.22i 0.175973 0.101598i −0.409426 0.912343i \(-0.634271\pi\)
0.585399 + 0.810745i \(0.300938\pi\)
\(908\) −20716.6 11960.7i −0.757164 0.437149i
\(909\) −2022.40 −0.0737941
\(910\) 0 0
\(911\) 22886.6 0.832347 0.416173 0.909285i \(-0.363371\pi\)
0.416173 + 0.909285i \(0.363371\pi\)
\(912\) 465.484 + 268.747i 0.0169010 + 0.00975780i
\(913\) 12545.5 7243.17i 0.454761 0.262556i
\(914\) 6641.31 + 11503.1i 0.240345 + 0.416289i
\(915\) 0 0
\(916\) −17513.9 −0.631743
\(917\) 3226.01 7360.77i 0.116175 0.265075i
\(918\) 11506.7i 0.413703i
\(919\) 21732.9 37642.5i 0.780089 1.35115i −0.151800 0.988411i \(-0.548507\pi\)
0.931889 0.362743i \(-0.118160\pi\)
\(920\) 0 0
\(921\) −13766.2 23843.7i −0.492519 0.853068i
\(922\) 5030.47 + 2904.35i 0.179685 + 0.103741i
\(923\) 7632.12i 0.272172i
\(924\) −1338.59 12060.0i −0.0476583 0.429379i
\(925\) 0 0
\(926\) −6750.67 + 11692.5i −0.239569 + 0.414945i
\(927\) 6288.45 3630.64i 0.222804 0.128636i
\(928\) −2344.18 + 1353.42i −0.0829220 + 0.0478750i
\(929\) −22368.4 + 38743.2i −0.789970 + 1.36827i 0.136014 + 0.990707i \(0.456571\pi\)
−0.925984 + 0.377562i \(0.876763\pi\)
\(930\) 0 0
\(931\) 777.420 2490.97i 0.0273672 0.0876887i
\(932\) 12315.9i 0.432853i
\(933\) −9853.98 5689.20i −0.345772 0.199631i
\(934\) 2625.96 + 4548.29i 0.0919956 + 0.159341i
\(935\) 0 0
\(936\) 1418.34 2456.63i 0.0495297 0.0857880i
\(937\) 7708.34i 0.268752i 0.990930 + 0.134376i \(0.0429030\pi\)
−0.990930 + 0.134376i \(0.957097\pi\)
\(938\) 26528.0 2944.44i 0.923421 0.102494i
\(939\) 34845.4 1.21101
\(940\) 0 0
\(941\) −14053.3 24341.1i −0.486849 0.843248i 0.513036 0.858367i \(-0.328521\pi\)
−0.999886 + 0.0151190i \(0.995187\pi\)
\(942\) 27998.6 16165.0i 0.968411 0.559113i
\(943\) 792.837 + 457.745i 0.0273789 + 0.0158072i
\(944\) −10563.0 −0.364190
\(945\) 0 0
\(946\) 38826.1 1.33440
\(947\) 27260.6 + 15738.9i 0.935428 + 0.540070i 0.888524 0.458830i \(-0.151731\pi\)
0.0469041 + 0.998899i \(0.485064\pi\)
\(948\) 3297.31 1903.70i 0.112966 0.0652208i
\(949\) −14367.4 24885.1i −0.491451 0.851218i
\(950\) 0 0
\(951\) 28534.1 0.972957
\(952\) 3315.11 + 4507.44i 0.112861 + 0.153453i
\(953\) 40699.5i 1.38341i 0.722182 + 0.691703i \(0.243139\pi\)
−0.722182 + 0.691703i \(0.756861\pi\)
\(954\) −2586.66 + 4480.22i −0.0877842 + 0.152047i
\(955\) 0 0
\(956\) −5145.74 8912.68i −0.174085 0.301524i
\(957\) 11998.9 + 6927.58i 0.405298 + 0.233999i
\(958\) 19238.0i 0.648802i
\(959\) −38106.8 + 28026.6i −1.28314 + 0.943719i
\(960\) 0 0
\(961\) 6457.18 11184.2i 0.216749 0.375421i
\(962\) 12125.6 7000.73i 0.406388 0.234628i
\(963\) −6594.66 + 3807.43i −0.220675 + 0.127407i
\(964\) −7824.44 + 13552.3i −0.261419 + 0.452791i
\(965\) 0 0
\(966\) −22247.1 9750.28i −0.740984 0.324752i
\(967\) 7786.47i 0.258941i −0.991583 0.129471i \(-0.958672\pi\)
0.991583 0.129471i \(-0.0413278\pi\)
\(968\) −311.518 179.855i −0.0103436 0.00597186i
\(969\) 634.319 + 1098.67i 0.0210292 + 0.0364236i
\(970\) 0 0
\(971\) 9385.53 16256.2i 0.310192 0.537268i −0.668212 0.743971i \(-0.732940\pi\)
0.978404 + 0.206703i \(0.0662735\pi\)
\(972\) 8149.16i 0.268914i
\(973\) −50508.3 + 5606.11i −1.66415 + 0.184711i
\(974\) 22853.1 0.751808
\(975\) 0 0
\(976\) −95.3331 165.122i −0.00312658 0.00541539i
\(977\) −25018.4 + 14444.4i −0.819253 + 0.472996i −0.850159 0.526526i \(-0.823494\pi\)
0.0309059 + 0.999522i \(0.490161\pi\)
\(978\) 16781.9 + 9689.03i 0.548697 + 0.316791i
\(979\) −56130.2 −1.83241
\(980\) 0 0
\(981\) 517.329 0.0168369
\(982\) −12366.1 7139.55i −0.401850 0.232008i
\(983\) −6332.49 + 3656.06i −0.205468 + 0.118627i −0.599203 0.800597i \(-0.704516\pi\)
0.393736 + 0.919224i \(0.371183\pi\)
\(984\) 108.882 + 188.589i 0.00352748 + 0.00610977i
\(985\) 0 0
\(986\) −6388.88 −0.206352
\(987\) 34458.6 3824.68i 1.11127 0.123345i
\(988\) 1438.37i 0.0463163i
\(989\) 38860.9 67309.1i 1.24945 2.16411i
\(990\) 0 0
\(991\) 24476.6 + 42394.8i 0.784587 + 1.35895i 0.929245 + 0.369463i \(0.120459\pi\)
−0.144658 + 0.989482i \(0.546208\pi\)
\(992\) −3600.18 2078.56i −0.115228 0.0665266i
\(993\) 23301.6i 0.744667i
\(994\) −5477.94 2400.82i −0.174799 0.0766092i
\(995\) 0 0
\(996\) 3448.91 5973.69i 0.109722 0.190044i
\(997\) 33788.0 19507.5i 1.07330 0.619668i 0.144216 0.989546i \(-0.453934\pi\)
0.929080 + 0.369879i \(0.120601\pi\)
\(998\) −9805.02 + 5660.93i −0.310995 + 0.179553i
\(999\) 11282.4 19541.6i 0.357316 0.618889i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.4.j.h.149.5 12
5.2 odd 4 350.4.e.i.51.2 6
5.3 odd 4 350.4.e.j.51.2 yes 6
5.4 even 2 inner 350.4.j.h.149.2 12
7.4 even 3 inner 350.4.j.h.249.2 12
35.2 odd 12 2450.4.a.ci.1.2 3
35.4 even 6 inner 350.4.j.h.249.5 12
35.12 even 12 2450.4.a.ch.1.2 3
35.18 odd 12 350.4.e.j.151.2 yes 6
35.23 odd 12 2450.4.a.cc.1.2 3
35.32 odd 12 350.4.e.i.151.2 yes 6
35.33 even 12 2450.4.a.cd.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.4.e.i.51.2 6 5.2 odd 4
350.4.e.i.151.2 yes 6 35.32 odd 12
350.4.e.j.51.2 yes 6 5.3 odd 4
350.4.e.j.151.2 yes 6 35.18 odd 12
350.4.j.h.149.2 12 5.4 even 2 inner
350.4.j.h.149.5 12 1.1 even 1 trivial
350.4.j.h.249.2 12 7.4 even 3 inner
350.4.j.h.249.5 12 35.4 even 6 inner
2450.4.a.cc.1.2 3 35.23 odd 12
2450.4.a.cd.1.2 3 35.33 even 12
2450.4.a.ch.1.2 3 35.12 even 12
2450.4.a.ci.1.2 3 35.2 odd 12