Properties

Label 2-35-1.1-c9-0-8
Degree $2$
Conductor $35$
Sign $-1$
Analytic cond. $18.0262$
Root an. cond. $4.24573$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14.8·2-s − 239.·3-s − 292.·4-s + 625·5-s + 3.55e3·6-s + 2.40e3·7-s + 1.19e4·8-s + 3.77e4·9-s − 9.26e3·10-s − 1.65e4·11-s + 7.00e4·12-s + 2.63e4·13-s − 3.56e4·14-s − 1.49e5·15-s − 2.72e4·16-s − 1.44e5·17-s − 5.60e5·18-s − 1.59e5·19-s − 1.82e5·20-s − 5.75e5·21-s + 2.45e5·22-s + 2.07e6·23-s − 2.85e6·24-s + 3.90e5·25-s − 3.90e5·26-s − 4.34e6·27-s − 7.01e5·28-s + ⋯
L(s)  = 1  − 0.655·2-s − 1.70·3-s − 0.570·4-s + 0.447·5-s + 1.11·6-s + 0.377·7-s + 1.02·8-s + 1.91·9-s − 0.293·10-s − 0.340·11-s + 0.974·12-s + 0.255·13-s − 0.247·14-s − 0.764·15-s − 0.103·16-s − 0.418·17-s − 1.25·18-s − 0.281·19-s − 0.255·20-s − 0.645·21-s + 0.222·22-s + 1.54·23-s − 1.75·24-s + 0.200·25-s − 0.167·26-s − 1.57·27-s − 0.215·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(18.0262\)
Root analytic conductor: \(4.24573\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 625T \)
7 \( 1 - 2.40e3T \)
good2 \( 1 + 14.8T + 512T^{2} \)
3 \( 1 + 239.T + 1.96e4T^{2} \)
11 \( 1 + 1.65e4T + 2.35e9T^{2} \)
13 \( 1 - 2.63e4T + 1.06e10T^{2} \)
17 \( 1 + 1.44e5T + 1.18e11T^{2} \)
19 \( 1 + 1.59e5T + 3.22e11T^{2} \)
23 \( 1 - 2.07e6T + 1.80e12T^{2} \)
29 \( 1 + 4.94e6T + 1.45e13T^{2} \)
31 \( 1 - 4.22e6T + 2.64e13T^{2} \)
37 \( 1 + 1.29e7T + 1.29e14T^{2} \)
41 \( 1 + 2.87e7T + 3.27e14T^{2} \)
43 \( 1 - 3.54e7T + 5.02e14T^{2} \)
47 \( 1 - 5.95e7T + 1.11e15T^{2} \)
53 \( 1 - 2.31e6T + 3.29e15T^{2} \)
59 \( 1 + 1.68e8T + 8.66e15T^{2} \)
61 \( 1 + 6.70e7T + 1.16e16T^{2} \)
67 \( 1 + 1.56e8T + 2.72e16T^{2} \)
71 \( 1 - 6.95e7T + 4.58e16T^{2} \)
73 \( 1 + 7.83e7T + 5.88e16T^{2} \)
79 \( 1 + 4.26e8T + 1.19e17T^{2} \)
83 \( 1 + 5.31e8T + 1.86e17T^{2} \)
89 \( 1 + 1.14e8T + 3.50e17T^{2} \)
97 \( 1 + 1.46e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.64664731359557892116212425239, −12.55884841704641277353379114775, −11.09525134376827389948380142627, −10.37175410722683179387072686485, −8.964318341000569705781051570471, −7.19428124837091048835379462598, −5.65037960346970989466098281220, −4.59274530100514490928847016055, −1.30518867075844682515039124990, 0, 1.30518867075844682515039124990, 4.59274530100514490928847016055, 5.65037960346970989466098281220, 7.19428124837091048835379462598, 8.964318341000569705781051570471, 10.37175410722683179387072686485, 11.09525134376827389948380142627, 12.55884841704641277353379114775, 13.64664731359557892116212425239

Graph of the $Z$-function along the critical line