Defining parameters
Level: | \( N \) | \(=\) | \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3400.cs (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3400 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(540\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3400, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 32 | 0 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 16 | 16 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3400, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3400.1.cs.a | $4$ | $1.697$ | \(\Q(\zeta_{10})\) | $D_{5}$ | \(\Q(\sqrt{-34}) \) | None | \(-1\) | \(0\) | \(-4\) | \(2\) | \(q+\zeta_{10}^{2}q^{2}+\zeta_{10}^{4}q^{4}-q^{5}+(-\zeta_{10}^{2}+\cdots)q^{7}+\cdots\) |
3400.1.cs.b | $4$ | $1.697$ | \(\Q(\zeta_{10})\) | $D_{5}$ | \(\Q(\sqrt{-34}) \) | None | \(-1\) | \(0\) | \(4\) | \(-2\) | \(q+\zeta_{10}^{2}q^{2}+\zeta_{10}^{4}q^{4}+q^{5}+(\zeta_{10}^{2}+\cdots)q^{7}+\cdots\) |
3400.1.cs.c | $8$ | $1.697$ | \(\Q(\zeta_{20})\) | $D_{10}$ | \(\Q(\sqrt{-34}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{20}^{4}q^{2}+\zeta_{20}^{8}q^{4}+\zeta_{20}^{5}q^{5}+\cdots\) |