Properties

Label 350.3.b.c.251.5
Level $350$
Weight $3$
Character 350.251
Analytic conductor $9.537$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,3,Mod(251,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.845277938384896.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 50x^{6} - 52x^{5} + 315x^{4} + 48x^{3} - 334x^{2} - 28x + 98 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.5
Root \(-0.707107 - 0.181255i\) of defining polynomial
Character \(\chi\) \(=\) 350.251
Dual form 350.3.b.c.251.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} -4.76222i q^{3} +2.00000 q^{4} -6.73480i q^{6} +(-6.84393 + 1.46990i) q^{7} +2.82843 q^{8} -13.6788 q^{9} -16.6788 q^{11} -9.52445i q^{12} -14.9917i q^{13} +(-9.67878 + 2.07875i) q^{14} +4.00000 q^{16} -11.3469i q^{17} -19.3447 q^{18} -3.16043i q^{19} +(7.00000 + 32.5923i) q^{21} -23.5874 q^{22} +22.1731 q^{23} -13.4696i q^{24} -21.2015i q^{26} +22.2814i q^{27} +(-13.6879 + 2.93980i) q^{28} -16.0363 q^{29} +21.7846i q^{31} +5.65685 q^{32} +79.4281i q^{33} -16.0469i q^{34} -27.3576 q^{36} +35.8610 q^{37} -4.46953i q^{38} -71.3939 q^{39} -74.6660i q^{41} +(9.89949 + 46.0925i) q^{42} -11.7680 q^{43} -33.3576 q^{44} +31.3576 q^{46} -11.2272i q^{47} -19.0489i q^{48} +(44.6788 - 20.1198i) q^{49} -54.0363 q^{51} -29.9834i q^{52} +20.8103 q^{53} +31.5107i q^{54} +(-19.3576 + 4.15751i) q^{56} -15.0507 q^{57} -22.6788 q^{58} +93.1210i q^{59} -43.4000i q^{61} +30.8081i q^{62} +(93.6166 - 20.1065i) q^{63} +8.00000 q^{64} +112.328i q^{66} +13.6879 q^{67} -22.6937i q^{68} -105.593i q^{69} +81.3576 q^{71} -38.6894 q^{72} -40.0933i q^{73} +50.7151 q^{74} -6.32086i q^{76} +(114.148 - 24.5162i) q^{77} -100.966 q^{78} -40.6061 q^{79} -17.0000 q^{81} -105.594i q^{82} -42.4477i q^{83} +(14.0000 + 65.1847i) q^{84} -16.6424 q^{86} +76.3686i q^{87} -47.1747 q^{88} -52.7121i q^{89} +(22.0363 + 102.602i) q^{91} +44.3463 q^{92} +103.743 q^{93} -15.8777i q^{94} -26.9392i q^{96} -116.701i q^{97} +(63.1853 - 28.4537i) q^{98} +228.145 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} - 36 q^{9} - 60 q^{11} - 4 q^{14} + 32 q^{16} + 56 q^{21} + 92 q^{29} - 72 q^{36} - 204 q^{39} - 120 q^{44} + 104 q^{46} + 284 q^{49} - 212 q^{51} - 8 q^{56} + 64 q^{64} + 504 q^{71} + 112 q^{74}+ \cdots + 944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 0.707107
\(3\) 4.76222i 1.58741i −0.608304 0.793704i \(-0.708150\pi\)
0.608304 0.793704i \(-0.291850\pi\)
\(4\) 2.00000 0.500000
\(5\) 0 0
\(6\) 6.73480i 1.12247i
\(7\) −6.84393 + 1.46990i −0.977704 + 0.209986i
\(8\) 2.82843 0.353553
\(9\) −13.6788 −1.51986
\(10\) 0 0
\(11\) −16.6788 −1.51625 −0.758126 0.652108i \(-0.773885\pi\)
−0.758126 + 0.652108i \(0.773885\pi\)
\(12\) 9.52445i 0.793704i
\(13\) 14.9917i 1.15321i −0.817024 0.576604i \(-0.804377\pi\)
0.817024 0.576604i \(-0.195623\pi\)
\(14\) −9.67878 + 2.07875i −0.691341 + 0.148482i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 11.3469i 0.667463i −0.942668 0.333731i \(-0.891692\pi\)
0.942668 0.333731i \(-0.108308\pi\)
\(18\) −19.3447 −1.07471
\(19\) 3.16043i 0.166338i −0.996535 0.0831692i \(-0.973496\pi\)
0.996535 0.0831692i \(-0.0265042\pi\)
\(20\) 0 0
\(21\) 7.00000 + 32.5923i 0.333333 + 1.55202i
\(22\) −23.5874 −1.07215
\(23\) 22.1731 0.964050 0.482025 0.876158i \(-0.339901\pi\)
0.482025 + 0.876158i \(0.339901\pi\)
\(24\) 13.4696i 0.561234i
\(25\) 0 0
\(26\) 21.2015i 0.815442i
\(27\) 22.2814i 0.825237i
\(28\) −13.6879 + 2.93980i −0.488852 + 0.104993i
\(29\) −16.0363 −0.552977 −0.276489 0.961017i \(-0.589171\pi\)
−0.276489 + 0.961017i \(0.589171\pi\)
\(30\) 0 0
\(31\) 21.7846i 0.702730i 0.936239 + 0.351365i \(0.114282\pi\)
−0.936239 + 0.351365i \(0.885718\pi\)
\(32\) 5.65685 0.176777
\(33\) 79.4281i 2.40691i
\(34\) 16.0469i 0.471968i
\(35\) 0 0
\(36\) −27.3576 −0.759932
\(37\) 35.8610 0.969216 0.484608 0.874731i \(-0.338962\pi\)
0.484608 + 0.874731i \(0.338962\pi\)
\(38\) 4.46953i 0.117619i
\(39\) −71.3939 −1.83061
\(40\) 0 0
\(41\) 74.6660i 1.82112i −0.413376 0.910561i \(-0.635650\pi\)
0.413376 0.910561i \(-0.364350\pi\)
\(42\) 9.89949 + 46.0925i 0.235702 + 1.09744i
\(43\) −11.7680 −0.273674 −0.136837 0.990594i \(-0.543694\pi\)
−0.136837 + 0.990594i \(0.543694\pi\)
\(44\) −33.3576 −0.758126
\(45\) 0 0
\(46\) 31.3576 0.681686
\(47\) 11.2272i 0.238877i −0.992842 0.119439i \(-0.961891\pi\)
0.992842 0.119439i \(-0.0381095\pi\)
\(48\) 19.0489i 0.396852i
\(49\) 44.6788 20.1198i 0.911812 0.410608i
\(50\) 0 0
\(51\) −54.0363 −1.05954
\(52\) 29.9834i 0.576604i
\(53\) 20.8103 0.392648 0.196324 0.980539i \(-0.437100\pi\)
0.196324 + 0.980539i \(0.437100\pi\)
\(54\) 31.5107i 0.583531i
\(55\) 0 0
\(56\) −19.3576 + 4.15751i −0.345671 + 0.0742412i
\(57\) −15.0507 −0.264047
\(58\) −22.6788 −0.391014
\(59\) 93.1210i 1.57832i 0.614187 + 0.789161i \(0.289484\pi\)
−0.614187 + 0.789161i \(0.710516\pi\)
\(60\) 0 0
\(61\) 43.4000i 0.711476i −0.934586 0.355738i \(-0.884230\pi\)
0.934586 0.355738i \(-0.115770\pi\)
\(62\) 30.8081i 0.496905i
\(63\) 93.6166 20.1065i 1.48598 0.319150i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 112.328i 1.70194i
\(67\) 13.6879 0.204296 0.102148 0.994769i \(-0.467428\pi\)
0.102148 + 0.994769i \(0.467428\pi\)
\(68\) 22.6937i 0.333731i
\(69\) 105.593i 1.53034i
\(70\) 0 0
\(71\) 81.3576 1.14588 0.572941 0.819597i \(-0.305803\pi\)
0.572941 + 0.819597i \(0.305803\pi\)
\(72\) −38.6894 −0.537353
\(73\) 40.0933i 0.549223i −0.961555 0.274611i \(-0.911451\pi\)
0.961555 0.274611i \(-0.0885492\pi\)
\(74\) 50.7151 0.685339
\(75\) 0 0
\(76\) 6.32086i 0.0831692i
\(77\) 114.148 24.5162i 1.48245 0.318392i
\(78\) −100.966 −1.29444
\(79\) −40.6061 −0.514001 −0.257001 0.966411i \(-0.582734\pi\)
−0.257001 + 0.966411i \(0.582734\pi\)
\(80\) 0 0
\(81\) −17.0000 −0.209877
\(82\) 105.594i 1.28773i
\(83\) 42.4477i 0.511418i −0.966754 0.255709i \(-0.917691\pi\)
0.966754 0.255709i \(-0.0823089\pi\)
\(84\) 14.0000 + 65.1847i 0.166667 + 0.776008i
\(85\) 0 0
\(86\) −16.6424 −0.193517
\(87\) 76.3686i 0.877801i
\(88\) −47.1747 −0.536076
\(89\) 52.7121i 0.592271i −0.955146 0.296136i \(-0.904302\pi\)
0.955146 0.296136i \(-0.0956980\pi\)
\(90\) 0 0
\(91\) 22.0363 + 102.602i 0.242158 + 1.12750i
\(92\) 44.3463 0.482025
\(93\) 103.743 1.11552
\(94\) 15.8777i 0.168912i
\(95\) 0 0
\(96\) 26.9392i 0.280617i
\(97\) 116.701i 1.20311i −0.798833 0.601553i \(-0.794549\pi\)
0.798833 0.601553i \(-0.205451\pi\)
\(98\) 63.1853 28.4537i 0.644748 0.290344i
\(99\) 228.145 2.30450
\(100\) 0 0
\(101\) 9.14290i 0.0905237i −0.998975 0.0452619i \(-0.985588\pi\)
0.998975 0.0452619i \(-0.0144122\pi\)
\(102\) −76.4189 −0.749205
\(103\) 41.4499i 0.402427i −0.979547 0.201213i \(-0.935512\pi\)
0.979547 0.201213i \(-0.0644884\pi\)
\(104\) 42.4030i 0.407721i
\(105\) 0 0
\(106\) 29.4302 0.277644
\(107\) −123.191 −1.15132 −0.575658 0.817691i \(-0.695254\pi\)
−0.575658 + 0.817691i \(0.695254\pi\)
\(108\) 44.5628i 0.412619i
\(109\) 134.182 1.23102 0.615512 0.788127i \(-0.288949\pi\)
0.615512 + 0.788127i \(0.288949\pi\)
\(110\) 0 0
\(111\) 170.778i 1.53854i
\(112\) −27.3757 + 5.87961i −0.244426 + 0.0524965i
\(113\) 73.6419 0.651698 0.325849 0.945422i \(-0.394350\pi\)
0.325849 + 0.945422i \(0.394350\pi\)
\(114\) −21.2849 −0.186709
\(115\) 0 0
\(116\) −32.0727 −0.276489
\(117\) 205.068i 1.75272i
\(118\) 131.693i 1.11604i
\(119\) 16.6788 + 77.6572i 0.140158 + 0.652581i
\(120\) 0 0
\(121\) 157.182 1.29902
\(122\) 61.3769i 0.503090i
\(123\) −355.576 −2.89086
\(124\) 43.5692i 0.351365i
\(125\) 0 0
\(126\) 132.394 28.4348i 1.05075 0.225673i
\(127\) −51.4687 −0.405266 −0.202633 0.979255i \(-0.564950\pi\)
−0.202633 + 0.979255i \(0.564950\pi\)
\(128\) 11.3137 0.0883883
\(129\) 56.0418i 0.434432i
\(130\) 0 0
\(131\) 170.440i 1.30107i 0.759478 + 0.650533i \(0.225455\pi\)
−0.759478 + 0.650533i \(0.774545\pi\)
\(132\) 158.856i 1.20346i
\(133\) 4.64552 + 21.6298i 0.0349287 + 0.162630i
\(134\) 19.3576 0.144459
\(135\) 0 0
\(136\) 32.0938i 0.235984i
\(137\) −99.9035 −0.729223 −0.364611 0.931160i \(-0.618798\pi\)
−0.364611 + 0.931160i \(0.618798\pi\)
\(138\) 149.332i 1.08211i
\(139\) 204.866i 1.47386i 0.675971 + 0.736928i \(0.263725\pi\)
−0.675971 + 0.736928i \(0.736275\pi\)
\(140\) 0 0
\(141\) −53.4666 −0.379196
\(142\) 115.057 0.810260
\(143\) 250.043i 1.74856i
\(144\) −54.7151 −0.379966
\(145\) 0 0
\(146\) 56.7005i 0.388359i
\(147\) −95.8150 212.770i −0.651803 1.44742i
\(148\) 71.7220 0.484608
\(149\) −54.6424 −0.366728 −0.183364 0.983045i \(-0.558699\pi\)
−0.183364 + 0.983045i \(0.558699\pi\)
\(150\) 0 0
\(151\) 27.4666 0.181898 0.0909489 0.995856i \(-0.471010\pi\)
0.0909489 + 0.995856i \(0.471010\pi\)
\(152\) 8.93905i 0.0588095i
\(153\) 155.211i 1.01445i
\(154\) 161.430 34.6711i 1.04825 0.225137i
\(155\) 0 0
\(156\) −142.788 −0.915306
\(157\) 163.326i 1.04029i 0.854078 + 0.520146i \(0.174122\pi\)
−0.854078 + 0.520146i \(0.825878\pi\)
\(158\) −57.4257 −0.363454
\(159\) 99.1034i 0.623292i
\(160\) 0 0
\(161\) −151.751 + 32.5923i −0.942556 + 0.202437i
\(162\) −24.0416 −0.148405
\(163\) 213.495 1.30978 0.654892 0.755722i \(-0.272714\pi\)
0.654892 + 0.755722i \(0.272714\pi\)
\(164\) 149.332i 0.910561i
\(165\) 0 0
\(166\) 60.0301i 0.361627i
\(167\) 270.861i 1.62192i −0.585099 0.810962i \(-0.698944\pi\)
0.585099 0.810962i \(-0.301056\pi\)
\(168\) 19.7990 + 92.1850i 0.117851 + 0.548720i
\(169\) −55.7515 −0.329890
\(170\) 0 0
\(171\) 43.2308i 0.252812i
\(172\) −23.5360 −0.136837
\(173\) 190.423i 1.10071i −0.834931 0.550355i \(-0.814492\pi\)
0.834931 0.550355i \(-0.185508\pi\)
\(174\) 108.002i 0.620699i
\(175\) 0 0
\(176\) −66.7151 −0.379063
\(177\) 443.463 2.50544
\(178\) 74.5462i 0.418799i
\(179\) −96.0727 −0.536719 −0.268359 0.963319i \(-0.586481\pi\)
−0.268359 + 0.963319i \(0.586481\pi\)
\(180\) 0 0
\(181\) 248.774i 1.37444i 0.726449 + 0.687220i \(0.241169\pi\)
−0.726449 + 0.687220i \(0.758831\pi\)
\(182\) 31.1641 + 145.101i 0.171231 + 0.797261i
\(183\) −206.681 −1.12940
\(184\) 62.7151 0.340843
\(185\) 0 0
\(186\) 146.715 0.788791
\(187\) 189.252i 1.01204i
\(188\) 22.4545i 0.119439i
\(189\) −32.7515 152.492i −0.173288 0.806838i
\(190\) 0 0
\(191\) −234.254 −1.22646 −0.613231 0.789903i \(-0.710131\pi\)
−0.613231 + 0.789903i \(0.710131\pi\)
\(192\) 38.0978i 0.198426i
\(193\) −180.917 −0.937391 −0.468696 0.883360i \(-0.655276\pi\)
−0.468696 + 0.883360i \(0.655276\pi\)
\(194\) 165.040i 0.850724i
\(195\) 0 0
\(196\) 89.3576 40.2396i 0.455906 0.205304i
\(197\) 158.495 0.804542 0.402271 0.915521i \(-0.368221\pi\)
0.402271 + 0.915521i \(0.368221\pi\)
\(198\) 322.646 1.62953
\(199\) 223.490i 1.12307i −0.827454 0.561533i \(-0.810212\pi\)
0.827454 0.561533i \(-0.189788\pi\)
\(200\) 0 0
\(201\) 65.1847i 0.324302i
\(202\) 12.9300i 0.0640099i
\(203\) 109.752 23.5718i 0.540648 0.116117i
\(204\) −108.073 −0.529768
\(205\) 0 0
\(206\) 58.6191i 0.284559i
\(207\) −303.302 −1.46522
\(208\) 59.9669i 0.288302i
\(209\) 52.7121i 0.252211i
\(210\) 0 0
\(211\) 407.612 1.93181 0.965905 0.258897i \(-0.0833589\pi\)
0.965905 + 0.258897i \(0.0833589\pi\)
\(212\) 41.6206 0.196324
\(213\) 387.443i 1.81898i
\(214\) −174.218 −0.814103
\(215\) 0 0
\(216\) 63.0213i 0.291765i
\(217\) −32.0212 149.092i −0.147563 0.687062i
\(218\) 189.762 0.870466
\(219\) −190.933 −0.871841
\(220\) 0 0
\(221\) −170.109 −0.769724
\(222\) 241.517i 1.08791i
\(223\) 322.714i 1.44715i −0.690247 0.723574i \(-0.742498\pi\)
0.690247 0.723574i \(-0.257502\pi\)
\(224\) −38.7151 + 8.31502i −0.172835 + 0.0371206i
\(225\) 0 0
\(226\) 104.145 0.460820
\(227\) 169.259i 0.745633i −0.927905 0.372817i \(-0.878392\pi\)
0.927905 0.372817i \(-0.121608\pi\)
\(228\) −30.1014 −0.132024
\(229\) 307.130i 1.34118i 0.741829 + 0.670589i \(0.233959\pi\)
−0.741829 + 0.670589i \(0.766041\pi\)
\(230\) 0 0
\(231\) −116.751 543.600i −0.505418 2.35325i
\(232\) −45.3576 −0.195507
\(233\) 9.29105 0.0398757 0.0199379 0.999801i \(-0.493653\pi\)
0.0199379 + 0.999801i \(0.493653\pi\)
\(234\) 290.010i 1.23936i
\(235\) 0 0
\(236\) 186.242i 0.789161i
\(237\) 193.375i 0.815930i
\(238\) 23.5874 + 109.824i 0.0991065 + 0.461445i
\(239\) −32.8968 −0.137644 −0.0688218 0.997629i \(-0.521924\pi\)
−0.0688218 + 0.997629i \(0.521924\pi\)
\(240\) 0 0
\(241\) 186.750i 0.774894i −0.921892 0.387447i \(-0.873357\pi\)
0.921892 0.387447i \(-0.126643\pi\)
\(242\) 222.288 0.918547
\(243\) 281.490i 1.15840i
\(244\) 86.8001i 0.355738i
\(245\) 0 0
\(246\) −502.860 −2.04415
\(247\) −47.3803 −0.191823
\(248\) 61.6162i 0.248452i
\(249\) −202.145 −0.811829
\(250\) 0 0
\(251\) 298.325i 1.18855i 0.804263 + 0.594274i \(0.202560\pi\)
−0.804263 + 0.594274i \(0.797440\pi\)
\(252\) 187.233 40.2129i 0.742989 0.159575i
\(253\) −369.821 −1.46174
\(254\) −72.7878 −0.286566
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 224.463i 0.873398i 0.899608 + 0.436699i \(0.143853\pi\)
−0.899608 + 0.436699i \(0.856147\pi\)
\(258\) 79.2550i 0.307190i
\(259\) −245.430 + 52.7121i −0.947607 + 0.203522i
\(260\) 0 0
\(261\) 219.358 0.840450
\(262\) 241.038i 0.919993i
\(263\) −333.403 −1.26769 −0.633846 0.773459i \(-0.718525\pi\)
−0.633846 + 0.773459i \(0.718525\pi\)
\(264\) 224.657i 0.850972i
\(265\) 0 0
\(266\) 6.56976 + 30.5891i 0.0246983 + 0.114997i
\(267\) −251.027 −0.940176
\(268\) 27.3757 0.102148
\(269\) 72.1823i 0.268336i −0.990959 0.134168i \(-0.957164\pi\)
0.990959 0.134168i \(-0.0428361\pi\)
\(270\) 0 0
\(271\) 21.1078i 0.0778887i −0.999241 0.0389443i \(-0.987600\pi\)
0.999241 0.0389443i \(-0.0123995\pi\)
\(272\) 45.3875i 0.166866i
\(273\) 488.615 104.942i 1.78980 0.384403i
\(274\) −141.285 −0.515638
\(275\) 0 0
\(276\) 211.187i 0.765170i
\(277\) −22.4218 −0.0809453 −0.0404727 0.999181i \(-0.512886\pi\)
−0.0404727 + 0.999181i \(0.512886\pi\)
\(278\) 289.724i 1.04217i
\(279\) 297.987i 1.06805i
\(280\) 0 0
\(281\) −43.6119 −0.155203 −0.0776013 0.996984i \(-0.524726\pi\)
−0.0776013 + 0.996984i \(0.524726\pi\)
\(282\) −75.6132 −0.268132
\(283\) 59.1956i 0.209172i 0.994516 + 0.104586i \(0.0333517\pi\)
−0.994516 + 0.104586i \(0.966648\pi\)
\(284\) 162.715 0.572941
\(285\) 0 0
\(286\) 353.615i 1.23642i
\(287\) 109.752 + 511.009i 0.382410 + 1.78052i
\(288\) −77.3789 −0.268677
\(289\) 160.249 0.554493
\(290\) 0 0
\(291\) −555.757 −1.90982
\(292\) 80.1865i 0.274611i
\(293\) 371.148i 1.26672i 0.773859 + 0.633358i \(0.218324\pi\)
−0.773859 + 0.633358i \(0.781676\pi\)
\(294\) −135.503 300.903i −0.460894 1.02348i
\(295\) 0 0
\(296\) 101.430 0.342670
\(297\) 371.627i 1.25127i
\(298\) −77.2761 −0.259316
\(299\) 332.413i 1.11175i
\(300\) 0 0
\(301\) 80.5393 17.2978i 0.267572 0.0574677i
\(302\) 38.8436 0.128621
\(303\) −43.5405 −0.143698
\(304\) 12.6417i 0.0415846i
\(305\) 0 0
\(306\) 219.502i 0.717327i
\(307\) 49.4319i 0.161016i 0.996754 + 0.0805079i \(0.0256542\pi\)
−0.996754 + 0.0805079i \(0.974346\pi\)
\(308\) 228.297 49.0323i 0.741223 0.159196i
\(309\) −197.394 −0.638815
\(310\) 0 0
\(311\) 425.196i 1.36719i −0.729862 0.683595i \(-0.760416\pi\)
0.729862 0.683595i \(-0.239584\pi\)
\(312\) −201.932 −0.647219
\(313\) 407.383i 1.30154i 0.759274 + 0.650771i \(0.225554\pi\)
−0.759274 + 0.650771i \(0.774446\pi\)
\(314\) 230.977i 0.735597i
\(315\) 0 0
\(316\) −81.2122 −0.257001
\(317\) −515.185 −1.62519 −0.812594 0.582830i \(-0.801946\pi\)
−0.812594 + 0.582830i \(0.801946\pi\)
\(318\) 140.153i 0.440734i
\(319\) 267.467 0.838453
\(320\) 0 0
\(321\) 586.662i 1.82761i
\(322\) −214.609 + 46.0925i −0.666487 + 0.143144i
\(323\) −35.8610 −0.111025
\(324\) −34.0000 −0.104938
\(325\) 0 0
\(326\) 301.927 0.926157
\(327\) 639.003i 1.95414i
\(328\) 211.187i 0.643864i
\(329\) 16.5029 + 76.8384i 0.0501608 + 0.233551i
\(330\) 0 0
\(331\) 72.0727 0.217742 0.108871 0.994056i \(-0.465276\pi\)
0.108871 + 0.994056i \(0.465276\pi\)
\(332\) 84.8954i 0.255709i
\(333\) −490.535 −1.47308
\(334\) 383.056i 1.14687i
\(335\) 0 0
\(336\) 28.0000 + 130.369i 0.0833333 + 0.388004i
\(337\) 362.450 1.07552 0.537759 0.843098i \(-0.319271\pi\)
0.537759 + 0.843098i \(0.319271\pi\)
\(338\) −78.8445 −0.233268
\(339\) 350.699i 1.03451i
\(340\) 0 0
\(341\) 363.341i 1.06552i
\(342\) 61.1376i 0.178765i
\(343\) −276.204 + 203.372i −0.805260 + 0.592921i
\(344\) −33.2849 −0.0967584
\(345\) 0 0
\(346\) 269.298i 0.778319i
\(347\) −310.175 −0.893877 −0.446938 0.894565i \(-0.647486\pi\)
−0.446938 + 0.894565i \(0.647486\pi\)
\(348\) 152.737i 0.438900i
\(349\) 190.418i 0.545609i 0.962069 + 0.272804i \(0.0879512\pi\)
−0.962069 + 0.272804i \(0.912049\pi\)
\(350\) 0 0
\(351\) 334.036 0.951670
\(352\) −94.3494 −0.268038
\(353\) 177.839i 0.503793i 0.967754 + 0.251896i \(0.0810542\pi\)
−0.967754 + 0.251896i \(0.918946\pi\)
\(354\) 627.151 1.77161
\(355\) 0 0
\(356\) 105.424i 0.296136i
\(357\) 369.821 79.4281i 1.03591 0.222488i
\(358\) −135.867 −0.379518
\(359\) 366.933 1.02210 0.511049 0.859552i \(-0.329257\pi\)
0.511049 + 0.859552i \(0.329257\pi\)
\(360\) 0 0
\(361\) 351.012 0.972332
\(362\) 351.819i 0.971876i
\(363\) 748.534i 2.06208i
\(364\) 44.0727 + 205.204i 0.121079 + 0.563749i
\(365\) 0 0
\(366\) −292.291 −0.798609
\(367\) 213.129i 0.580734i 0.956915 + 0.290367i \(0.0937773\pi\)
−0.956915 + 0.290367i \(0.906223\pi\)
\(368\) 88.6926 0.241012
\(369\) 1021.34i 2.76786i
\(370\) 0 0
\(371\) −142.424 + 30.5891i −0.383893 + 0.0824505i
\(372\) 207.487 0.557759
\(373\) 594.278 1.59324 0.796619 0.604481i \(-0.206620\pi\)
0.796619 + 0.604481i \(0.206620\pi\)
\(374\) 267.643i 0.715622i
\(375\) 0 0
\(376\) 31.7554i 0.0844558i
\(377\) 240.412i 0.637698i
\(378\) −46.3176 215.657i −0.122533 0.570521i
\(379\) 397.939 1.04997 0.524985 0.851111i \(-0.324071\pi\)
0.524985 + 0.851111i \(0.324071\pi\)
\(380\) 0 0
\(381\) 245.106i 0.643322i
\(382\) −331.286 −0.867240
\(383\) 464.822i 1.21363i −0.794841 0.606817i \(-0.792446\pi\)
0.794841 0.606817i \(-0.207554\pi\)
\(384\) 53.8784i 0.140308i
\(385\) 0 0
\(386\) −255.855 −0.662836
\(387\) 160.972 0.415947
\(388\) 233.402i 0.601553i
\(389\) −564.969 −1.45236 −0.726182 0.687503i \(-0.758707\pi\)
−0.726182 + 0.687503i \(0.758707\pi\)
\(390\) 0 0
\(391\) 251.596i 0.643467i
\(392\) 126.371 56.9074i 0.322374 0.145172i
\(393\) 811.672 2.06532
\(394\) 224.145 0.568897
\(395\) 0 0
\(396\) 456.291 1.15225
\(397\) 460.060i 1.15884i −0.815029 0.579421i \(-0.803279\pi\)
0.815029 0.579421i \(-0.196721\pi\)
\(398\) 316.063i 0.794128i
\(399\) 103.006 22.1230i 0.258160 0.0554462i
\(400\) 0 0
\(401\) −124.109 −0.309499 −0.154749 0.987954i \(-0.549457\pi\)
−0.154749 + 0.987954i \(0.549457\pi\)
\(402\) 92.1850i 0.229316i
\(403\) 326.589 0.810394
\(404\) 18.2858i 0.0452619i
\(405\) 0 0
\(406\) 155.212 33.3356i 0.382296 0.0821074i
\(407\) −598.118 −1.46958
\(408\) −152.838 −0.374603
\(409\) 59.8790i 0.146403i 0.997317 + 0.0732017i \(0.0233217\pi\)
−0.997317 + 0.0732017i \(0.976678\pi\)
\(410\) 0 0
\(411\) 475.763i 1.15757i
\(412\) 82.8999i 0.201213i
\(413\) −136.879 637.313i −0.331425 1.54313i
\(414\) −428.933 −1.03607
\(415\) 0 0
\(416\) 84.8059i 0.203860i
\(417\) 975.618 2.33961
\(418\) 74.5462i 0.178340i
\(419\) 552.743i 1.31920i 0.751618 + 0.659598i \(0.229274\pi\)
−0.751618 + 0.659598i \(0.770726\pi\)
\(420\) 0 0
\(421\) 378.400 0.898812 0.449406 0.893328i \(-0.351636\pi\)
0.449406 + 0.893328i \(0.351636\pi\)
\(422\) 576.450 1.36600
\(423\) 153.575i 0.363061i
\(424\) 58.8605 0.138822
\(425\) 0 0
\(426\) 547.927i 1.28621i
\(427\) 63.7938 + 297.027i 0.149400 + 0.695613i
\(428\) −246.382 −0.575658
\(429\) 1190.76 2.77567
\(430\) 0 0
\(431\) 310.036 0.719342 0.359671 0.933079i \(-0.382889\pi\)
0.359671 + 0.933079i \(0.382889\pi\)
\(432\) 89.1256i 0.206309i
\(433\) 672.484i 1.55308i 0.630067 + 0.776541i \(0.283027\pi\)
−0.630067 + 0.776541i \(0.716973\pi\)
\(434\) −45.2849 210.849i −0.104343 0.485826i
\(435\) 0 0
\(436\) 268.363 0.615512
\(437\) 70.0767i 0.160359i
\(438\) −270.020 −0.616485
\(439\) 503.192i 1.14622i −0.819478 0.573111i \(-0.805736\pi\)
0.819478 0.573111i \(-0.194264\pi\)
\(440\) 0 0
\(441\) −611.151 + 275.214i −1.38583 + 0.624069i
\(442\) −240.570 −0.544277
\(443\) −143.693 −0.324363 −0.162181 0.986761i \(-0.551853\pi\)
−0.162181 + 0.986761i \(0.551853\pi\)
\(444\) 341.556i 0.769271i
\(445\) 0 0
\(446\) 456.386i 1.02329i
\(447\) 260.220i 0.582147i
\(448\) −54.7514 + 11.7592i −0.122213 + 0.0262482i
\(449\) 337.042 0.750651 0.375325 0.926893i \(-0.377531\pi\)
0.375325 + 0.926893i \(0.377531\pi\)
\(450\) 0 0
\(451\) 1245.34i 2.76128i
\(452\) 147.284 0.325849
\(453\) 130.802i 0.288746i
\(454\) 239.368i 0.527242i
\(455\) 0 0
\(456\) −42.5698 −0.0933547
\(457\) 719.140 1.57361 0.786805 0.617201i \(-0.211734\pi\)
0.786805 + 0.617201i \(0.211734\pi\)
\(458\) 434.347i 0.948357i
\(459\) 252.824 0.550815
\(460\) 0 0
\(461\) 310.629i 0.673815i −0.941538 0.336908i \(-0.890619\pi\)
0.941538 0.336908i \(-0.109381\pi\)
\(462\) −165.111 768.767i −0.357384 1.66400i
\(463\) 278.960 0.602505 0.301253 0.953544i \(-0.402595\pi\)
0.301253 + 0.953544i \(0.402595\pi\)
\(464\) −64.1454 −0.138244
\(465\) 0 0
\(466\) 13.1395 0.0281964
\(467\) 60.1527i 0.128807i −0.997924 0.0644033i \(-0.979486\pi\)
0.997924 0.0644033i \(-0.0205144\pi\)
\(468\) 410.137i 0.876360i
\(469\) −93.6788 + 20.1198i −0.199742 + 0.0428994i
\(470\) 0 0
\(471\) 777.794 1.65137
\(472\) 263.386i 0.558021i
\(473\) 196.276 0.414959
\(474\) 273.474i 0.576949i
\(475\) 0 0
\(476\) 33.3576 + 155.314i 0.0700789 + 0.326291i
\(477\) −284.660 −0.596771
\(478\) −46.5231 −0.0973287
\(479\) 344.378i 0.718953i 0.933154 + 0.359476i \(0.117045\pi\)
−0.933154 + 0.359476i \(0.882955\pi\)
\(480\) 0 0
\(481\) 537.618i 1.11771i
\(482\) 264.104i 0.547933i
\(483\) 155.212 + 722.674i 0.321350 + 1.49622i
\(484\) 314.363 0.649511
\(485\) 0 0
\(486\) 398.088i 0.819110i
\(487\) −213.495 −0.438388 −0.219194 0.975681i \(-0.570343\pi\)
−0.219194 + 0.975681i \(0.570343\pi\)
\(488\) 122.754i 0.251545i
\(489\) 1016.71i 2.07916i
\(490\) 0 0
\(491\) −289.260 −0.589125 −0.294562 0.955632i \(-0.595174\pi\)
−0.294562 + 0.955632i \(0.595174\pi\)
\(492\) −711.152 −1.44543
\(493\) 181.962i 0.369092i
\(494\) −67.0058 −0.135639
\(495\) 0 0
\(496\) 87.1385i 0.175682i
\(497\) −556.806 + 119.588i −1.12033 + 0.240619i
\(498\) −285.877 −0.574050
\(499\) −31.3212 −0.0627680 −0.0313840 0.999507i \(-0.509991\pi\)
−0.0313840 + 0.999507i \(0.509991\pi\)
\(500\) 0 0
\(501\) −1289.90 −2.57466
\(502\) 421.896i 0.840430i
\(503\) 11.3597i 0.0225839i −0.999936 0.0112919i \(-0.996406\pi\)
0.999936 0.0112919i \(-0.00359441\pi\)
\(504\) 264.788 56.8696i 0.525373 0.112837i
\(505\) 0 0
\(506\) −523.006 −1.03361
\(507\) 265.501i 0.523671i
\(508\) −102.937 −0.202633
\(509\) 732.326i 1.43875i −0.694620 0.719377i \(-0.744427\pi\)
0.694620 0.719377i \(-0.255573\pi\)
\(510\) 0 0
\(511\) 58.9332 + 274.396i 0.115329 + 0.536978i
\(512\) 22.6274 0.0441942
\(513\) 70.4188 0.137269
\(514\) 317.439i 0.617586i
\(515\) 0 0
\(516\) 112.084i 0.217216i
\(517\) 187.256i 0.362198i
\(518\) −347.091 + 74.5462i −0.670059 + 0.143912i
\(519\) −906.836 −1.74728
\(520\) 0 0
\(521\) 10.4965i 0.0201468i 0.999949 + 0.0100734i \(0.00320652\pi\)
−0.999949 + 0.0100734i \(0.996793\pi\)
\(522\) 310.218 0.594288
\(523\) 359.468i 0.687319i −0.939094 0.343659i \(-0.888333\pi\)
0.939094 0.343659i \(-0.111667\pi\)
\(524\) 340.879i 0.650533i
\(525\) 0 0
\(526\) −471.503 −0.896393
\(527\) 247.187 0.469046
\(528\) 317.712i 0.601728i
\(529\) −37.3517 −0.0706082
\(530\) 0 0
\(531\) 1273.78i 2.39883i
\(532\) 9.29105 + 43.2595i 0.0174644 + 0.0813149i
\(533\) −1119.37 −2.10013
\(534\) −355.006 −0.664805
\(535\) 0 0
\(536\) 38.7151 0.0722297
\(537\) 457.520i 0.851992i
\(538\) 102.081i 0.189742i
\(539\) −745.188 + 335.574i −1.38254 + 0.622586i
\(540\) 0 0
\(541\) 383.746 0.709326 0.354663 0.934994i \(-0.384596\pi\)
0.354663 + 0.934994i \(0.384596\pi\)
\(542\) 29.8510i 0.0550756i
\(543\) 1184.72 2.18180
\(544\) 64.1876i 0.117992i
\(545\) 0 0
\(546\) 691.006 148.410i 1.26558 0.271814i
\(547\) 788.077 1.44073 0.720363 0.693598i \(-0.243975\pi\)
0.720363 + 0.693598i \(0.243975\pi\)
\(548\) −199.807 −0.364611
\(549\) 593.660i 1.08135i
\(550\) 0 0
\(551\) 50.6818i 0.0919814i
\(552\) 298.663i 0.541057i
\(553\) 277.905 59.6870i 0.502541 0.107933i
\(554\) −31.7093 −0.0572370
\(555\) 0 0
\(556\) 409.732i 0.736928i
\(557\) −64.6592 −0.116085 −0.0580424 0.998314i \(-0.518486\pi\)
−0.0580424 + 0.998314i \(0.518486\pi\)
\(558\) 421.417i 0.755228i
\(559\) 176.422i 0.315603i
\(560\) 0 0
\(561\) 901.260 1.60652
\(562\) −61.6766 −0.109745
\(563\) 656.960i 1.16689i 0.812152 + 0.583446i \(0.198296\pi\)
−0.812152 + 0.583446i \(0.801704\pi\)
\(564\) −106.933 −0.189598
\(565\) 0 0
\(566\) 83.7152i 0.147907i
\(567\) 116.347 24.9883i 0.205197 0.0440711i
\(568\) 230.114 0.405130
\(569\) −834.375 −1.46639 −0.733194 0.680019i \(-0.761971\pi\)
−0.733194 + 0.680019i \(0.761971\pi\)
\(570\) 0 0
\(571\) −66.4971 −0.116457 −0.0582286 0.998303i \(-0.518545\pi\)
−0.0582286 + 0.998303i \(0.518545\pi\)
\(572\) 500.087i 0.874278i
\(573\) 1115.57i 1.94690i
\(574\) 155.212 + 722.675i 0.270405 + 1.25902i
\(575\) 0 0
\(576\) −109.430 −0.189983
\(577\) 31.9127i 0.0553079i 0.999618 + 0.0276540i \(0.00880365\pi\)
−0.999618 + 0.0276540i \(0.991196\pi\)
\(578\) 226.626 0.392086
\(579\) 861.565i 1.48802i
\(580\) 0 0
\(581\) 62.3939 + 290.509i 0.107391 + 0.500015i
\(582\) −785.960 −1.35045
\(583\) −347.091 −0.595353
\(584\) 113.401i 0.194180i
\(585\) 0 0
\(586\) 524.883i 0.895704i
\(587\) 783.466i 1.33470i −0.744746 0.667348i \(-0.767430\pi\)
0.744746 0.667348i \(-0.232570\pi\)
\(588\) −191.630 425.541i −0.325901 0.723709i
\(589\) 68.8488 0.116891
\(590\) 0 0
\(591\) 754.787i 1.27714i
\(592\) 143.444 0.242304
\(593\) 1024.80i 1.72816i −0.503357 0.864078i \(-0.667902\pi\)
0.503357 0.864078i \(-0.332098\pi\)
\(594\) 525.559i 0.884780i
\(595\) 0 0
\(596\) −109.285 −0.183364
\(597\) −1064.31 −1.78277
\(598\) 470.104i 0.786126i
\(599\) 1109.11 1.85161 0.925805 0.378001i \(-0.123388\pi\)
0.925805 + 0.378001i \(0.123388\pi\)
\(600\) 0 0
\(601\) 1028.00i 1.71048i −0.518232 0.855240i \(-0.673410\pi\)
0.518232 0.855240i \(-0.326590\pi\)
\(602\) 113.900 24.4627i 0.189202 0.0406358i
\(603\) −187.233 −0.310503
\(604\) 54.9332 0.0909489
\(605\) 0 0
\(606\) −61.5756 −0.101610
\(607\) 581.737i 0.958381i −0.877711 0.479190i \(-0.840930\pi\)
0.877711 0.479190i \(-0.159070\pi\)
\(608\) 17.8781i 0.0294048i
\(609\) −112.254 522.662i −0.184326 0.858229i
\(610\) 0 0
\(611\) −168.315 −0.275475
\(612\) 310.423i 0.507227i
\(613\) 303.242 0.494685 0.247342 0.968928i \(-0.420443\pi\)
0.247342 + 0.968928i \(0.420443\pi\)
\(614\) 69.9072i 0.113855i
\(615\) 0 0
\(616\) 322.860 69.3422i 0.524124 0.112568i
\(617\) −530.544 −0.859877 −0.429938 0.902858i \(-0.641465\pi\)
−0.429938 + 0.902858i \(0.641465\pi\)
\(618\) −279.157 −0.451711
\(619\) 171.117i 0.276440i −0.990402 0.138220i \(-0.955862\pi\)
0.990402 0.138220i \(-0.0441382\pi\)
\(620\) 0 0
\(621\) 494.049i 0.795569i
\(622\) 601.318i 0.966749i
\(623\) 77.4816 + 360.758i 0.124369 + 0.579066i
\(624\) −285.576 −0.457653
\(625\) 0 0
\(626\) 576.126i 0.920329i
\(627\) 251.027 0.400362
\(628\) 326.651i 0.520146i
\(629\) 406.910i 0.646916i
\(630\) 0 0
\(631\) −1021.70 −1.61917 −0.809585 0.587003i \(-0.800308\pi\)
−0.809585 + 0.587003i \(0.800308\pi\)
\(632\) −114.851 −0.181727
\(633\) 1941.14i 3.06657i
\(634\) −728.581 −1.14918
\(635\) 0 0
\(636\) 198.207i 0.311646i
\(637\) −301.630 669.811i −0.473517 1.05151i
\(638\) 378.255 0.592876
\(639\) −1112.87 −1.74158
\(640\) 0 0
\(641\) 337.212 0.526072 0.263036 0.964786i \(-0.415276\pi\)
0.263036 + 0.964786i \(0.415276\pi\)
\(642\) 829.665i 1.29231i
\(643\) 844.298i 1.31306i −0.754300 0.656530i \(-0.772023\pi\)
0.754300 0.656530i \(-0.227977\pi\)
\(644\) −303.503 + 65.1847i −0.471278 + 0.101218i
\(645\) 0 0
\(646\) −50.7151 −0.0785064
\(647\) 279.281i 0.431656i −0.976431 0.215828i \(-0.930755\pi\)
0.976431 0.215828i \(-0.0692450\pi\)
\(648\) −48.0833 −0.0742026
\(649\) 1553.14i 2.39313i
\(650\) 0 0
\(651\) −710.012 + 152.492i −1.09065 + 0.234243i
\(652\) 426.990 0.654892
\(653\) −807.833 −1.23711 −0.618555 0.785742i \(-0.712282\pi\)
−0.618555 + 0.785742i \(0.712282\pi\)
\(654\) 903.687i 1.38178i
\(655\) 0 0
\(656\) 298.664i 0.455280i
\(657\) 548.427i 0.834744i
\(658\) 23.3387 + 108.666i 0.0354691 + 0.165146i
\(659\) 114.958 0.174443 0.0872214 0.996189i \(-0.472201\pi\)
0.0872214 + 0.996189i \(0.472201\pi\)
\(660\) 0 0
\(661\) 419.383i 0.634467i −0.948347 0.317234i \(-0.897246\pi\)
0.948347 0.317234i \(-0.102754\pi\)
\(662\) 101.926 0.153967
\(663\) 810.097i 1.22187i
\(664\) 120.060i 0.180813i
\(665\) 0 0
\(666\) −693.721 −1.04162
\(667\) −355.576 −0.533098
\(668\) 541.723i 0.810962i
\(669\) −1536.84 −2.29721
\(670\) 0 0
\(671\) 723.860i 1.07878i
\(672\) 39.5980 + 184.370i 0.0589256 + 0.274360i
\(673\) 1071.68 1.59240 0.796198 0.605037i \(-0.206842\pi\)
0.796198 + 0.605037i \(0.206842\pi\)
\(674\) 512.581 0.760507
\(675\) 0 0
\(676\) −111.503 −0.164945
\(677\) 592.231i 0.874788i −0.899270 0.437394i \(-0.855902\pi\)
0.899270 0.437394i \(-0.144098\pi\)
\(678\) 495.964i 0.731510i
\(679\) 171.539 + 798.695i 0.252635 + 1.17628i
\(680\) 0 0
\(681\) −806.048 −1.18362
\(682\) 513.842i 0.753434i
\(683\) 93.2784 0.136572 0.0682858 0.997666i \(-0.478247\pi\)
0.0682858 + 0.997666i \(0.478247\pi\)
\(684\) 86.4617i 0.126406i
\(685\) 0 0
\(686\) −390.612 + 287.611i −0.569405 + 0.419259i
\(687\) 1462.62 2.12900
\(688\) −47.0719 −0.0684185
\(689\) 311.982i 0.452805i
\(690\) 0 0
\(691\) 48.8749i 0.0707307i 0.999374 + 0.0353653i \(0.0112595\pi\)
−0.999374 + 0.0353653i \(0.988741\pi\)
\(692\) 380.845i 0.550355i
\(693\) −1561.41 + 335.351i −2.25312 + 0.483912i
\(694\) −438.654 −0.632066
\(695\) 0 0
\(696\) 216.003i 0.310349i
\(697\) −847.225 −1.21553
\(698\) 269.291i 0.385804i
\(699\) 44.2460i 0.0632991i
\(700\) 0 0
\(701\) 1151.83 1.64312 0.821562 0.570119i \(-0.193103\pi\)
0.821562 + 0.570119i \(0.193103\pi\)
\(702\) 472.399 0.672933
\(703\) 113.336i 0.161218i
\(704\) −133.430 −0.189532
\(705\) 0 0
\(706\) 251.502i 0.356235i
\(707\) 13.4392 + 62.5734i 0.0190087 + 0.0885054i
\(708\) 886.926 1.25272
\(709\) 113.249 0.159730 0.0798650 0.996806i \(-0.474551\pi\)
0.0798650 + 0.996806i \(0.474551\pi\)
\(710\) 0 0
\(711\) 555.442 0.781212
\(712\) 149.092i 0.209400i
\(713\) 483.034i 0.677466i
\(714\) 523.006 112.328i 0.732501 0.157323i
\(715\) 0 0
\(716\) −192.145 −0.268359
\(717\) 156.662i 0.218497i
\(718\) 518.922 0.722732
\(719\) 575.543i 0.800477i −0.916411 0.400239i \(-0.868927\pi\)
0.916411 0.400239i \(-0.131073\pi\)
\(720\) 0 0
\(721\) 60.9273 + 283.681i 0.0845039 + 0.393454i
\(722\) 496.405 0.687542
\(723\) −889.343 −1.23007
\(724\) 497.547i 0.687220i
\(725\) 0 0
\(726\) 1058.59i 1.45811i
\(727\) 802.036i 1.10321i 0.834104 + 0.551607i \(0.185985\pi\)
−0.834104 + 0.551607i \(0.814015\pi\)
\(728\) 62.3282 + 290.203i 0.0856156 + 0.398630i
\(729\) 1187.52 1.62897
\(730\) 0 0
\(731\) 133.530i 0.182667i
\(732\) −413.361 −0.564701
\(733\) 123.726i 0.168794i 0.996432 + 0.0843970i \(0.0268964\pi\)
−0.996432 + 0.0843970i \(0.973104\pi\)
\(734\) 301.410i 0.410641i
\(735\) 0 0
\(736\) 125.430 0.170422
\(737\) −228.297 −0.309765
\(738\) 1444.39i 1.95717i
\(739\) −632.193 −0.855471 −0.427736 0.903904i \(-0.640689\pi\)
−0.427736 + 0.903904i \(0.640689\pi\)
\(740\) 0 0
\(741\) 225.636i 0.304501i
\(742\) −201.419 + 43.2595i −0.271454 + 0.0583013i
\(743\) 895.660 1.20546 0.602732 0.797944i \(-0.294079\pi\)
0.602732 + 0.797944i \(0.294079\pi\)
\(744\) 293.430 0.394395
\(745\) 0 0
\(746\) 840.436 1.12659
\(747\) 580.632i 0.777286i
\(748\) 378.504i 0.506021i
\(749\) 843.109 181.078i 1.12565 0.241760i
\(750\) 0 0
\(751\) −461.115 −0.614001 −0.307001 0.951709i \(-0.599325\pi\)
−0.307001 + 0.951709i \(0.599325\pi\)
\(752\) 44.9089i 0.0597193i
\(753\) 1420.69 1.88671
\(754\) 339.994i 0.450921i
\(755\) 0 0
\(756\) −65.5029 304.985i −0.0866441 0.403419i
\(757\) 833.169 1.10062 0.550310 0.834961i \(-0.314510\pi\)
0.550310 + 0.834961i \(0.314510\pi\)
\(758\) 562.771 0.742442
\(759\) 1761.17i 2.32038i
\(760\) 0 0
\(761\) 228.343i 0.300056i 0.988682 + 0.150028i \(0.0479364\pi\)
−0.988682 + 0.150028i \(0.952064\pi\)
\(762\) 346.632i 0.454897i
\(763\) −918.330 + 197.234i −1.20358 + 0.258498i
\(764\) −468.509 −0.613231
\(765\) 0 0
\(766\) 657.358i 0.858169i
\(767\) 1396.04 1.82013
\(768\) 76.1956i 0.0992130i
\(769\) 1211.59i 1.57554i 0.615972 + 0.787768i \(0.288764\pi\)
−0.615972 + 0.787768i \(0.711236\pi\)
\(770\) 0 0
\(771\) 1068.94 1.38644
\(772\) −361.833 −0.468696
\(773\) 139.181i 0.180053i −0.995939 0.0900267i \(-0.971305\pi\)
0.995939 0.0900267i \(-0.0286952\pi\)
\(774\) 227.648 0.294119
\(775\) 0 0
\(776\) 330.081i 0.425362i
\(777\) 251.027 + 1168.79i 0.323072 + 1.50424i
\(778\) −798.988 −1.02698
\(779\) −235.977 −0.302923
\(780\) 0 0
\(781\) −1356.94 −1.73745
\(782\) 355.810i 0.455000i
\(783\) 357.312i 0.456337i
\(784\) 178.715 80.4792i 0.227953 0.102652i
\(785\) 0 0
\(786\) 1147.88 1.46040
\(787\) 149.466i 0.189919i −0.995481 0.0949596i \(-0.969728\pi\)
0.995481 0.0949596i \(-0.0302722\pi\)
\(788\) 316.989 0.402271
\(789\) 1587.74i 2.01234i
\(790\) 0 0
\(791\) −504.000 + 108.246i −0.637168 + 0.136847i
\(792\) 645.293 0.814763
\(793\) −650.641 −0.820480
\(794\) 650.623i 0.819424i
\(795\) 0 0
\(796\) 446.981i 0.561533i
\(797\) 435.452i 0.546364i 0.961962 + 0.273182i \(0.0880761\pi\)
−0.961962 + 0.273182i \(0.911924\pi\)
\(798\) 145.672 31.2867i 0.182547 0.0392064i
\(799\) −127.394 −0.159442
\(800\) 0 0
\(801\) 721.038i 0.900172i
\(802\) −175.517 −0.218849
\(803\) 668.707i 0.832761i
\(804\) 130.369i 0.162151i
\(805\) 0 0
\(806\) 461.866 0.573035
\(807\) −343.748 −0.425958
\(808\) 25.8600i 0.0320050i
\(809\) 455.551 0.563104 0.281552 0.959546i \(-0.409151\pi\)
0.281552 + 0.959546i \(0.409151\pi\)
\(810\) 0 0
\(811\) 11.6265i 0.0143360i −0.999974 0.00716802i \(-0.997718\pi\)
0.999974 0.00716802i \(-0.00228167\pi\)
\(812\) 219.503 47.1437i 0.270324 0.0580587i
\(813\) −100.520 −0.123641
\(814\) −845.866 −1.03915
\(815\) 0 0
\(816\) −216.145 −0.264884
\(817\) 37.1919i 0.0455225i
\(818\) 84.6817i 0.103523i
\(819\) −301.430 1403.47i −0.368047 1.71364i
\(820\) 0 0
\(821\) −485.600 −0.591474 −0.295737 0.955269i \(-0.595565\pi\)
−0.295737 + 0.955269i \(0.595565\pi\)
\(822\) 672.830i 0.818528i
\(823\) −1249.13 −1.51777 −0.758886 0.651223i \(-0.774256\pi\)
−0.758886 + 0.651223i \(0.774256\pi\)
\(824\) 117.238i 0.142279i
\(825\) 0 0
\(826\) −193.576 901.297i −0.234353 1.09116i
\(827\) −1368.11 −1.65430 −0.827152 0.561978i \(-0.810041\pi\)
−0.827152 + 0.561978i \(0.810041\pi\)
\(828\) −606.603 −0.732612
\(829\) 1111.64i 1.34094i −0.741937 0.670469i \(-0.766093\pi\)
0.741937 0.670469i \(-0.233907\pi\)
\(830\) 0 0
\(831\) 106.778i 0.128493i
\(832\) 119.934i 0.144151i
\(833\) −228.297 506.964i −0.274066 0.608601i
\(834\) 1379.73 1.65436
\(835\) 0 0
\(836\) 105.424i 0.126106i
\(837\) −485.392 −0.579919
\(838\) 781.697i 0.932813i
\(839\) 423.166i 0.504369i −0.967679 0.252184i \(-0.918851\pi\)
0.967679 0.252184i \(-0.0811490\pi\)
\(840\) 0 0
\(841\) −583.836 −0.694216
\(842\) 535.138 0.635556
\(843\) 207.690i 0.246370i
\(844\) 815.224 0.965905
\(845\) 0 0
\(846\) 217.188i 0.256723i
\(847\) −1075.74 + 231.042i −1.27006 + 0.272776i
\(848\) 83.2413 0.0981619
\(849\) 281.903 0.332041
\(850\) 0 0
\(851\) 795.151 0.934373
\(852\) 774.886i 0.909490i
\(853\) 723.461i 0.848137i −0.905630 0.424068i \(-0.860602\pi\)
0.905630 0.424068i \(-0.139398\pi\)
\(854\) 90.2180 + 420.059i 0.105642 + 0.491873i
\(855\) 0 0
\(856\) −348.436 −0.407051
\(857\) 1014.89i 1.18423i −0.805853 0.592115i \(-0.798293\pi\)
0.805853 0.592115i \(-0.201707\pi\)
\(858\) 1683.99 1.96270
\(859\) 97.4114i 0.113401i 0.998391 + 0.0567005i \(0.0180580\pi\)
−0.998391 + 0.0567005i \(0.981942\pi\)
\(860\) 0 0
\(861\) 2433.54 522.662i 2.82641 0.607040i
\(862\) 438.458 0.508652
\(863\) 480.498 0.556776 0.278388 0.960469i \(-0.410200\pi\)
0.278388 + 0.960469i \(0.410200\pi\)
\(864\) 126.043i 0.145883i
\(865\) 0 0
\(866\) 951.036i 1.09819i
\(867\) 763.139i 0.880207i
\(868\) −64.0425 298.185i −0.0737817 0.343531i
\(869\) 677.260 0.779356
\(870\) 0 0
\(871\) 205.204i 0.235596i
\(872\) 379.523 0.435233
\(873\) 1596.33i 1.82856i
\(874\) 99.1034i 0.113391i
\(875\) 0 0
\(876\) −381.866 −0.435920
\(877\) 525.779 0.599520 0.299760 0.954015i \(-0.403093\pi\)
0.299760 + 0.954015i \(0.403093\pi\)
\(878\) 711.620i 0.810501i
\(879\) 1767.49 2.01080
\(880\) 0 0
\(881\) 1289.75i 1.46396i 0.681324 + 0.731982i \(0.261405\pi\)
−0.681324 + 0.731982i \(0.738595\pi\)
\(882\) −864.298 + 389.212i −0.979930 + 0.441283i
\(883\) 51.6578 0.0585026 0.0292513 0.999572i \(-0.490688\pi\)
0.0292513 + 0.999572i \(0.490688\pi\)
\(884\) −340.218 −0.384862
\(885\) 0 0
\(886\) −203.212 −0.229359
\(887\) 194.121i 0.218851i −0.993995 0.109426i \(-0.965099\pi\)
0.993995 0.109426i \(-0.0349011\pi\)
\(888\) 483.034i 0.543957i
\(889\) 352.249 75.6540i 0.396230 0.0851001i
\(890\) 0 0
\(891\) 283.539 0.318226
\(892\) 645.428i 0.723574i
\(893\) −35.4829 −0.0397345
\(894\) 368.006i 0.411640i
\(895\) 0 0
\(896\) −77.4302 + 16.6300i −0.0864177 + 0.0185603i
\(897\) −1583.03 −1.76480
\(898\) 476.650 0.530790
\(899\) 349.346i 0.388594i
\(900\) 0 0
\(901\) 236.132i 0.262078i
\(902\) 1761.17i 1.95252i
\(903\) −82.3759 383.546i −0.0912247 0.424746i
\(904\) 208.291 0.230410
\(905\) 0 0
\(906\) 184.982i 0.204174i
\(907\) 1386.01 1.52812 0.764060 0.645145i \(-0.223203\pi\)
0.764060 + 0.645145i \(0.223203\pi\)
\(908\) 338.517i 0.372817i
\(909\) 125.064i 0.137584i
\(910\) 0 0
\(911\) 449.939 0.493896 0.246948 0.969029i \(-0.420572\pi\)
0.246948 + 0.969029i \(0.420572\pi\)
\(912\) −60.2027 −0.0660118
\(913\) 707.975i 0.775439i
\(914\) 1017.02 1.11271
\(915\) 0 0
\(916\) 614.260i 0.670589i
\(917\) −250.530 1166.48i −0.273206 1.27206i
\(918\) 357.547 0.389485
\(919\) −310.036 −0.337363 −0.168681 0.985671i \(-0.553951\pi\)
−0.168681 + 0.985671i \(0.553951\pi\)
\(920\) 0 0
\(921\) 235.406 0.255598
\(922\) 439.295i 0.476459i
\(923\) 1219.69i 1.32144i
\(924\) −233.503 1087.20i −0.252709 1.17662i
\(925\) 0 0
\(926\) 394.509 0.426035
\(927\) 566.985i 0.611634i
\(928\) −90.7152 −0.0977535
\(929\) 568.376i 0.611815i 0.952061 + 0.305908i \(0.0989598\pi\)
−0.952061 + 0.305908i \(0.901040\pi\)
\(930\) 0 0
\(931\) −63.5873 141.204i −0.0683000 0.151669i
\(932\) 18.5821 0.0199379
\(933\) −2024.88 −2.17029
\(934\) 85.0688i 0.0910801i
\(935\) 0 0
\(936\) 580.021i 0.619680i
\(937\) 610.588i 0.651641i −0.945432 0.325821i \(-0.894359\pi\)
0.945432 0.325821i \(-0.105641\pi\)
\(938\) −132.482 + 28.4537i −0.141239 + 0.0303344i
\(939\) 1940.05 2.06608
\(940\) 0 0
\(941\) 1588.92i 1.68855i −0.535912 0.844274i \(-0.680032\pi\)
0.535912 0.844274i \(-0.319968\pi\)
\(942\) 1099.97 1.16769
\(943\) 1655.58i 1.75565i
\(944\) 372.484i 0.394580i
\(945\) 0 0
\(946\) 277.576 0.293420
\(947\) 595.949 0.629302 0.314651 0.949207i \(-0.398112\pi\)
0.314651 + 0.949207i \(0.398112\pi\)
\(948\) 386.751i 0.407965i
\(949\) −601.067 −0.633369
\(950\) 0 0
\(951\) 2453.43i 2.57984i
\(952\) 47.1747 + 219.648i 0.0495533 + 0.230722i
\(953\) −707.004 −0.741872 −0.370936 0.928658i \(-0.620963\pi\)
−0.370936 + 0.928658i \(0.620963\pi\)
\(954\) −402.570 −0.421981
\(955\) 0 0
\(956\) −65.7936 −0.0688218
\(957\) 1273.74i 1.33097i
\(958\) 487.025i 0.508376i
\(959\) 683.733 146.848i 0.712964 0.153126i
\(960\) 0 0
\(961\) 486.430 0.506171
\(962\) 760.307i 0.790339i
\(963\) 1685.10 1.74984
\(964\) 373.499i 0.387447i
\(965\) 0 0
\(966\) 219.503 + 1022.02i 0.227229 + 1.05799i
\(967\) 91.3586 0.0944763 0.0472381 0.998884i \(-0.484958\pi\)
0.0472381 + 0.998884i \(0.484958\pi\)
\(968\) 444.577 0.459274
\(969\) 170.778i 0.176242i
\(970\) 0 0
\(971\) 1137.54i 1.17152i −0.810485 0.585759i \(-0.800796\pi\)
0.810485 0.585759i \(-0.199204\pi\)
\(972\) 562.981i 0.579198i
\(973\) −301.133 1402.09i −0.309489 1.44100i
\(974\) −301.927 −0.309987
\(975\) 0 0
\(976\) 173.600i 0.177869i
\(977\) −476.101 −0.487309 −0.243654 0.969862i \(-0.578346\pi\)
−0.243654 + 0.969862i \(0.578346\pi\)
\(978\) 1437.85i 1.47019i
\(979\) 879.174i 0.898033i
\(980\) 0 0
\(981\) −1835.44 −1.87099
\(982\) −409.076 −0.416574
\(983\) 777.439i 0.790884i 0.918491 + 0.395442i \(0.129409\pi\)
−0.918491 + 0.395442i \(0.870591\pi\)
\(984\) −1005.72 −1.02207
\(985\) 0 0
\(986\) 257.333i 0.260987i
\(987\) 365.922 78.5906i 0.370741 0.0796257i
\(988\) −94.7606 −0.0959115
\(989\) −260.933 −0.263835
\(990\) 0 0
\(991\) −1152.10 −1.16256 −0.581280 0.813704i \(-0.697448\pi\)
−0.581280 + 0.813704i \(0.697448\pi\)
\(992\) 123.232i 0.124226i
\(993\) 343.226i 0.345646i
\(994\) −787.442 + 169.122i −0.792195 + 0.170143i
\(995\) 0 0
\(996\) −404.291 −0.405914
\(997\) 990.955i 0.993937i 0.867769 + 0.496968i \(0.165554\pi\)
−0.867769 + 0.496968i \(0.834446\pi\)
\(998\) −44.2949 −0.0443837
\(999\) 799.033i 0.799833i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.b.c.251.5 8
5.2 odd 4 70.3.d.a.69.5 yes 8
5.3 odd 4 70.3.d.a.69.4 yes 8
5.4 even 2 inner 350.3.b.c.251.4 8
7.6 odd 2 inner 350.3.b.c.251.8 8
15.2 even 4 630.3.h.d.559.2 8
15.8 even 4 630.3.h.d.559.7 8
20.3 even 4 560.3.p.g.209.1 8
20.7 even 4 560.3.p.g.209.7 8
35.2 odd 12 490.3.h.a.129.8 16
35.3 even 12 490.3.h.a.19.8 16
35.12 even 12 490.3.h.a.129.5 16
35.13 even 4 70.3.d.a.69.1 8
35.17 even 12 490.3.h.a.19.1 16
35.18 odd 12 490.3.h.a.19.5 16
35.23 odd 12 490.3.h.a.129.1 16
35.27 even 4 70.3.d.a.69.8 yes 8
35.32 odd 12 490.3.h.a.19.4 16
35.33 even 12 490.3.h.a.129.4 16
35.34 odd 2 inner 350.3.b.c.251.1 8
105.62 odd 4 630.3.h.d.559.3 8
105.83 odd 4 630.3.h.d.559.6 8
140.27 odd 4 560.3.p.g.209.2 8
140.83 odd 4 560.3.p.g.209.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.d.a.69.1 8 35.13 even 4
70.3.d.a.69.4 yes 8 5.3 odd 4
70.3.d.a.69.5 yes 8 5.2 odd 4
70.3.d.a.69.8 yes 8 35.27 even 4
350.3.b.c.251.1 8 35.34 odd 2 inner
350.3.b.c.251.4 8 5.4 even 2 inner
350.3.b.c.251.5 8 1.1 even 1 trivial
350.3.b.c.251.8 8 7.6 odd 2 inner
490.3.h.a.19.1 16 35.17 even 12
490.3.h.a.19.4 16 35.32 odd 12
490.3.h.a.19.5 16 35.18 odd 12
490.3.h.a.19.8 16 35.3 even 12
490.3.h.a.129.1 16 35.23 odd 12
490.3.h.a.129.4 16 35.33 even 12
490.3.h.a.129.5 16 35.12 even 12
490.3.h.a.129.8 16 35.2 odd 12
560.3.p.g.209.1 8 20.3 even 4
560.3.p.g.209.2 8 140.27 odd 4
560.3.p.g.209.7 8 20.7 even 4
560.3.p.g.209.8 8 140.83 odd 4
630.3.h.d.559.2 8 15.2 even 4
630.3.h.d.559.3 8 105.62 odd 4
630.3.h.d.559.6 8 105.83 odd 4
630.3.h.d.559.7 8 15.8 even 4