Properties

Label 341.2.a.c
Level $341$
Weight $2$
Character orbit 341.a
Self dual yes
Analytic conductor $2.723$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [341,2,Mod(1,341)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(341, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("341.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 341 = 11 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 341.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.72289870893\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 6x^{6} + 30x^{5} + 9x^{4} - 58x^{3} - 15x^{2} + 32x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} + ( - \beta_1 + 1) q^{3} + ( - \beta_{5} + 2) q^{4} + (\beta_{4} - 1) q^{5} + ( - \beta_{3} - \beta_{2} + 1) q^{6} + (\beta_{3} + \beta_{2} + 1) q^{7} + (\beta_{7} + \beta_{6} - 2 \beta_{3} + 1) q^{8}+ \cdots + ( - \beta_{5} + \beta_{4} + \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + 4 q^{3} + 13 q^{4} - 5 q^{5} + 9 q^{6} + 7 q^{7} + 6 q^{8} + 4 q^{9} - 2 q^{10} - 8 q^{11} + 11 q^{12} + 8 q^{13} - 17 q^{14} - q^{15} + 23 q^{16} + 4 q^{18} + 16 q^{19} - 31 q^{20} + q^{21}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} - 6x^{6} + 30x^{5} + 9x^{4} - 58x^{3} - 15x^{2} + 32x + 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 7\nu^{2} + 7\nu + 8 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} - 4\nu^{6} - 6\nu^{5} + 30\nu^{4} + 7\nu^{3} - 54\nu^{2} - \nu + 18 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} + 6\nu^{6} - 2\nu^{5} - 38\nu^{4} + 39\nu^{3} + 48\nu^{2} - 33\nu - 14 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} + 6\nu^{6} - 2\nu^{5} - 38\nu^{4} + 39\nu^{3} + 52\nu^{2} - 37\nu - 26 ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} - 5\nu^{6} - \nu^{5} + 31\nu^{4} - 23\nu^{3} - 35\nu^{2} + 27\nu + 10 ) / 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} - 4\nu^{6} - 5\nu^{5} + 27\nu^{4} + 2\nu^{3} - 40\nu^{2} - 2\nu + 12 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{4} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} - \beta_{6} + \beta_{5} - 2\beta_{4} - \beta_{3} + 7\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{7} - 2\beta_{6} + 9\beta_{5} - 11\beta_{4} - 2\beta_{3} + 2\beta_{2} + 14\beta _1 + 19 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 13\beta_{7} - 11\beta_{6} + 18\beta_{5} - 29\beta_{4} - 15\beta_{3} + 6\beta_{2} + 64\beta _1 + 36 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 37\beta_{7} - 29\beta_{6} + 88\beta_{5} - 115\beta_{4} - 43\beta_{3} + 32\beta_{2} + 171\beta _1 + 158 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 159\beta_{7} - 115\beta_{6} + 237\beta_{5} - 344\beta_{4} - 191\beta_{3} + 104\beta_{2} + 654\beta _1 + 401 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.45657
−0.424772
1.69962
−2.17990
3.34769
−0.822321
1.02410
−1.10098
−2.49914 −1.45657 4.24570 −3.82388 3.64018 −1.64018 −5.61232 −0.878397 9.55640
1.2 −2.29465 1.42477 3.26544 0.129361 −3.26936 5.26936 −2.90374 −0.970023 −0.296838
1.3 −1.11742 −0.699619 −0.751369 3.56228 0.781769 1.21823 3.07444 −2.51053 −3.98057
1.4 −0.177928 3.17990 −1.96834 −0.963523 −0.565793 2.56579 0.706079 7.11176 0.171438
1.5 0.231003 −2.34769 −1.94664 −1.91268 −0.542323 2.54232 −0.911685 2.51163 −0.441835
1.6 1.77567 1.82232 1.15300 1.34847 3.23584 −1.23584 −1.50399 0.320854 2.39443
1.7 2.33332 −0.0240968 3.44438 0.530938 −0.0562256 2.05623 3.37021 −2.99942 1.23885
1.8 2.74915 2.10098 5.55783 −3.87097 5.77591 −3.77591 9.78100 1.41412 −10.6419
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 341.2.a.c 8
3.b odd 2 1 3069.2.a.k 8
4.b odd 2 1 5456.2.a.ba 8
5.b even 2 1 8525.2.a.g 8
11.b odd 2 1 3751.2.a.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
341.2.a.c 8 1.a even 1 1 trivial
3069.2.a.k 8 3.b odd 2 1
3751.2.a.h 8 11.b odd 2 1
5456.2.a.ba 8 4.b odd 2 1
8525.2.a.g 8 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - T_{2}^{7} - 14T_{2}^{6} + 11T_{2}^{5} + 60T_{2}^{4} - 31T_{2}^{3} - 74T_{2}^{2} + 5T_{2} + 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(341))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{7} - 14 T^{6} + \cdots + 3 \) Copy content Toggle raw display
$3$ \( T^{8} - 4 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} + 5 T^{7} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{8} - 7 T^{7} + \cdots - 659 \) Copy content Toggle raw display
$11$ \( (T + 1)^{8} \) Copy content Toggle raw display
$13$ \( T^{8} - 8 T^{7} + \cdots + 37 \) Copy content Toggle raw display
$17$ \( T^{8} - 44 T^{6} + \cdots + 219 \) Copy content Toggle raw display
$19$ \( T^{8} - 16 T^{7} + \cdots - 4996 \) Copy content Toggle raw display
$23$ \( T^{8} - 4 T^{7} + \cdots + 372 \) Copy content Toggle raw display
$29$ \( T^{8} - 8 T^{7} + \cdots - 31728 \) Copy content Toggle raw display
$31$ \( (T - 1)^{8} \) Copy content Toggle raw display
$37$ \( T^{8} - 8 T^{7} + \cdots - 91648 \) Copy content Toggle raw display
$41$ \( T^{8} - 3 T^{7} + \cdots + 28224 \) Copy content Toggle raw display
$43$ \( T^{8} - 27 T^{7} + \cdots + 181312 \) Copy content Toggle raw display
$47$ \( T^{8} + 21 T^{7} + \cdots + 852672 \) Copy content Toggle raw display
$53$ \( T^{8} + T^{7} + \cdots - 315456 \) Copy content Toggle raw display
$59$ \( T^{8} - 16 T^{7} + \cdots + 250368 \) Copy content Toggle raw display
$61$ \( T^{8} - 23 T^{7} + \cdots - 138205 \) Copy content Toggle raw display
$67$ \( T^{8} + 10 T^{7} + \cdots - 43339328 \) Copy content Toggle raw display
$71$ \( T^{8} + 3 T^{7} + \cdots + 60864 \) Copy content Toggle raw display
$73$ \( T^{8} - 8 T^{7} + \cdots - 442769 \) Copy content Toggle raw display
$79$ \( T^{8} - 32 T^{7} + \cdots - 67328192 \) Copy content Toggle raw display
$83$ \( T^{8} + 7 T^{7} + \cdots - 960000 \) Copy content Toggle raw display
$89$ \( T^{8} + 49 T^{7} + \cdots + 31996224 \) Copy content Toggle raw display
$97$ \( T^{8} + 18 T^{7} + \cdots - 377968 \) Copy content Toggle raw display
show more
show less