Properties

Label 2-341-1.1-c1-0-7
Degree $2$
Conductor $341$
Sign $1$
Analytic cond. $2.72289$
Root an. cond. $1.65012$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.29·2-s + 1.42·3-s + 3.26·4-s + 0.129·5-s − 3.26·6-s + 5.26·7-s − 2.90·8-s − 0.970·9-s − 0.296·10-s − 11-s + 4.65·12-s + 3.51·13-s − 12.0·14-s + 0.184·15-s + 0.132·16-s − 0.540·17-s + 2.22·18-s − 0.334·19-s + 0.422·20-s + 7.50·21-s + 2.29·22-s − 0.904·23-s − 4.13·24-s − 4.98·25-s − 8.06·26-s − 5.65·27-s + 17.2·28-s + ⋯
L(s)  = 1  − 1.62·2-s + 0.822·3-s + 1.63·4-s + 0.0578·5-s − 1.33·6-s + 1.99·7-s − 1.02·8-s − 0.323·9-s − 0.0938·10-s − 0.301·11-s + 1.34·12-s + 0.974·13-s − 3.23·14-s + 0.0475·15-s + 0.0330·16-s − 0.131·17-s + 0.524·18-s − 0.0766·19-s + 0.0944·20-s + 1.63·21-s + 0.489·22-s − 0.188·23-s − 0.844·24-s − 0.996·25-s − 1.58·26-s − 1.08·27-s + 3.25·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 341 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 341 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(341\)    =    \(11 \cdot 31\)
Sign: $1$
Analytic conductor: \(2.72289\)
Root analytic conductor: \(1.65012\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 341,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9709230384\)
\(L(\frac12)\) \(\approx\) \(0.9709230384\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + T \)
31 \( 1 - T \)
good2 \( 1 + 2.29T + 2T^{2} \)
3 \( 1 - 1.42T + 3T^{2} \)
5 \( 1 - 0.129T + 5T^{2} \)
7 \( 1 - 5.26T + 7T^{2} \)
13 \( 1 - 3.51T + 13T^{2} \)
17 \( 1 + 0.540T + 17T^{2} \)
19 \( 1 + 0.334T + 19T^{2} \)
23 \( 1 + 0.904T + 23T^{2} \)
29 \( 1 - 6.91T + 29T^{2} \)
37 \( 1 - 5.97T + 37T^{2} \)
41 \( 1 + 0.490T + 41T^{2} \)
43 \( 1 - 2.57T + 43T^{2} \)
47 \( 1 - 5.55T + 47T^{2} \)
53 \( 1 - 1.08T + 53T^{2} \)
59 \( 1 + 9.04T + 59T^{2} \)
61 \( 1 + 7.98T + 61T^{2} \)
67 \( 1 + 6.94T + 67T^{2} \)
71 \( 1 - 14.0T + 71T^{2} \)
73 \( 1 + 2.35T + 73T^{2} \)
79 \( 1 + 12.2T + 79T^{2} \)
83 \( 1 + 10.3T + 83T^{2} \)
89 \( 1 + 10.8T + 89T^{2} \)
97 \( 1 + 0.0142T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.17290502650514108447368153387, −10.57136299190410424279703180022, −9.400214338361702095704860489234, −8.475064333529841326757594862020, −8.191950265121551463247036143640, −7.43286154406114048763249986488, −5.88812707906980104777215201158, −4.37825847503866865077171699056, −2.50861481026614334664281172769, −1.40997658461002008251187384492, 1.40997658461002008251187384492, 2.50861481026614334664281172769, 4.37825847503866865077171699056, 5.88812707906980104777215201158, 7.43286154406114048763249986488, 8.191950265121551463247036143640, 8.475064333529841326757594862020, 9.400214338361702095704860489234, 10.57136299190410424279703180022, 11.17290502650514108447368153387

Graph of the $Z$-function along the critical line