Properties

Label 560.3.p.g.209.1
Level $560$
Weight $3$
Character 560.209
Analytic conductor $15.259$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,3,Mod(209,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.209"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 560.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2588948042\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.211319484596224.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} - 48x^{5} - 23x^{4} - 48x^{3} + 1226x^{2} - 7512x + 24408 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.1
Root \(-3.29232 - 1.99575i\) of defining polynomial
Character \(\chi\) \(=\) 560.209
Dual form 560.3.p.g.209.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.76222 q^{3} +(-1.82242 - 4.65605i) q^{5} +(-1.46990 - 6.84393i) q^{7} +13.6788 q^{9} +16.6788 q^{11} +14.9917 q^{13} +(8.67878 + 22.1731i) q^{15} -11.3469 q^{17} -3.16043i q^{19} +(7.00000 + 32.5923i) q^{21} -22.1731i q^{23} +(-18.3576 + 16.9706i) q^{25} -22.2814 q^{27} +16.0363 q^{29} -21.7846i q^{31} -79.4281 q^{33} +(-29.1869 + 19.3165i) q^{35} -35.8610i q^{37} -71.3939 q^{39} -74.6660i q^{41} +11.7680i q^{43} +(-24.9285 - 63.6891i) q^{45} +11.2272 q^{47} +(-44.6788 + 20.1198i) q^{49} +54.0363 q^{51} +20.8103i q^{53} +(-30.3958 - 77.6572i) q^{55} +15.0507i q^{57} +93.1210i q^{59} -43.4000i q^{61} +(-20.1065 - 93.6166i) q^{63} +(-27.3212 - 69.8021i) q^{65} +13.6879i q^{67} +105.593i q^{69} -81.3576 q^{71} +40.0933 q^{73} +(87.4228 - 80.8176i) q^{75} +(-24.5162 - 114.148i) q^{77} -40.6061 q^{79} -17.0000 q^{81} -42.4477 q^{83} +(20.6788 + 52.8316i) q^{85} -76.3686 q^{87} +52.7121i q^{89} +(-22.0363 - 102.602i) q^{91} +103.743i q^{93} +(-14.7151 + 5.75964i) q^{95} -116.701 q^{97} +228.145 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 36 q^{9} + 60 q^{11} - 4 q^{15} + 56 q^{21} - 92 q^{29} - 52 q^{35} - 204 q^{39} - 284 q^{49} + 212 q^{51} - 292 q^{65} - 504 q^{71} - 692 q^{79} - 136 q^{81} + 92 q^{85} + 44 q^{91} + 176 q^{95}+ \cdots + 944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.76222 −1.58741 −0.793704 0.608304i \(-0.791850\pi\)
−0.793704 + 0.608304i \(0.791850\pi\)
\(4\) 0 0
\(5\) −1.82242 4.65605i −0.364484 0.931210i
\(6\) 0 0
\(7\) −1.46990 6.84393i −0.209986 0.977704i
\(8\) 0 0
\(9\) 13.6788 1.51986
\(10\) 0 0
\(11\) 16.6788 1.51625 0.758126 0.652108i \(-0.226115\pi\)
0.758126 + 0.652108i \(0.226115\pi\)
\(12\) 0 0
\(13\) 14.9917 1.15321 0.576604 0.817024i \(-0.304377\pi\)
0.576604 + 0.817024i \(0.304377\pi\)
\(14\) 0 0
\(15\) 8.67878 + 22.1731i 0.578585 + 1.47821i
\(16\) 0 0
\(17\) −11.3469 −0.667463 −0.333731 0.942668i \(-0.608308\pi\)
−0.333731 + 0.942668i \(0.608308\pi\)
\(18\) 0 0
\(19\) 3.16043i 0.166338i −0.996535 0.0831692i \(-0.973496\pi\)
0.996535 0.0831692i \(-0.0265042\pi\)
\(20\) 0 0
\(21\) 7.00000 + 32.5923i 0.333333 + 1.55202i
\(22\) 0 0
\(23\) 22.1731i 0.964050i −0.876158 0.482025i \(-0.839901\pi\)
0.876158 0.482025i \(-0.160099\pi\)
\(24\) 0 0
\(25\) −18.3576 + 16.9706i −0.734302 + 0.678823i
\(26\) 0 0
\(27\) −22.2814 −0.825237
\(28\) 0 0
\(29\) 16.0363 0.552977 0.276489 0.961017i \(-0.410829\pi\)
0.276489 + 0.961017i \(0.410829\pi\)
\(30\) 0 0
\(31\) 21.7846i 0.702730i −0.936239 0.351365i \(-0.885718\pi\)
0.936239 0.351365i \(-0.114282\pi\)
\(32\) 0 0
\(33\) −79.4281 −2.40691
\(34\) 0 0
\(35\) −29.1869 + 19.3165i −0.833911 + 0.551899i
\(36\) 0 0
\(37\) 35.8610i 0.969216i −0.874731 0.484608i \(-0.838962\pi\)
0.874731 0.484608i \(-0.161038\pi\)
\(38\) 0 0
\(39\) −71.3939 −1.83061
\(40\) 0 0
\(41\) 74.6660i 1.82112i −0.413376 0.910561i \(-0.635650\pi\)
0.413376 0.910561i \(-0.364350\pi\)
\(42\) 0 0
\(43\) 11.7680i 0.273674i 0.990594 + 0.136837i \(0.0436937\pi\)
−0.990594 + 0.136837i \(0.956306\pi\)
\(44\) 0 0
\(45\) −24.9285 63.6891i −0.553967 1.41531i
\(46\) 0 0
\(47\) 11.2272 0.238877 0.119439 0.992842i \(-0.461891\pi\)
0.119439 + 0.992842i \(0.461891\pi\)
\(48\) 0 0
\(49\) −44.6788 + 20.1198i −0.911812 + 0.410608i
\(50\) 0 0
\(51\) 54.0363 1.05954
\(52\) 0 0
\(53\) 20.8103i 0.392648i 0.980539 + 0.196324i \(0.0629004\pi\)
−0.980539 + 0.196324i \(0.937100\pi\)
\(54\) 0 0
\(55\) −30.3958 77.6572i −0.552650 1.41195i
\(56\) 0 0
\(57\) 15.0507i 0.264047i
\(58\) 0 0
\(59\) 93.1210i 1.57832i 0.614187 + 0.789161i \(0.289484\pi\)
−0.614187 + 0.789161i \(0.710516\pi\)
\(60\) 0 0
\(61\) 43.4000i 0.711476i −0.934586 0.355738i \(-0.884230\pi\)
0.934586 0.355738i \(-0.115770\pi\)
\(62\) 0 0
\(63\) −20.1065 93.6166i −0.319150 1.48598i
\(64\) 0 0
\(65\) −27.3212 69.8021i −0.420326 1.07388i
\(66\) 0 0
\(67\) 13.6879i 0.204296i 0.994769 + 0.102148i \(0.0325716\pi\)
−0.994769 + 0.102148i \(0.967428\pi\)
\(68\) 0 0
\(69\) 105.593i 1.53034i
\(70\) 0 0
\(71\) −81.3576 −1.14588 −0.572941 0.819597i \(-0.694197\pi\)
−0.572941 + 0.819597i \(0.694197\pi\)
\(72\) 0 0
\(73\) 40.0933 0.549223 0.274611 0.961555i \(-0.411451\pi\)
0.274611 + 0.961555i \(0.411451\pi\)
\(74\) 0 0
\(75\) 87.4228 80.8176i 1.16564 1.07757i
\(76\) 0 0
\(77\) −24.5162 114.148i −0.318392 1.48245i
\(78\) 0 0
\(79\) −40.6061 −0.514001 −0.257001 0.966411i \(-0.582734\pi\)
−0.257001 + 0.966411i \(0.582734\pi\)
\(80\) 0 0
\(81\) −17.0000 −0.209877
\(82\) 0 0
\(83\) −42.4477 −0.511418 −0.255709 0.966754i \(-0.582309\pi\)
−0.255709 + 0.966754i \(0.582309\pi\)
\(84\) 0 0
\(85\) 20.6788 + 52.8316i 0.243280 + 0.621548i
\(86\) 0 0
\(87\) −76.3686 −0.877801
\(88\) 0 0
\(89\) 52.7121i 0.592271i 0.955146 + 0.296136i \(0.0956980\pi\)
−0.955146 + 0.296136i \(0.904302\pi\)
\(90\) 0 0
\(91\) −22.0363 102.602i −0.242158 1.12750i
\(92\) 0 0
\(93\) 103.743i 1.11552i
\(94\) 0 0
\(95\) −14.7151 + 5.75964i −0.154896 + 0.0606278i
\(96\) 0 0
\(97\) −116.701 −1.20311 −0.601553 0.798833i \(-0.705451\pi\)
−0.601553 + 0.798833i \(0.705451\pi\)
\(98\) 0 0
\(99\) 228.145 2.30450
\(100\) 0 0
\(101\) 9.14290i 0.0905237i −0.998975 0.0452619i \(-0.985588\pi\)
0.998975 0.0452619i \(-0.0144122\pi\)
\(102\) 0 0
\(103\) −41.4499 −0.402427 −0.201213 0.979547i \(-0.564488\pi\)
−0.201213 + 0.979547i \(0.564488\pi\)
\(104\) 0 0
\(105\) 138.995 91.9893i 1.32376 0.876089i
\(106\) 0 0
\(107\) 123.191i 1.15132i −0.817691 0.575658i \(-0.804746\pi\)
0.817691 0.575658i \(-0.195254\pi\)
\(108\) 0 0
\(109\) −134.182 −1.23102 −0.615512 0.788127i \(-0.711051\pi\)
−0.615512 + 0.788127i \(0.711051\pi\)
\(110\) 0 0
\(111\) 170.778i 1.53854i
\(112\) 0 0
\(113\) 73.6419i 0.651698i 0.945422 + 0.325849i \(0.105650\pi\)
−0.945422 + 0.325849i \(0.894350\pi\)
\(114\) 0 0
\(115\) −103.239 + 40.4088i −0.897732 + 0.351381i
\(116\) 0 0
\(117\) 205.068 1.75272
\(118\) 0 0
\(119\) 16.6788 + 77.6572i 0.140158 + 0.652581i
\(120\) 0 0
\(121\) 157.182 1.29902
\(122\) 0 0
\(123\) 355.576i 2.89086i
\(124\) 0 0
\(125\) 112.471 + 54.5462i 0.899768 + 0.436369i
\(126\) 0 0
\(127\) 51.4687i 0.405266i −0.979255 0.202633i \(-0.935050\pi\)
0.979255 0.202633i \(-0.0649498\pi\)
\(128\) 0 0
\(129\) 56.0418i 0.434432i
\(130\) 0 0
\(131\) 170.440i 1.30107i −0.759478 0.650533i \(-0.774545\pi\)
0.759478 0.650533i \(-0.225455\pi\)
\(132\) 0 0
\(133\) −21.6298 + 4.64552i −0.162630 + 0.0349287i
\(134\) 0 0
\(135\) 40.6061 + 103.743i 0.300786 + 0.768469i
\(136\) 0 0
\(137\) 99.9035i 0.729223i 0.931160 + 0.364611i \(0.118798\pi\)
−0.931160 + 0.364611i \(0.881202\pi\)
\(138\) 0 0
\(139\) 204.866i 1.47386i 0.675971 + 0.736928i \(0.263725\pi\)
−0.675971 + 0.736928i \(0.736275\pi\)
\(140\) 0 0
\(141\) −53.4666 −0.379196
\(142\) 0 0
\(143\) 250.043 1.74856
\(144\) 0 0
\(145\) −29.2250 74.6660i −0.201552 0.514938i
\(146\) 0 0
\(147\) 212.770 95.8150i 1.44742 0.651803i
\(148\) 0 0
\(149\) 54.6424 0.366728 0.183364 0.983045i \(-0.441301\pi\)
0.183364 + 0.983045i \(0.441301\pi\)
\(150\) 0 0
\(151\) −27.4666 −0.181898 −0.0909489 0.995856i \(-0.528990\pi\)
−0.0909489 + 0.995856i \(0.528990\pi\)
\(152\) 0 0
\(153\) −155.211 −1.01445
\(154\) 0 0
\(155\) −101.430 + 39.7008i −0.654389 + 0.256134i
\(156\) 0 0
\(157\) 163.326 1.04029 0.520146 0.854078i \(-0.325878\pi\)
0.520146 + 0.854078i \(0.325878\pi\)
\(158\) 0 0
\(159\) 99.1034i 0.623292i
\(160\) 0 0
\(161\) −151.751 + 32.5923i −0.942556 + 0.202437i
\(162\) 0 0
\(163\) 213.495i 1.30978i −0.755722 0.654892i \(-0.772714\pi\)
0.755722 0.654892i \(-0.227286\pi\)
\(164\) 0 0
\(165\) 144.751 + 369.821i 0.877282 + 2.24134i
\(166\) 0 0
\(167\) 270.861 1.62192 0.810962 0.585099i \(-0.198944\pi\)
0.810962 + 0.585099i \(0.198944\pi\)
\(168\) 0 0
\(169\) 55.7515 0.329890
\(170\) 0 0
\(171\) 43.2308i 0.252812i
\(172\) 0 0
\(173\) 190.423 1.10071 0.550355 0.834931i \(-0.314492\pi\)
0.550355 + 0.834931i \(0.314492\pi\)
\(174\) 0 0
\(175\) 143.129 + 100.693i 0.817881 + 0.575388i
\(176\) 0 0
\(177\) 443.463i 2.50544i
\(178\) 0 0
\(179\) −96.0727 −0.536719 −0.268359 0.963319i \(-0.586481\pi\)
−0.268359 + 0.963319i \(0.586481\pi\)
\(180\) 0 0
\(181\) 248.774i 1.37444i 0.726449 + 0.687220i \(0.241169\pi\)
−0.726449 + 0.687220i \(0.758831\pi\)
\(182\) 0 0
\(183\) 206.681i 1.12940i
\(184\) 0 0
\(185\) −166.971 + 65.3539i −0.902544 + 0.353264i
\(186\) 0 0
\(187\) −189.252 −1.01204
\(188\) 0 0
\(189\) 32.7515 + 152.492i 0.173288 + 0.806838i
\(190\) 0 0
\(191\) 234.254 1.22646 0.613231 0.789903i \(-0.289869\pi\)
0.613231 + 0.789903i \(0.289869\pi\)
\(192\) 0 0
\(193\) 180.917i 0.937391i −0.883360 0.468696i \(-0.844724\pi\)
0.883360 0.468696i \(-0.155276\pi\)
\(194\) 0 0
\(195\) 130.110 + 332.413i 0.667230 + 1.70468i
\(196\) 0 0
\(197\) 158.495i 0.804542i −0.915521 0.402271i \(-0.868221\pi\)
0.915521 0.402271i \(-0.131779\pi\)
\(198\) 0 0
\(199\) 223.490i 1.12307i −0.827454 0.561533i \(-0.810212\pi\)
0.827454 0.561533i \(-0.189788\pi\)
\(200\) 0 0
\(201\) 65.1847i 0.324302i
\(202\) 0 0
\(203\) −23.5718 109.752i −0.116117 0.540648i
\(204\) 0 0
\(205\) −347.648 + 136.073i −1.69585 + 0.663770i
\(206\) 0 0
\(207\) 303.302i 1.46522i
\(208\) 0 0
\(209\) 52.7121i 0.252211i
\(210\) 0 0
\(211\) −407.612 −1.93181 −0.965905 0.258897i \(-0.916641\pi\)
−0.965905 + 0.258897i \(0.916641\pi\)
\(212\) 0 0
\(213\) 387.443 1.81898
\(214\) 0 0
\(215\) 54.7923 21.4462i 0.254848 0.0997499i
\(216\) 0 0
\(217\) −149.092 + 32.0212i −0.687062 + 0.147563i
\(218\) 0 0
\(219\) −190.933 −0.871841
\(220\) 0 0
\(221\) −170.109 −0.769724
\(222\) 0 0
\(223\) −322.714 −1.44715 −0.723574 0.690247i \(-0.757502\pi\)
−0.723574 + 0.690247i \(0.757502\pi\)
\(224\) 0 0
\(225\) −251.109 + 232.137i −1.11604 + 1.03172i
\(226\) 0 0
\(227\) 169.259 0.745633 0.372817 0.927905i \(-0.378392\pi\)
0.372817 + 0.927905i \(0.378392\pi\)
\(228\) 0 0
\(229\) 307.130i 1.34118i −0.741829 0.670589i \(-0.766041\pi\)
0.741829 0.670589i \(-0.233959\pi\)
\(230\) 0 0
\(231\) 116.751 + 543.600i 0.505418 + 2.35325i
\(232\) 0 0
\(233\) 9.29105i 0.0398757i 0.999801 + 0.0199379i \(0.00634684\pi\)
−0.999801 + 0.0199379i \(0.993653\pi\)
\(234\) 0 0
\(235\) −20.4607 52.2745i −0.0870670 0.222445i
\(236\) 0 0
\(237\) 193.375 0.815930
\(238\) 0 0
\(239\) −32.8968 −0.137644 −0.0688218 0.997629i \(-0.521924\pi\)
−0.0688218 + 0.997629i \(0.521924\pi\)
\(240\) 0 0
\(241\) 186.750i 0.774894i −0.921892 0.387447i \(-0.873357\pi\)
0.921892 0.387447i \(-0.126643\pi\)
\(242\) 0 0
\(243\) 281.490 1.15840
\(244\) 0 0
\(245\) 175.102 + 171.360i 0.714703 + 0.699428i
\(246\) 0 0
\(247\) 47.3803i 0.191823i
\(248\) 0 0
\(249\) 202.145 0.811829
\(250\) 0 0
\(251\) 298.325i 1.18855i −0.804263 0.594274i \(-0.797440\pi\)
0.804263 0.594274i \(-0.202560\pi\)
\(252\) 0 0
\(253\) 369.821i 1.46174i
\(254\) 0 0
\(255\) −98.4770 251.596i −0.386184 0.986650i
\(256\) 0 0
\(257\) 224.463 0.873398 0.436699 0.899608i \(-0.356147\pi\)
0.436699 + 0.899608i \(0.356147\pi\)
\(258\) 0 0
\(259\) −245.430 + 52.7121i −0.947607 + 0.203522i
\(260\) 0 0
\(261\) 219.358 0.840450
\(262\) 0 0
\(263\) 333.403i 1.26769i 0.773459 + 0.633846i \(0.218525\pi\)
−0.773459 + 0.633846i \(0.781475\pi\)
\(264\) 0 0
\(265\) 96.8938 37.9252i 0.365637 0.143114i
\(266\) 0 0
\(267\) 251.027i 0.940176i
\(268\) 0 0
\(269\) 72.1823i 0.268336i 0.990959 + 0.134168i \(0.0428361\pi\)
−0.990959 + 0.134168i \(0.957164\pi\)
\(270\) 0 0
\(271\) 21.1078i 0.0778887i 0.999241 + 0.0389443i \(0.0123995\pi\)
−0.999241 + 0.0389443i \(0.987600\pi\)
\(272\) 0 0
\(273\) 104.942 + 488.615i 0.384403 + 1.78980i
\(274\) 0 0
\(275\) −306.182 + 283.048i −1.11339 + 1.02927i
\(276\) 0 0
\(277\) 22.4218i 0.0809453i 0.999181 + 0.0404727i \(0.0128864\pi\)
−0.999181 + 0.0404727i \(0.987114\pi\)
\(278\) 0 0
\(279\) 297.987i 1.06805i
\(280\) 0 0
\(281\) −43.6119 −0.155203 −0.0776013 0.996984i \(-0.524726\pi\)
−0.0776013 + 0.996984i \(0.524726\pi\)
\(282\) 0 0
\(283\) 59.1956 0.209172 0.104586 0.994516i \(-0.466648\pi\)
0.104586 + 0.994516i \(0.466648\pi\)
\(284\) 0 0
\(285\) 70.0767 27.4287i 0.245883 0.0962410i
\(286\) 0 0
\(287\) −511.009 + 109.752i −1.78052 + 0.382410i
\(288\) 0 0
\(289\) −160.249 −0.554493
\(290\) 0 0
\(291\) 555.757 1.90982
\(292\) 0 0
\(293\) −371.148 −1.26672 −0.633358 0.773859i \(-0.718324\pi\)
−0.633358 + 0.773859i \(0.718324\pi\)
\(294\) 0 0
\(295\) 433.576 169.706i 1.46975 0.575273i
\(296\) 0 0
\(297\) −371.627 −1.25127
\(298\) 0 0
\(299\) 332.413i 1.11175i
\(300\) 0 0
\(301\) 80.5393 17.2978i 0.267572 0.0574677i
\(302\) 0 0
\(303\) 43.5405i 0.143698i
\(304\) 0 0
\(305\) −202.073 + 79.0932i −0.662533 + 0.259322i
\(306\) 0 0
\(307\) −49.4319 −0.161016 −0.0805079 0.996754i \(-0.525654\pi\)
−0.0805079 + 0.996754i \(0.525654\pi\)
\(308\) 0 0
\(309\) 197.394 0.638815
\(310\) 0 0
\(311\) 425.196i 1.36719i 0.729862 + 0.683595i \(0.239584\pi\)
−0.729862 + 0.683595i \(0.760416\pi\)
\(312\) 0 0
\(313\) −407.383 −1.30154 −0.650771 0.759274i \(-0.725554\pi\)
−0.650771 + 0.759274i \(0.725554\pi\)
\(314\) 0 0
\(315\) −399.241 + 264.226i −1.26743 + 0.838811i
\(316\) 0 0
\(317\) 515.185i 1.62519i 0.582830 + 0.812594i \(0.301946\pi\)
−0.582830 + 0.812594i \(0.698054\pi\)
\(318\) 0 0
\(319\) 267.467 0.838453
\(320\) 0 0
\(321\) 586.662i 1.82761i
\(322\) 0 0
\(323\) 35.8610i 0.111025i
\(324\) 0 0
\(325\) −275.211 + 254.418i −0.846804 + 0.782824i
\(326\) 0 0
\(327\) 639.003 1.95414
\(328\) 0 0
\(329\) −16.5029 76.8384i −0.0501608 0.233551i
\(330\) 0 0
\(331\) −72.0727 −0.217742 −0.108871 0.994056i \(-0.534724\pi\)
−0.108871 + 0.994056i \(0.534724\pi\)
\(332\) 0 0
\(333\) 490.535i 1.47308i
\(334\) 0 0
\(335\) 63.7313 24.9451i 0.190243 0.0744628i
\(336\) 0 0
\(337\) 362.450i 1.07552i −0.843098 0.537759i \(-0.819271\pi\)
0.843098 0.537759i \(-0.180729\pi\)
\(338\) 0 0
\(339\) 350.699i 1.03451i
\(340\) 0 0
\(341\) 363.341i 1.06552i
\(342\) 0 0
\(343\) 203.372 + 276.204i 0.592921 + 0.805260i
\(344\) 0 0
\(345\) 491.648 192.436i 1.42507 0.557785i
\(346\) 0 0
\(347\) 310.175i 0.893877i −0.894565 0.446938i \(-0.852514\pi\)
0.894565 0.446938i \(-0.147486\pi\)
\(348\) 0 0
\(349\) 190.418i 0.545609i −0.962069 0.272804i \(-0.912049\pi\)
0.962069 0.272804i \(-0.0879512\pi\)
\(350\) 0 0
\(351\) −334.036 −0.951670
\(352\) 0 0
\(353\) −177.839 −0.503793 −0.251896 0.967754i \(-0.581054\pi\)
−0.251896 + 0.967754i \(0.581054\pi\)
\(354\) 0 0
\(355\) 148.268 + 378.805i 0.417656 + 1.06706i
\(356\) 0 0
\(357\) −79.4281 369.821i −0.222488 1.03591i
\(358\) 0 0
\(359\) 366.933 1.02210 0.511049 0.859552i \(-0.329257\pi\)
0.511049 + 0.859552i \(0.329257\pi\)
\(360\) 0 0
\(361\) 351.012 0.972332
\(362\) 0 0
\(363\) −748.534 −2.06208
\(364\) 0 0
\(365\) −73.0668 186.676i −0.200183 0.511442i
\(366\) 0 0
\(367\) −213.129 −0.580734 −0.290367 0.956915i \(-0.593777\pi\)
−0.290367 + 0.956915i \(0.593777\pi\)
\(368\) 0 0
\(369\) 1021.34i 2.76786i
\(370\) 0 0
\(371\) 142.424 30.5891i 0.383893 0.0824505i
\(372\) 0 0
\(373\) 594.278i 1.59324i 0.604481 + 0.796619i \(0.293380\pi\)
−0.604481 + 0.796619i \(0.706620\pi\)
\(374\) 0 0
\(375\) −535.612 259.761i −1.42830 0.692696i
\(376\) 0 0
\(377\) 240.412 0.637698
\(378\) 0 0
\(379\) 397.939 1.04997 0.524985 0.851111i \(-0.324071\pi\)
0.524985 + 0.851111i \(0.324071\pi\)
\(380\) 0 0
\(381\) 245.106i 0.643322i
\(382\) 0 0
\(383\) −464.822 −1.21363 −0.606817 0.794841i \(-0.707554\pi\)
−0.606817 + 0.794841i \(0.707554\pi\)
\(384\) 0 0
\(385\) −486.802 + 322.175i −1.26442 + 0.836818i
\(386\) 0 0
\(387\) 160.972i 0.415947i
\(388\) 0 0
\(389\) 564.969 1.45236 0.726182 0.687503i \(-0.241293\pi\)
0.726182 + 0.687503i \(0.241293\pi\)
\(390\) 0 0
\(391\) 251.596i 0.643467i
\(392\) 0 0
\(393\) 811.672i 2.06532i
\(394\) 0 0
\(395\) 74.0014 + 189.064i 0.187345 + 0.478643i
\(396\) 0 0
\(397\) −460.060 −1.15884 −0.579421 0.815029i \(-0.696721\pi\)
−0.579421 + 0.815029i \(0.696721\pi\)
\(398\) 0 0
\(399\) 103.006 22.1230i 0.258160 0.0554462i
\(400\) 0 0
\(401\) −124.109 −0.309499 −0.154749 0.987954i \(-0.549457\pi\)
−0.154749 + 0.987954i \(0.549457\pi\)
\(402\) 0 0
\(403\) 326.589i 0.810394i
\(404\) 0 0
\(405\) 30.9812 + 79.1528i 0.0764967 + 0.195439i
\(406\) 0 0
\(407\) 598.118i 1.46958i
\(408\) 0 0
\(409\) 59.8790i 0.146403i −0.997317 0.0732017i \(-0.976678\pi\)
0.997317 0.0732017i \(-0.0233217\pi\)
\(410\) 0 0
\(411\) 475.763i 1.15757i
\(412\) 0 0
\(413\) 637.313 136.879i 1.54313 0.331425i
\(414\) 0 0
\(415\) 77.3576 + 197.638i 0.186404 + 0.476237i
\(416\) 0 0
\(417\) 975.618i 2.33961i
\(418\) 0 0
\(419\) 552.743i 1.31920i 0.751618 + 0.659598i \(0.229274\pi\)
−0.751618 + 0.659598i \(0.770726\pi\)
\(420\) 0 0
\(421\) 378.400 0.898812 0.449406 0.893328i \(-0.351636\pi\)
0.449406 + 0.893328i \(0.351636\pi\)
\(422\) 0 0
\(423\) 153.575 0.363061
\(424\) 0 0
\(425\) 208.301 192.563i 0.490120 0.453089i
\(426\) 0 0
\(427\) −297.027 + 63.7938i −0.695613 + 0.149400i
\(428\) 0 0
\(429\) −1190.76 −2.77567
\(430\) 0 0
\(431\) −310.036 −0.719342 −0.359671 0.933079i \(-0.617111\pi\)
−0.359671 + 0.933079i \(0.617111\pi\)
\(432\) 0 0
\(433\) −672.484 −1.55308 −0.776541 0.630067i \(-0.783027\pi\)
−0.776541 + 0.630067i \(0.783027\pi\)
\(434\) 0 0
\(435\) 139.176 + 355.576i 0.319945 + 0.817416i
\(436\) 0 0
\(437\) −70.0767 −0.160359
\(438\) 0 0
\(439\) 503.192i 1.14622i −0.819478 0.573111i \(-0.805736\pi\)
0.819478 0.573111i \(-0.194264\pi\)
\(440\) 0 0
\(441\) −611.151 + 275.214i −1.38583 + 0.624069i
\(442\) 0 0
\(443\) 143.693i 0.324363i 0.986761 + 0.162181i \(0.0518530\pi\)
−0.986761 + 0.162181i \(0.948147\pi\)
\(444\) 0 0
\(445\) 245.430 96.0637i 0.551529 0.215874i
\(446\) 0 0
\(447\) −260.220 −0.582147
\(448\) 0 0
\(449\) −337.042 −0.750651 −0.375325 0.926893i \(-0.622469\pi\)
−0.375325 + 0.926893i \(0.622469\pi\)
\(450\) 0 0
\(451\) 1245.34i 2.76128i
\(452\) 0 0
\(453\) 130.802 0.288746
\(454\) 0 0
\(455\) −437.561 + 289.587i −0.961674 + 0.636454i
\(456\) 0 0
\(457\) 719.140i 1.57361i −0.617201 0.786805i \(-0.711734\pi\)
0.617201 0.786805i \(-0.288266\pi\)
\(458\) 0 0
\(459\) 252.824 0.550815
\(460\) 0 0
\(461\) 310.629i 0.673815i −0.941538 0.336908i \(-0.890619\pi\)
0.941538 0.336908i \(-0.109381\pi\)
\(462\) 0 0
\(463\) 278.960i 0.602505i −0.953544 0.301253i \(-0.902595\pi\)
0.953544 0.301253i \(-0.0974047\pi\)
\(464\) 0 0
\(465\) 483.034 189.064i 1.03878 0.406589i
\(466\) 0 0
\(467\) 60.1527 0.128807 0.0644033 0.997924i \(-0.479486\pi\)
0.0644033 + 0.997924i \(0.479486\pi\)
\(468\) 0 0
\(469\) 93.6788 20.1198i 0.199742 0.0428994i
\(470\) 0 0
\(471\) −777.794 −1.65137
\(472\) 0 0
\(473\) 196.276i 0.414959i
\(474\) 0 0
\(475\) 53.6343 + 58.0178i 0.112914 + 0.122143i
\(476\) 0 0
\(477\) 284.660i 0.596771i
\(478\) 0 0
\(479\) 344.378i 0.718953i 0.933154 + 0.359476i \(0.117045\pi\)
−0.933154 + 0.359476i \(0.882955\pi\)
\(480\) 0 0
\(481\) 537.618i 1.11771i
\(482\) 0 0
\(483\) 722.674 155.212i 1.49622 0.321350i
\(484\) 0 0
\(485\) 212.679 + 543.366i 0.438513 + 1.12034i
\(486\) 0 0
\(487\) 213.495i 0.438388i −0.975681 0.219194i \(-0.929657\pi\)
0.975681 0.219194i \(-0.0703427\pi\)
\(488\) 0 0
\(489\) 1016.71i 2.07916i
\(490\) 0 0
\(491\) 289.260 0.589125 0.294562 0.955632i \(-0.404826\pi\)
0.294562 + 0.955632i \(0.404826\pi\)
\(492\) 0 0
\(493\) −181.962 −0.369092
\(494\) 0 0
\(495\) −415.777 1062.26i −0.839954 2.14597i
\(496\) 0 0
\(497\) 119.588 + 556.806i 0.240619 + 1.12033i
\(498\) 0 0
\(499\) −31.3212 −0.0627680 −0.0313840 0.999507i \(-0.509991\pi\)
−0.0313840 + 0.999507i \(0.509991\pi\)
\(500\) 0 0
\(501\) −1289.90 −2.57466
\(502\) 0 0
\(503\) −11.3597 −0.0225839 −0.0112919 0.999936i \(-0.503594\pi\)
−0.0112919 + 0.999936i \(0.503594\pi\)
\(504\) 0 0
\(505\) −42.5698 + 16.6622i −0.0842966 + 0.0329945i
\(506\) 0 0
\(507\) −265.501 −0.523671
\(508\) 0 0
\(509\) 732.326i 1.43875i 0.694620 + 0.719377i \(0.255573\pi\)
−0.694620 + 0.719377i \(0.744427\pi\)
\(510\) 0 0
\(511\) −58.9332 274.396i −0.115329 0.536978i
\(512\) 0 0
\(513\) 70.4188i 0.137269i
\(514\) 0 0
\(515\) 75.5393 + 192.993i 0.146678 + 0.374743i
\(516\) 0 0
\(517\) 187.256 0.362198
\(518\) 0 0
\(519\) −906.836 −1.74728
\(520\) 0 0
\(521\) 10.4965i 0.0201468i 0.999949 + 0.0100734i \(0.00320652\pi\)
−0.999949 + 0.0100734i \(0.996793\pi\)
\(522\) 0 0
\(523\) −359.468 −0.687319 −0.343659 0.939094i \(-0.611667\pi\)
−0.343659 + 0.939094i \(0.611667\pi\)
\(524\) 0 0
\(525\) −681.613 479.522i −1.29831 0.913375i
\(526\) 0 0
\(527\) 247.187i 0.469046i
\(528\) 0 0
\(529\) 37.3517 0.0706082
\(530\) 0 0
\(531\) 1273.78i 2.39883i
\(532\) 0 0
\(533\) 1119.37i 2.10013i
\(534\) 0 0
\(535\) −573.582 + 224.505i −1.07212 + 0.419636i
\(536\) 0 0
\(537\) 457.520 0.851992
\(538\) 0 0
\(539\) −745.188 + 335.574i −1.38254 + 0.622586i
\(540\) 0 0
\(541\) 383.746 0.709326 0.354663 0.934994i \(-0.384596\pi\)
0.354663 + 0.934994i \(0.384596\pi\)
\(542\) 0 0
\(543\) 1184.72i 2.18180i
\(544\) 0 0
\(545\) 244.536 + 624.756i 0.448689 + 1.14634i
\(546\) 0 0
\(547\) 788.077i 1.44073i 0.693598 + 0.720363i \(0.256025\pi\)
−0.693598 + 0.720363i \(0.743975\pi\)
\(548\) 0 0
\(549\) 593.660i 1.08135i
\(550\) 0 0
\(551\) 50.6818i 0.0919814i
\(552\) 0 0
\(553\) 59.6870 + 277.905i 0.107933 + 0.502541i
\(554\) 0 0
\(555\) 795.151 311.230i 1.43270 0.560774i
\(556\) 0 0
\(557\) 64.6592i 0.116085i 0.998314 + 0.0580424i \(0.0184858\pi\)
−0.998314 + 0.0580424i \(0.981514\pi\)
\(558\) 0 0
\(559\) 176.422i 0.315603i
\(560\) 0 0
\(561\) 901.260 1.60652
\(562\) 0 0
\(563\) 656.960 1.16689 0.583446 0.812152i \(-0.301704\pi\)
0.583446 + 0.812152i \(0.301704\pi\)
\(564\) 0 0
\(565\) 342.880 134.207i 0.606868 0.237534i
\(566\) 0 0
\(567\) 24.9883 + 116.347i 0.0440711 + 0.205197i
\(568\) 0 0
\(569\) 834.375 1.46639 0.733194 0.680019i \(-0.238029\pi\)
0.733194 + 0.680019i \(0.238029\pi\)
\(570\) 0 0
\(571\) 66.4971 0.116457 0.0582286 0.998303i \(-0.481455\pi\)
0.0582286 + 0.998303i \(0.481455\pi\)
\(572\) 0 0
\(573\) −1115.57 −1.94690
\(574\) 0 0
\(575\) 376.291 + 407.045i 0.654419 + 0.707904i
\(576\) 0 0
\(577\) 31.9127 0.0553079 0.0276540 0.999618i \(-0.491196\pi\)
0.0276540 + 0.999618i \(0.491196\pi\)
\(578\) 0 0
\(579\) 861.565i 1.48802i
\(580\) 0 0
\(581\) 62.3939 + 290.509i 0.107391 + 0.500015i
\(582\) 0 0
\(583\) 347.091i 0.595353i
\(584\) 0 0
\(585\) −373.721 954.808i −0.638839 1.63215i
\(586\) 0 0
\(587\) 783.466 1.33470 0.667348 0.744746i \(-0.267430\pi\)
0.667348 + 0.744746i \(0.267430\pi\)
\(588\) 0 0
\(589\) −68.8488 −0.116891
\(590\) 0 0
\(591\) 754.787i 1.27714i
\(592\) 0 0
\(593\) 1024.80 1.72816 0.864078 0.503357i \(-0.167902\pi\)
0.864078 + 0.503357i \(0.167902\pi\)
\(594\) 0 0
\(595\) 331.180 219.181i 0.556605 0.368372i
\(596\) 0 0
\(597\) 1064.31i 1.78277i
\(598\) 0 0
\(599\) 1109.11 1.85161 0.925805 0.378001i \(-0.123388\pi\)
0.925805 + 0.378001i \(0.123388\pi\)
\(600\) 0 0
\(601\) 1028.00i 1.71048i −0.518232 0.855240i \(-0.673410\pi\)
0.518232 0.855240i \(-0.326590\pi\)
\(602\) 0 0
\(603\) 187.233i 0.310503i
\(604\) 0 0
\(605\) −286.451 731.845i −0.473473 1.20966i
\(606\) 0 0
\(607\) 581.737 0.958381 0.479190 0.877711i \(-0.340930\pi\)
0.479190 + 0.877711i \(0.340930\pi\)
\(608\) 0 0
\(609\) 112.254 + 522.662i 0.184326 + 0.858229i
\(610\) 0 0
\(611\) 168.315 0.275475
\(612\) 0 0
\(613\) 303.242i 0.494685i 0.968928 + 0.247342i \(0.0795573\pi\)
−0.968928 + 0.247342i \(0.920443\pi\)
\(614\) 0 0
\(615\) 1655.58 648.009i 2.69200 1.05367i
\(616\) 0 0
\(617\) 530.544i 0.859877i 0.902858 + 0.429938i \(0.141465\pi\)
−0.902858 + 0.429938i \(0.858535\pi\)
\(618\) 0 0
\(619\) 171.117i 0.276440i −0.990402 0.138220i \(-0.955862\pi\)
0.990402 0.138220i \(-0.0441382\pi\)
\(620\) 0 0
\(621\) 494.049i 0.795569i
\(622\) 0 0
\(623\) 360.758 77.4816i 0.579066 0.124369i
\(624\) 0 0
\(625\) 49.0000 623.076i 0.0784000 0.996922i
\(626\) 0 0
\(627\) 251.027i 0.400362i
\(628\) 0 0
\(629\) 406.910i 0.646916i
\(630\) 0 0
\(631\) 1021.70 1.61917 0.809585 0.587003i \(-0.199692\pi\)
0.809585 + 0.587003i \(0.199692\pi\)
\(632\) 0 0
\(633\) 1941.14 3.06657
\(634\) 0 0
\(635\) −239.641 + 93.7977i −0.377387 + 0.147713i
\(636\) 0 0
\(637\) −669.811 + 301.630i −1.05151 + 0.473517i
\(638\) 0 0
\(639\) −1112.87 −1.74158
\(640\) 0 0
\(641\) 337.212 0.526072 0.263036 0.964786i \(-0.415276\pi\)
0.263036 + 0.964786i \(0.415276\pi\)
\(642\) 0 0
\(643\) −844.298 −1.31306 −0.656530 0.754300i \(-0.727977\pi\)
−0.656530 + 0.754300i \(0.727977\pi\)
\(644\) 0 0
\(645\) −260.933 + 102.132i −0.404548 + 0.158344i
\(646\) 0 0
\(647\) 279.281 0.431656 0.215828 0.976431i \(-0.430755\pi\)
0.215828 + 0.976431i \(0.430755\pi\)
\(648\) 0 0
\(649\) 1553.14i 2.39313i
\(650\) 0 0
\(651\) 710.012 152.492i 1.09065 0.234243i
\(652\) 0 0
\(653\) 807.833i 1.23711i −0.785742 0.618555i \(-0.787718\pi\)
0.785742 0.618555i \(-0.212282\pi\)
\(654\) 0 0
\(655\) −793.576 + 310.613i −1.21157 + 0.474218i
\(656\) 0 0
\(657\) 548.427 0.834744
\(658\) 0 0
\(659\) 114.958 0.174443 0.0872214 0.996189i \(-0.472201\pi\)
0.0872214 + 0.996189i \(0.472201\pi\)
\(660\) 0 0
\(661\) 419.383i 0.634467i −0.948347 0.317234i \(-0.897246\pi\)
0.948347 0.317234i \(-0.102754\pi\)
\(662\) 0 0
\(663\) 810.097 1.22187
\(664\) 0 0
\(665\) 61.0483 + 92.2432i 0.0918020 + 0.138712i
\(666\) 0 0
\(667\) 355.576i 0.533098i
\(668\) 0 0
\(669\) 1536.84 2.29721
\(670\) 0 0
\(671\) 723.860i 1.07878i
\(672\) 0 0
\(673\) 1071.68i 1.59240i 0.605037 + 0.796198i \(0.293158\pi\)
−0.605037 + 0.796198i \(0.706842\pi\)
\(674\) 0 0
\(675\) 409.032 378.128i 0.605974 0.560189i
\(676\) 0 0
\(677\) −592.231 −0.874788 −0.437394 0.899270i \(-0.644098\pi\)
−0.437394 + 0.899270i \(0.644098\pi\)
\(678\) 0 0
\(679\) 171.539 + 798.695i 0.252635 + 1.17628i
\(680\) 0 0
\(681\) −806.048 −1.18362
\(682\) 0 0
\(683\) 93.2784i 0.136572i −0.997666 0.0682858i \(-0.978247\pi\)
0.997666 0.0682858i \(-0.0217530\pi\)
\(684\) 0 0
\(685\) 465.155 182.066i 0.679059 0.265790i
\(686\) 0 0
\(687\) 1462.62i 2.12900i
\(688\) 0 0
\(689\) 311.982i 0.452805i
\(690\) 0 0
\(691\) 48.8749i 0.0707307i −0.999374 0.0353653i \(-0.988741\pi\)
0.999374 0.0353653i \(-0.0112595\pi\)
\(692\) 0 0
\(693\) −335.351 1561.41i −0.483912 2.25312i
\(694\) 0 0
\(695\) 953.866 373.352i 1.37247 0.537198i
\(696\) 0 0
\(697\) 847.225i 1.21553i
\(698\) 0 0
\(699\) 44.2460i 0.0632991i
\(700\) 0 0
\(701\) 1151.83 1.64312 0.821562 0.570119i \(-0.193103\pi\)
0.821562 + 0.570119i \(0.193103\pi\)
\(702\) 0 0
\(703\) −113.336 −0.161218
\(704\) 0 0
\(705\) 97.4386 + 248.943i 0.138211 + 0.353111i
\(706\) 0 0
\(707\) −62.5734 + 13.4392i −0.0885054 + 0.0190087i
\(708\) 0 0
\(709\) −113.249 −0.159730 −0.0798650 0.996806i \(-0.525449\pi\)
−0.0798650 + 0.996806i \(0.525449\pi\)
\(710\) 0 0
\(711\) −555.442 −0.781212
\(712\) 0 0
\(713\) −483.034 −0.677466
\(714\) 0 0
\(715\) −455.685 1164.21i −0.637321 1.62827i
\(716\) 0 0
\(717\) 156.662 0.218497
\(718\) 0 0
\(719\) 575.543i 0.800477i −0.916411 0.400239i \(-0.868927\pi\)
0.916411 0.400239i \(-0.131073\pi\)
\(720\) 0 0
\(721\) 60.9273 + 283.681i 0.0845039 + 0.393454i
\(722\) 0 0
\(723\) 889.343i 1.23007i
\(724\) 0 0
\(725\) −294.388 + 272.146i −0.406053 + 0.375373i
\(726\) 0 0
\(727\) −802.036 −1.10321 −0.551607 0.834104i \(-0.685985\pi\)
−0.551607 + 0.834104i \(0.685985\pi\)
\(728\) 0 0
\(729\) −1187.52 −1.62897
\(730\) 0 0
\(731\) 133.530i 0.182667i
\(732\) 0 0
\(733\) −123.726 −0.168794 −0.0843970 0.996432i \(-0.526896\pi\)
−0.0843970 + 0.996432i \(0.526896\pi\)
\(734\) 0 0
\(735\) −833.877 816.054i −1.13453 1.11028i
\(736\) 0 0
\(737\) 228.297i 0.309765i
\(738\) 0 0
\(739\) −632.193 −0.855471 −0.427736 0.903904i \(-0.640689\pi\)
−0.427736 + 0.903904i \(0.640689\pi\)
\(740\) 0 0
\(741\) 225.636i 0.304501i
\(742\) 0 0
\(743\) 895.660i 1.20546i −0.797944 0.602732i \(-0.794079\pi\)
0.797944 0.602732i \(-0.205921\pi\)
\(744\) 0 0
\(745\) −99.5816 254.418i −0.133667 0.341500i
\(746\) 0 0
\(747\) −580.632 −0.777286
\(748\) 0 0
\(749\) −843.109 + 181.078i −1.12565 + 0.241760i
\(750\) 0 0
\(751\) 461.115 0.614001 0.307001 0.951709i \(-0.400675\pi\)
0.307001 + 0.951709i \(0.400675\pi\)
\(752\) 0 0
\(753\) 1420.69i 1.88671i
\(754\) 0 0
\(755\) 50.0557 + 127.886i 0.0662989 + 0.169385i
\(756\) 0 0
\(757\) 833.169i 1.10062i −0.834961 0.550310i \(-0.814510\pi\)
0.834961 0.550310i \(-0.185490\pi\)
\(758\) 0 0
\(759\) 1761.17i 2.32038i
\(760\) 0 0
\(761\) 228.343i 0.300056i 0.988682 + 0.150028i \(0.0479364\pi\)
−0.988682 + 0.150028i \(0.952064\pi\)
\(762\) 0 0
\(763\) 197.234 + 918.330i 0.258498 + 1.20358i
\(764\) 0 0
\(765\) 282.860 + 722.671i 0.369752 + 0.944668i
\(766\) 0 0
\(767\) 1396.04i 1.82013i
\(768\) 0 0
\(769\) 1211.59i 1.57554i −0.615972 0.787768i \(-0.711236\pi\)
0.615972 0.787768i \(-0.288764\pi\)
\(770\) 0 0
\(771\) −1068.94 −1.38644
\(772\) 0 0
\(773\) 139.181 0.180053 0.0900267 0.995939i \(-0.471305\pi\)
0.0900267 + 0.995939i \(0.471305\pi\)
\(774\) 0 0
\(775\) 369.697 + 399.913i 0.477029 + 0.516016i
\(776\) 0 0
\(777\) 1168.79 251.027i 1.50424 0.323072i
\(778\) 0 0
\(779\) −235.977 −0.302923
\(780\) 0 0
\(781\) −1356.94 −1.73745
\(782\) 0 0
\(783\) −357.312 −0.456337
\(784\) 0 0
\(785\) −297.648 760.452i −0.379170 0.968729i
\(786\) 0 0
\(787\) 149.466 0.189919 0.0949596 0.995481i \(-0.469728\pi\)
0.0949596 + 0.995481i \(0.469728\pi\)
\(788\) 0 0
\(789\) 1587.74i 2.01234i
\(790\) 0 0
\(791\) 504.000 108.246i 0.637168 0.136847i
\(792\) 0 0
\(793\) 650.641i 0.820480i
\(794\) 0 0
\(795\) −461.430 + 180.608i −0.580415 + 0.227180i
\(796\) 0 0
\(797\) 435.452 0.546364 0.273182 0.961962i \(-0.411924\pi\)
0.273182 + 0.961962i \(0.411924\pi\)
\(798\) 0 0
\(799\) −127.394 −0.159442
\(800\) 0 0
\(801\) 721.038i 0.900172i
\(802\) 0 0
\(803\) 668.707 0.832761
\(804\) 0 0
\(805\) 428.307 + 647.165i 0.532058 + 0.803932i
\(806\) 0 0
\(807\) 343.748i 0.425958i
\(808\) 0 0
\(809\) −455.551 −0.563104 −0.281552 0.959546i \(-0.590849\pi\)
−0.281552 + 0.959546i \(0.590849\pi\)
\(810\) 0 0
\(811\) 11.6265i 0.0143360i 0.999974 + 0.00716802i \(0.00228167\pi\)
−0.999974 + 0.00716802i \(0.997718\pi\)
\(812\) 0 0
\(813\) 100.520i 0.123641i
\(814\) 0 0
\(815\) −994.042 + 389.078i −1.21968 + 0.477396i
\(816\) 0 0
\(817\) 37.1919 0.0455225
\(818\) 0 0
\(819\) −301.430 1403.47i −0.368047 1.71364i
\(820\) 0 0
\(821\) −485.600 −0.591474 −0.295737 0.955269i \(-0.595565\pi\)
−0.295737 + 0.955269i \(0.595565\pi\)
\(822\) 0 0
\(823\) 1249.13i 1.51777i 0.651223 + 0.758886i \(0.274256\pi\)
−0.651223 + 0.758886i \(0.725744\pi\)
\(824\) 0 0
\(825\) 1458.11 1347.94i 1.76740 1.63387i
\(826\) 0 0
\(827\) 1368.11i 1.65430i −0.561978 0.827152i \(-0.689959\pi\)
0.561978 0.827152i \(-0.310041\pi\)
\(828\) 0 0
\(829\) 1111.64i 1.34094i 0.741937 + 0.670469i \(0.233907\pi\)
−0.741937 + 0.670469i \(0.766093\pi\)
\(830\) 0 0
\(831\) 106.778i 0.128493i
\(832\) 0 0
\(833\) 506.964 228.297i 0.608601 0.274066i
\(834\) 0 0
\(835\) −493.624 1261.14i −0.591166 1.51035i
\(836\) 0 0
\(837\) 485.392i 0.579919i
\(838\) 0 0
\(839\) 423.166i 0.504369i −0.967679 0.252184i \(-0.918851\pi\)
0.967679 0.252184i \(-0.0811490\pi\)
\(840\) 0 0
\(841\) −583.836 −0.694216
\(842\) 0 0
\(843\) 207.690 0.246370
\(844\) 0 0
\(845\) −101.603 259.581i −0.120240 0.307197i
\(846\) 0 0
\(847\) −231.042 1075.74i −0.272776 1.27006i
\(848\) 0 0
\(849\) −281.903 −0.332041
\(850\) 0 0
\(851\) −795.151 −0.934373
\(852\) 0 0
\(853\) 723.461 0.848137 0.424068 0.905630i \(-0.360602\pi\)
0.424068 + 0.905630i \(0.360602\pi\)
\(854\) 0 0
\(855\) −201.285 + 78.7848i −0.235421 + 0.0921460i
\(856\) 0 0
\(857\) −1014.89 −1.18423 −0.592115 0.805853i \(-0.701707\pi\)
−0.592115 + 0.805853i \(0.701707\pi\)
\(858\) 0 0
\(859\) 97.4114i 0.113401i 0.998391 + 0.0567005i \(0.0180580\pi\)
−0.998391 + 0.0567005i \(0.981942\pi\)
\(860\) 0 0
\(861\) 2433.54 522.662i 2.82641 0.607040i
\(862\) 0 0
\(863\) 480.498i 0.556776i −0.960469 0.278388i \(-0.910200\pi\)
0.960469 0.278388i \(-0.0898001\pi\)
\(864\) 0 0
\(865\) −347.031 886.617i −0.401191 1.02499i
\(866\) 0 0
\(867\) 763.139 0.880207
\(868\) 0 0
\(869\) −677.260 −0.779356
\(870\) 0 0
\(871\) 205.204i 0.235596i
\(872\) 0 0
\(873\) −1596.33 −1.82856
\(874\) 0 0
\(875\) 207.989 849.921i 0.237702 0.971338i
\(876\) 0 0
\(877\) 525.779i 0.599520i −0.954015 0.299760i \(-0.903093\pi\)
0.954015 0.299760i \(-0.0969066\pi\)
\(878\) 0 0
\(879\) 1767.49 2.01080
\(880\) 0 0
\(881\) 1289.75i 1.46396i 0.681324 + 0.731982i \(0.261405\pi\)
−0.681324 + 0.731982i \(0.738595\pi\)
\(882\) 0 0
\(883\) 51.6578i 0.0585026i −0.999572 0.0292513i \(-0.990688\pi\)
0.999572 0.0292513i \(-0.00931231\pi\)
\(884\) 0 0
\(885\) −2064.78 + 808.176i −2.33309 + 0.913194i
\(886\) 0 0
\(887\) 194.121 0.218851 0.109426 0.993995i \(-0.465099\pi\)
0.109426 + 0.993995i \(0.465099\pi\)
\(888\) 0 0
\(889\) −352.249 + 75.6540i −0.396230 + 0.0851001i
\(890\) 0 0
\(891\) −283.539 −0.318226
\(892\) 0 0
\(893\) 35.4829i 0.0397345i
\(894\) 0 0
\(895\) 175.085 + 447.319i 0.195626 + 0.499798i
\(896\) 0 0
\(897\) 1583.03i 1.76480i
\(898\) 0 0
\(899\) 349.346i 0.388594i
\(900\) 0 0
\(901\) 236.132i 0.262078i
\(902\) 0 0
\(903\) −383.546 + 82.3759i −0.424746 + 0.0912247i
\(904\) 0 0
\(905\) 1158.30 453.371i 1.27989 0.500962i
\(906\) 0 0
\(907\) 1386.01i 1.52812i 0.645145 + 0.764060i \(0.276797\pi\)
−0.645145 + 0.764060i \(0.723203\pi\)
\(908\) 0 0
\(909\) 125.064i 0.137584i
\(910\) 0 0
\(911\) −449.939 −0.493896 −0.246948 0.969029i \(-0.579428\pi\)
−0.246948 + 0.969029i \(0.579428\pi\)
\(912\) 0 0
\(913\) −707.975 −0.775439
\(914\) 0 0
\(915\) 962.315 376.659i 1.05171 0.411650i
\(916\) 0 0
\(917\) −1166.48 + 250.530i −1.27206 + 0.273206i
\(918\) 0 0
\(919\) −310.036 −0.337363 −0.168681 0.985671i \(-0.553951\pi\)
−0.168681 + 0.985671i \(0.553951\pi\)
\(920\) 0 0
\(921\) 235.406 0.255598
\(922\) 0 0
\(923\) −1219.69 −1.32144
\(924\) 0 0
\(925\) 608.581 + 658.321i 0.657926 + 0.711698i
\(926\) 0 0
\(927\) −566.985 −0.611634
\(928\) 0 0
\(929\) 568.376i 0.611815i −0.952061 0.305908i \(-0.901040\pi\)
0.952061 0.305908i \(-0.0989598\pi\)
\(930\) 0 0
\(931\) 63.5873 + 141.204i 0.0683000 + 0.151669i
\(932\) 0 0
\(933\) 2024.88i 2.17029i
\(934\) 0 0
\(935\) 344.897 + 881.166i 0.368874 + 0.942424i
\(936\) 0 0
\(937\) −610.588 −0.651641 −0.325821 0.945432i \(-0.605641\pi\)
−0.325821 + 0.945432i \(0.605641\pi\)
\(938\) 0 0
\(939\) 1940.05 2.06608
\(940\) 0 0
\(941\) 1588.92i 1.68855i −0.535912 0.844274i \(-0.680032\pi\)
0.535912 0.844274i \(-0.319968\pi\)
\(942\) 0 0
\(943\) −1655.58 −1.75565
\(944\) 0 0
\(945\) 650.325 430.398i 0.688174 0.455447i
\(946\) 0 0
\(947\) 595.949i 0.629302i 0.949207 + 0.314651i \(0.101888\pi\)
−0.949207 + 0.314651i \(0.898112\pi\)
\(948\) 0 0
\(949\) 601.067 0.633369
\(950\) 0 0
\(951\) 2453.43i 2.57984i
\(952\) 0 0
\(953\) 707.004i 0.741872i −0.928658 0.370936i \(-0.879037\pi\)
0.928658 0.370936i \(-0.120963\pi\)
\(954\) 0 0
\(955\) −426.910 1090.70i −0.447026 1.14209i
\(956\) 0 0
\(957\) −1273.74 −1.33097
\(958\) 0 0
\(959\) 683.733 146.848i 0.712964 0.153126i
\(960\) 0 0
\(961\) 486.430 0.506171
\(962\) 0 0
\(963\) 1685.10i 1.74984i
\(964\) 0 0
\(965\) −842.356 + 329.706i −0.872908 + 0.341664i
\(966\) 0 0
\(967\) 91.3586i 0.0944763i 0.998884 + 0.0472381i \(0.0150420\pi\)
−0.998884 + 0.0472381i \(0.984958\pi\)
\(968\) 0 0
\(969\) 170.778i 0.176242i
\(970\) 0 0
\(971\) 1137.54i 1.17152i 0.810485 + 0.585759i \(0.199204\pi\)
−0.810485 + 0.585759i \(0.800796\pi\)
\(972\) 0 0
\(973\) 1402.09 301.133i 1.44100 0.309489i
\(974\) 0 0
\(975\) 1310.62 1211.59i 1.34422 1.24266i
\(976\) 0 0
\(977\) 476.101i 0.487309i 0.969862 + 0.243654i \(0.0783463\pi\)
−0.969862 + 0.243654i \(0.921654\pi\)
\(978\) 0 0
\(979\) 879.174i 0.898033i
\(980\) 0 0
\(981\) −1835.44 −1.87099
\(982\) 0 0
\(983\) 777.439 0.790884 0.395442 0.918491i \(-0.370591\pi\)
0.395442 + 0.918491i \(0.370591\pi\)
\(984\) 0 0
\(985\) −737.959 + 288.844i −0.749197 + 0.293243i
\(986\) 0 0
\(987\) 78.5906 + 365.922i 0.0796257 + 0.370741i
\(988\) 0 0
\(989\) 260.933 0.263835
\(990\) 0 0
\(991\) 1152.10 1.16256 0.581280 0.813704i \(-0.302552\pi\)
0.581280 + 0.813704i \(0.302552\pi\)
\(992\) 0 0
\(993\) 343.226 0.345646
\(994\) 0 0
\(995\) −1040.58 + 407.294i −1.04581 + 0.409340i
\(996\) 0 0
\(997\) 990.955 0.993937 0.496968 0.867769i \(-0.334446\pi\)
0.496968 + 0.867769i \(0.334446\pi\)
\(998\) 0 0
\(999\) 799.033i 0.799833i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.3.p.g.209.1 8
4.3 odd 2 70.3.d.a.69.4 yes 8
5.4 even 2 inner 560.3.p.g.209.7 8
7.6 odd 2 inner 560.3.p.g.209.8 8
12.11 even 2 630.3.h.d.559.7 8
20.3 even 4 350.3.b.c.251.4 8
20.7 even 4 350.3.b.c.251.5 8
20.19 odd 2 70.3.d.a.69.5 yes 8
28.3 even 6 490.3.h.a.19.8 16
28.11 odd 6 490.3.h.a.19.5 16
28.19 even 6 490.3.h.a.129.4 16
28.23 odd 6 490.3.h.a.129.1 16
28.27 even 2 70.3.d.a.69.1 8
35.34 odd 2 inner 560.3.p.g.209.2 8
60.59 even 2 630.3.h.d.559.2 8
84.83 odd 2 630.3.h.d.559.6 8
140.19 even 6 490.3.h.a.129.5 16
140.27 odd 4 350.3.b.c.251.8 8
140.39 odd 6 490.3.h.a.19.4 16
140.59 even 6 490.3.h.a.19.1 16
140.79 odd 6 490.3.h.a.129.8 16
140.83 odd 4 350.3.b.c.251.1 8
140.139 even 2 70.3.d.a.69.8 yes 8
420.419 odd 2 630.3.h.d.559.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.d.a.69.1 8 28.27 even 2
70.3.d.a.69.4 yes 8 4.3 odd 2
70.3.d.a.69.5 yes 8 20.19 odd 2
70.3.d.a.69.8 yes 8 140.139 even 2
350.3.b.c.251.1 8 140.83 odd 4
350.3.b.c.251.4 8 20.3 even 4
350.3.b.c.251.5 8 20.7 even 4
350.3.b.c.251.8 8 140.27 odd 4
490.3.h.a.19.1 16 140.59 even 6
490.3.h.a.19.4 16 140.39 odd 6
490.3.h.a.19.5 16 28.11 odd 6
490.3.h.a.19.8 16 28.3 even 6
490.3.h.a.129.1 16 28.23 odd 6
490.3.h.a.129.4 16 28.19 even 6
490.3.h.a.129.5 16 140.19 even 6
490.3.h.a.129.8 16 140.79 odd 6
560.3.p.g.209.1 8 1.1 even 1 trivial
560.3.p.g.209.2 8 35.34 odd 2 inner
560.3.p.g.209.7 8 5.4 even 2 inner
560.3.p.g.209.8 8 7.6 odd 2 inner
630.3.h.d.559.2 8 60.59 even 2
630.3.h.d.559.3 8 420.419 odd 2
630.3.h.d.559.6 8 84.83 odd 2
630.3.h.d.559.7 8 12.11 even 2