Properties

Label 3400.1.cs.c
Level $3400$
Weight $1$
Character orbit 3400.cs
Analytic conductor $1.697$
Analytic rank $0$
Dimension $8$
Projective image $D_{10}$
CM discriminant -136
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3400,1,Mod(611,3400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3400, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 5, 8, 5])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3400.611"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3400.cs (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.69682104295\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{10} + \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{20}^{4} q^{2} + \zeta_{20}^{8} q^{4} + \zeta_{20}^{5} q^{5} + (\zeta_{20}^{9} - \zeta_{20}) q^{7} + \zeta_{20}^{2} q^{8} - \zeta_{20}^{6} q^{9} - \zeta_{20}^{9} q^{10} + (\zeta_{20}^{5} + \zeta_{20}^{3}) q^{14} + \cdots + ( - \zeta_{20}^{6} + \cdots - \zeta_{20}^{2}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{4} + 2 q^{8} - 2 q^{9} - 2 q^{16} + 2 q^{17} - 8 q^{18} - 6 q^{19} - 8 q^{25} - 8 q^{32} - 2 q^{34} - 2 q^{36} - 4 q^{38} + 16 q^{43} + 12 q^{49} - 2 q^{50} + 6 q^{59} - 2 q^{64} - 6 q^{67}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3400\mathbb{Z}\right)^\times\).

\(n\) \(1601\) \(1701\) \(2177\) \(2551\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{20}^{8}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
611.1
−0.587785 + 0.809017i
0.587785 0.809017i
0.587785 + 0.809017i
−0.587785 0.809017i
0.951057 0.309017i
−0.951057 + 0.309017i
−0.951057 0.309017i
0.951057 + 0.309017i
0.809017 0.587785i 0 0.309017 0.951057i 1.00000i 0 1.17557 −0.309017 0.951057i −0.809017 0.587785i −0.587785 0.809017i
611.2 0.809017 0.587785i 0 0.309017 0.951057i 1.00000i 0 −1.17557 −0.309017 0.951057i −0.809017 0.587785i 0.587785 + 0.809017i
1291.1 0.809017 + 0.587785i 0 0.309017 + 0.951057i 1.00000i 0 −1.17557 −0.309017 + 0.951057i −0.809017 + 0.587785i 0.587785 0.809017i
1291.2 0.809017 + 0.587785i 0 0.309017 + 0.951057i 1.00000i 0 1.17557 −0.309017 + 0.951057i −0.809017 + 0.587785i −0.587785 + 0.809017i
1971.1 −0.309017 + 0.951057i 0 −0.809017 0.587785i 1.00000i 0 −1.90211 0.809017 0.587785i 0.309017 + 0.951057i 0.951057 + 0.309017i
1971.2 −0.309017 + 0.951057i 0 −0.809017 0.587785i 1.00000i 0 1.90211 0.809017 0.587785i 0.309017 + 0.951057i −0.951057 0.309017i
3331.1 −0.309017 0.951057i 0 −0.809017 + 0.587785i 1.00000i 0 1.90211 0.809017 + 0.587785i 0.309017 0.951057i −0.951057 + 0.309017i
3331.2 −0.309017 0.951057i 0 −0.809017 + 0.587785i 1.00000i 0 −1.90211 0.809017 + 0.587785i 0.309017 0.951057i 0.951057 0.309017i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 611.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
136.e odd 2 1 CM by \(\Q(\sqrt{-34}) \)
8.d odd 2 1 inner
17.b even 2 1 inner
25.d even 5 1 inner
200.n odd 10 1 inner
425.p even 10 1 inner
3400.cs odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3400.1.cs.c 8
8.d odd 2 1 inner 3400.1.cs.c 8
17.b even 2 1 inner 3400.1.cs.c 8
25.d even 5 1 inner 3400.1.cs.c 8
136.e odd 2 1 CM 3400.1.cs.c 8
200.n odd 10 1 inner 3400.1.cs.c 8
425.p even 10 1 inner 3400.1.cs.c 8
3400.cs odd 10 1 inner 3400.1.cs.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3400.1.cs.c 8 1.a even 1 1 trivial
3400.1.cs.c 8 8.d odd 2 1 inner
3400.1.cs.c 8 17.b even 2 1 inner
3400.1.cs.c 8 25.d even 5 1 inner
3400.1.cs.c 8 136.e odd 2 1 CM
3400.1.cs.c 8 200.n odd 10 1 inner
3400.1.cs.c 8 425.p even 10 1 inner
3400.1.cs.c 8 3400.cs odd 10 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 5T_{7}^{2} + 5 \) acting on \(S_{1}^{\mathrm{new}}(3400, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} - 5 T^{2} + 5)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 10 T^{4} + \cdots + 25 \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} + 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$37$ \( T^{8} + 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T - 2)^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T^{4} - 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + 10 T^{4} + \cdots + 25 \) Copy content Toggle raw display
$67$ \( (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 10 T^{4} + \cdots + 25 \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} + 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less