Properties

Label 35.10.a.b
Level $35$
Weight $10$
Character orbit 35.a
Self dual yes
Analytic conductor $18.026$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,10,Mod(1,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.0262542657\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 12) q^{2} + (54 \beta - 87) q^{3} + ( - 24 \beta - 360) q^{4} + 625 q^{5} + ( - 735 \beta + 1476) q^{6} + 2401 q^{7} + ( - 584 \beta + 10272) q^{8} + ( - 9396 \beta + 11214) q^{9} + (625 \beta - 7500) q^{10}+ \cdots + (15093468 \beta - 581733270) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 24 q^{2} - 174 q^{3} - 720 q^{4} + 1250 q^{5} + 2952 q^{6} + 4802 q^{7} + 20544 q^{8} + 22428 q^{9} - 15000 q^{10} + 18566 q^{11} + 41904 q^{12} - 51090 q^{13} - 57624 q^{14} - 108750 q^{15} + 112768 q^{16}+ \cdots - 1163466540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−14.8284 −239.735 −292.118 625.000 3554.89 2401.00 11923.8 37789.9 −9267.77
1.2 −9.17157 65.7351 −427.882 625.000 −602.894 2401.00 8620.20 −15361.9 −5732.23
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 35.10.a.b 2
3.b odd 2 1 315.10.a.b 2
5.b even 2 1 175.10.a.c 2
5.c odd 4 2 175.10.b.c 4
7.b odd 2 1 245.10.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.10.a.b 2 1.a even 1 1 trivial
175.10.a.c 2 5.b even 2 1
175.10.b.c 4 5.c odd 4 2
245.10.a.c 2 7.b odd 2 1
315.10.a.b 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 24T_{2} + 136 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(35))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 24T + 136 \) Copy content Toggle raw display
$3$ \( T^{2} + 174T - 15759 \) Copy content Toggle raw display
$5$ \( (T - 625)^{2} \) Copy content Toggle raw display
$7$ \( (T - 2401)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 18566 T - 579804919 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 2036537423 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 33107255257 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 2624597308 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 5335908376796 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 32805350195857 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 34498247424800 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 125243882156764 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 857114015266016 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 693124389149372 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 353683714337753 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 63398812089856 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 88\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 14\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 42\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 25\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 16\!\cdots\!52 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 11\!\cdots\!81 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 50\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 75\!\cdots\!32 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 17\!\cdots\!09 \) Copy content Toggle raw display
show more
show less