Properties

Label 3400.1.cs
Level $3400$
Weight $1$
Character orbit 3400.cs
Rep. character $\chi_{3400}(611,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $16$
Newform subspaces $3$
Sturm bound $540$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3400.cs (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3400 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 3 \)
Sturm bound: \(540\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3400, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 16 16 0
Eisenstein series 16 16 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - 4 q^{4} - 4 q^{9} - 4 q^{16} - 4 q^{34} - 4 q^{35} - 4 q^{36} - 8 q^{38} + 32 q^{43} + 16 q^{49} - 4 q^{50} + 12 q^{59} - 4 q^{64} - 4 q^{70} - 4 q^{81} - 8 q^{83} - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3400.1.cs.a 3400.cs 3400.bs $4$ $1.697$ \(\Q(\zeta_{10})\) $D_{5}$ \(\Q(\sqrt{-34}) \) None 3400.1.cs.a \(-1\) \(0\) \(-4\) \(2\) \(q+\zeta_{10}^{2}q^{2}+\zeta_{10}^{4}q^{4}-q^{5}+(-\zeta_{10}^{2}+\cdots)q^{7}+\cdots\)
3400.1.cs.b 3400.cs 3400.bs $4$ $1.697$ \(\Q(\zeta_{10})\) $D_{5}$ \(\Q(\sqrt{-34}) \) None 3400.1.cs.a \(-1\) \(0\) \(4\) \(-2\) \(q+\zeta_{10}^{2}q^{2}+\zeta_{10}^{4}q^{4}+q^{5}+(\zeta_{10}^{2}+\cdots)q^{7}+\cdots\)
3400.1.cs.c 3400.cs 3400.bs $8$ $1.697$ \(\Q(\zeta_{20})\) $D_{10}$ \(\Q(\sqrt{-34}) \) None 3400.1.cs.c \(2\) \(0\) \(0\) \(0\) \(q-\zeta_{20}^{4}q^{2}+\zeta_{20}^{8}q^{4}+\zeta_{20}^{5}q^{5}+\cdots\)