L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + i·5-s − 1.90·7-s + (0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + (0.951 − 0.309i)10-s + (0.587 + 1.80i)14-s + (0.309 − 0.951i)16-s + (0.809 + 0.587i)17-s − 0.999·18-s + (−1.30 − 0.951i)19-s + (−0.587 − 0.809i)20-s + (0.363 + 1.11i)23-s − 25-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + i·5-s − 1.90·7-s + (0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + (0.951 − 0.309i)10-s + (0.587 + 1.80i)14-s + (0.309 − 0.951i)16-s + (0.809 + 0.587i)17-s − 0.999·18-s + (−1.30 − 0.951i)19-s + (−0.587 − 0.809i)20-s + (0.363 + 1.11i)23-s − 25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.535 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.535 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5357796501\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5357796501\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 5 | \( 1 - iT \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
good | 3 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 + 1.90T + T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.363 - 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 29 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.951 + 0.690i)T + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.587 + 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - 2T + T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.363 + 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 71 | \( 1 + (-1.53 + 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.045871251979170426105277912796, −7.68400066305056995001109605805, −7.13446083482565865097647039914, −6.29500443225531379541819096203, −5.74067767515348663471289665715, −4.12306843714713395955190449918, −3.61475953412610811394066714603, −3.01716319236378036064719094167, −2.10748875690340312301105403814, −0.40793945897465995556139615802,
1.10701117587395668348655884577, 2.60217845206672602408993503302, 3.88240879809337846934769757714, 4.53453240913539254345915703794, 5.48867144110043654670026074320, 6.04919915036573101466043933532, 6.82395221119838679907313712184, 7.53422262209496928313685427205, 8.344511960359188169001630080916, 8.918685490191186165140757300669