Properties

Label 2-341-1.1-c1-0-17
Degree $2$
Conductor $341$
Sign $1$
Analytic cond. $2.72289$
Root an. cond. $1.65012$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.77·2-s + 1.82·3-s + 1.15·4-s + 1.34·5-s + 3.23·6-s − 1.23·7-s − 1.50·8-s + 0.320·9-s + 2.39·10-s − 11-s + 2.10·12-s + 6.16·13-s − 2.19·14-s + 2.45·15-s − 4.97·16-s − 5.62·17-s + 0.569·18-s + 4.19·19-s + 1.55·20-s − 2.25·21-s − 1.77·22-s − 2.75·23-s − 2.74·24-s − 3.18·25-s + 10.9·26-s − 4.88·27-s − 1.42·28-s + ⋯
L(s)  = 1  + 1.25·2-s + 1.05·3-s + 0.576·4-s + 0.603·5-s + 1.32·6-s − 0.467·7-s − 0.531·8-s + 0.106·9-s + 0.757·10-s − 0.301·11-s + 0.606·12-s + 1.70·13-s − 0.586·14-s + 0.634·15-s − 1.24·16-s − 1.36·17-s + 0.134·18-s + 0.961·19-s + 0.347·20-s − 0.491·21-s − 0.378·22-s − 0.574·23-s − 0.559·24-s − 0.636·25-s + 2.14·26-s − 0.939·27-s − 0.269·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 341 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 341 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(341\)    =    \(11 \cdot 31\)
Sign: $1$
Analytic conductor: \(2.72289\)
Root analytic conductor: \(1.65012\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 341,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.116407664\)
\(L(\frac12)\) \(\approx\) \(3.116407664\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + T \)
31 \( 1 - T \)
good2 \( 1 - 1.77T + 2T^{2} \)
3 \( 1 - 1.82T + 3T^{2} \)
5 \( 1 - 1.34T + 5T^{2} \)
7 \( 1 + 1.23T + 7T^{2} \)
13 \( 1 - 6.16T + 13T^{2} \)
17 \( 1 + 5.62T + 17T^{2} \)
19 \( 1 - 4.19T + 19T^{2} \)
23 \( 1 + 2.75T + 23T^{2} \)
29 \( 1 + 4.15T + 29T^{2} \)
37 \( 1 - 0.867T + 37T^{2} \)
41 \( 1 - 7.84T + 41T^{2} \)
43 \( 1 - 7.77T + 43T^{2} \)
47 \( 1 - 11.1T + 47T^{2} \)
53 \( 1 + 8.89T + 53T^{2} \)
59 \( 1 - 7.95T + 59T^{2} \)
61 \( 1 + 1.75T + 61T^{2} \)
67 \( 1 + 12.4T + 67T^{2} \)
71 \( 1 + 12.4T + 71T^{2} \)
73 \( 1 - 2.40T + 73T^{2} \)
79 \( 1 - 14.5T + 79T^{2} \)
83 \( 1 - 4.75T + 83T^{2} \)
89 \( 1 - 8.77T + 89T^{2} \)
97 \( 1 - 8.77T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.71046800112327240747309012240, −10.79109875562377258916012217721, −9.342460416112551951367118356406, −8.960088533316565601567549470498, −7.73284636317464451416549847622, −6.26693184902434469025114789419, −5.71302076514270468171449904651, −4.19976776244906528898070159301, −3.34798479625447114870128448526, −2.27471665333969987914413801905, 2.27471665333969987914413801905, 3.34798479625447114870128448526, 4.19976776244906528898070159301, 5.71302076514270468171449904651, 6.26693184902434469025114789419, 7.73284636317464451416549847622, 8.960088533316565601567549470498, 9.342460416112551951367118356406, 10.79109875562377258916012217721, 11.71046800112327240747309012240

Graph of the $Z$-function along the critical line