Properties

Label 338.8.a.m.1.3
Level $338$
Weight $8$
Character 338.1
Self dual yes
Analytic conductor $105.586$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,8,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-64,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11090 x^{6} - 22320 x^{5} + 30742777 x^{4} + 246003120 x^{3} - 12575752488 x^{2} + \cdots + 137733023376 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 13^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-32.3527\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -32.3527 q^{3} +64.0000 q^{4} +211.408 q^{5} +258.821 q^{6} +734.154 q^{7} -512.000 q^{8} -1140.31 q^{9} -1691.27 q^{10} +8597.18 q^{11} -2070.57 q^{12} -5873.23 q^{14} -6839.62 q^{15} +4096.00 q^{16} -16338.0 q^{17} +9122.45 q^{18} -3502.39 q^{19} +13530.1 q^{20} -23751.8 q^{21} -68777.4 q^{22} -65276.4 q^{23} +16564.6 q^{24} -33431.5 q^{25} +107647. q^{27} +46985.8 q^{28} -112591. q^{29} +54716.9 q^{30} +176071. q^{31} -32768.0 q^{32} -278142. q^{33} +130704. q^{34} +155206. q^{35} -72979.6 q^{36} -499275. q^{37} +28019.1 q^{38} -108241. q^{40} -289155. q^{41} +190015. q^{42} -402020. q^{43} +550219. q^{44} -241070. q^{45} +522211. q^{46} -64966.5 q^{47} -132516. q^{48} -284562. q^{49} +267452. q^{50} +528576. q^{51} +263903. q^{53} -861177. q^{54} +1.81751e6 q^{55} -375887. q^{56} +113312. q^{57} +900731. q^{58} +2.57104e6 q^{59} -437736. q^{60} -538951. q^{61} -1.40857e6 q^{62} -837160. q^{63} +262144. q^{64} +2.22513e6 q^{66} +891050. q^{67} -1.04563e6 q^{68} +2.11187e6 q^{69} -1.24165e6 q^{70} -3.95520e6 q^{71} +583837. q^{72} +2.77895e6 q^{73} +3.99420e6 q^{74} +1.08160e6 q^{75} -224153. q^{76} +6.31165e6 q^{77} +4.53826e6 q^{79} +865928. q^{80} -988822. q^{81} +2.31324e6 q^{82} +2.61022e6 q^{83} -1.52012e6 q^{84} -3.45398e6 q^{85} +3.21616e6 q^{86} +3.64263e6 q^{87} -4.40176e6 q^{88} +7.87803e6 q^{89} +1.92856e6 q^{90} -4.17769e6 q^{92} -5.69636e6 q^{93} +519732. q^{94} -740435. q^{95} +1.06013e6 q^{96} -9.14006e6 q^{97} +2.27649e6 q^{98} -9.80341e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 64 q^{2} + 512 q^{4} - 304 q^{5} - 2160 q^{7} - 4096 q^{8} + 4684 q^{9} + 2432 q^{10} - 2160 q^{11} + 17280 q^{14} - 21296 q^{15} + 32768 q^{16} + 41520 q^{17} - 37472 q^{18} - 66240 q^{19} - 19456 q^{20}+ \cdots - 44172000 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −32.3527 −0.691808 −0.345904 0.938270i \(-0.612428\pi\)
−0.345904 + 0.938270i \(0.612428\pi\)
\(4\) 64.0000 0.500000
\(5\) 211.408 0.756357 0.378179 0.925733i \(-0.376551\pi\)
0.378179 + 0.925733i \(0.376551\pi\)
\(6\) 258.821 0.489182
\(7\) 734.154 0.808991 0.404496 0.914540i \(-0.367447\pi\)
0.404496 + 0.914540i \(0.367447\pi\)
\(8\) −512.000 −0.353553
\(9\) −1140.31 −0.521402
\(10\) −1691.27 −0.534825
\(11\) 8597.18 1.94752 0.973759 0.227581i \(-0.0730816\pi\)
0.973759 + 0.227581i \(0.0730816\pi\)
\(12\) −2070.57 −0.345904
\(13\) 0 0
\(14\) −5873.23 −0.572043
\(15\) −6839.62 −0.523254
\(16\) 4096.00 0.250000
\(17\) −16338.0 −0.806541 −0.403271 0.915081i \(-0.632127\pi\)
−0.403271 + 0.915081i \(0.632127\pi\)
\(18\) 9122.45 0.368687
\(19\) −3502.39 −0.117146 −0.0585730 0.998283i \(-0.518655\pi\)
−0.0585730 + 0.998283i \(0.518655\pi\)
\(20\) 13530.1 0.378179
\(21\) −23751.8 −0.559666
\(22\) −68777.4 −1.37710
\(23\) −65276.4 −1.11869 −0.559344 0.828936i \(-0.688947\pi\)
−0.559344 + 0.828936i \(0.688947\pi\)
\(24\) 16564.6 0.244591
\(25\) −33431.5 −0.427924
\(26\) 0 0
\(27\) 107647. 1.05252
\(28\) 46985.8 0.404496
\(29\) −112591. −0.857259 −0.428630 0.903480i \(-0.641003\pi\)
−0.428630 + 0.903480i \(0.641003\pi\)
\(30\) 54716.9 0.369996
\(31\) 176071. 1.06150 0.530752 0.847527i \(-0.321909\pi\)
0.530752 + 0.847527i \(0.321909\pi\)
\(32\) −32768.0 −0.176777
\(33\) −278142. −1.34731
\(34\) 130704. 0.570311
\(35\) 155206. 0.611886
\(36\) −72979.6 −0.260701
\(37\) −499275. −1.62044 −0.810222 0.586123i \(-0.800654\pi\)
−0.810222 + 0.586123i \(0.800654\pi\)
\(38\) 28019.1 0.0828347
\(39\) 0 0
\(40\) −108241. −0.267413
\(41\) −289155. −0.655219 −0.327610 0.944813i \(-0.606243\pi\)
−0.327610 + 0.944813i \(0.606243\pi\)
\(42\) 190015. 0.395744
\(43\) −402020. −0.771096 −0.385548 0.922688i \(-0.625987\pi\)
−0.385548 + 0.922688i \(0.625987\pi\)
\(44\) 550219. 0.973759
\(45\) −241070. −0.394366
\(46\) 522211. 0.791032
\(47\) −64966.5 −0.0912739 −0.0456370 0.998958i \(-0.514532\pi\)
−0.0456370 + 0.998958i \(0.514532\pi\)
\(48\) −132516. −0.172952
\(49\) −284562. −0.345533
\(50\) 267452. 0.302588
\(51\) 528576. 0.557971
\(52\) 0 0
\(53\) 263903. 0.243489 0.121744 0.992561i \(-0.461151\pi\)
0.121744 + 0.992561i \(0.461151\pi\)
\(54\) −861177. −0.744242
\(55\) 1.81751e6 1.47302
\(56\) −375887. −0.286022
\(57\) 113312. 0.0810425
\(58\) 900731. 0.606174
\(59\) 2.57104e6 1.62977 0.814887 0.579620i \(-0.196799\pi\)
0.814887 + 0.579620i \(0.196799\pi\)
\(60\) −437736. −0.261627
\(61\) −538951. −0.304015 −0.152007 0.988379i \(-0.548574\pi\)
−0.152007 + 0.988379i \(0.548574\pi\)
\(62\) −1.40857e6 −0.750597
\(63\) −837160. −0.421810
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) 2.22513e6 0.952691
\(67\) 891050. 0.361943 0.180972 0.983488i \(-0.442076\pi\)
0.180972 + 0.983488i \(0.442076\pi\)
\(68\) −1.04563e6 −0.403271
\(69\) 2.11187e6 0.773917
\(70\) −1.24165e6 −0.432669
\(71\) −3.95520e6 −1.31149 −0.655744 0.754984i \(-0.727645\pi\)
−0.655744 + 0.754984i \(0.727645\pi\)
\(72\) 583837. 0.184343
\(73\) 2.77895e6 0.836087 0.418043 0.908427i \(-0.362716\pi\)
0.418043 + 0.908427i \(0.362716\pi\)
\(74\) 3.99420e6 1.14583
\(75\) 1.08160e6 0.296041
\(76\) −224153. −0.0585730
\(77\) 6.31165e6 1.57553
\(78\) 0 0
\(79\) 4.53826e6 1.03561 0.517803 0.855500i \(-0.326750\pi\)
0.517803 + 0.855500i \(0.326750\pi\)
\(80\) 865928. 0.189089
\(81\) −988822. −0.206738
\(82\) 2.31324e6 0.463310
\(83\) 2.61022e6 0.501076 0.250538 0.968107i \(-0.419393\pi\)
0.250538 + 0.968107i \(0.419393\pi\)
\(84\) −1.52012e6 −0.279833
\(85\) −3.45398e6 −0.610033
\(86\) 3.21616e6 0.545247
\(87\) 3.64263e6 0.593059
\(88\) −4.40176e6 −0.688552
\(89\) 7.87803e6 1.18455 0.592274 0.805737i \(-0.298230\pi\)
0.592274 + 0.805737i \(0.298230\pi\)
\(90\) 1.92856e6 0.278859
\(91\) 0 0
\(92\) −4.17769e6 −0.559344
\(93\) −5.69636e6 −0.734357
\(94\) 519732. 0.0645404
\(95\) −740435. −0.0886042
\(96\) 1.06013e6 0.122296
\(97\) −9.14006e6 −1.01683 −0.508415 0.861112i \(-0.669768\pi\)
−0.508415 + 0.861112i \(0.669768\pi\)
\(98\) 2.27649e6 0.244329
\(99\) −9.80341e6 −1.01544
\(100\) −2.13962e6 −0.213962
\(101\) −5.74830e6 −0.555155 −0.277578 0.960703i \(-0.589532\pi\)
−0.277578 + 0.960703i \(0.589532\pi\)
\(102\) −4.22861e6 −0.394545
\(103\) 9.21760e6 0.831166 0.415583 0.909555i \(-0.363578\pi\)
0.415583 + 0.909555i \(0.363578\pi\)
\(104\) 0 0
\(105\) −5.02133e6 −0.423308
\(106\) −2.11122e6 −0.172173
\(107\) −1.67150e7 −1.31905 −0.659526 0.751682i \(-0.729243\pi\)
−0.659526 + 0.751682i \(0.729243\pi\)
\(108\) 6.88942e6 0.526259
\(109\) −1.42886e7 −1.05681 −0.528403 0.848993i \(-0.677209\pi\)
−0.528403 + 0.848993i \(0.677209\pi\)
\(110\) −1.45401e7 −1.04158
\(111\) 1.61529e7 1.12104
\(112\) 3.00709e6 0.202248
\(113\) −2.19653e7 −1.43206 −0.716032 0.698067i \(-0.754044\pi\)
−0.716032 + 0.698067i \(0.754044\pi\)
\(114\) −906493. −0.0573057
\(115\) −1.38000e7 −0.846128
\(116\) −7.20585e6 −0.428630
\(117\) 0 0
\(118\) −2.05683e7 −1.15242
\(119\) −1.19946e7 −0.652485
\(120\) 3.50188e6 0.184998
\(121\) 5.44243e7 2.79283
\(122\) 4.31161e6 0.214971
\(123\) 9.35492e6 0.453286
\(124\) 1.12685e7 0.530752
\(125\) −2.35840e7 −1.08002
\(126\) 6.69728e6 0.298264
\(127\) −2.14011e7 −0.927093 −0.463546 0.886073i \(-0.653423\pi\)
−0.463546 + 0.886073i \(0.653423\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 1.30064e7 0.533450
\(130\) 0 0
\(131\) 2.79550e7 1.08645 0.543226 0.839587i \(-0.317203\pi\)
0.543226 + 0.839587i \(0.317203\pi\)
\(132\) −1.78011e7 −0.673654
\(133\) −2.57129e6 −0.0947700
\(134\) −7.12840e6 −0.255932
\(135\) 2.27575e7 0.796079
\(136\) 8.36503e6 0.285155
\(137\) −4.47783e7 −1.48780 −0.743902 0.668289i \(-0.767027\pi\)
−0.743902 + 0.668289i \(0.767027\pi\)
\(138\) −1.68949e7 −0.547242
\(139\) 2.39446e7 0.756235 0.378117 0.925758i \(-0.376572\pi\)
0.378117 + 0.925758i \(0.376572\pi\)
\(140\) 9.93319e6 0.305943
\(141\) 2.10184e6 0.0631440
\(142\) 3.16416e7 0.927362
\(143\) 0 0
\(144\) −4.67069e6 −0.130350
\(145\) −2.38028e7 −0.648394
\(146\) −2.22316e7 −0.591203
\(147\) 9.20632e6 0.239043
\(148\) −3.19536e7 −0.810222
\(149\) −3.93169e7 −0.973705 −0.486852 0.873484i \(-0.661855\pi\)
−0.486852 + 0.873484i \(0.661855\pi\)
\(150\) −8.65279e6 −0.209333
\(151\) −5.45163e7 −1.28857 −0.644284 0.764786i \(-0.722845\pi\)
−0.644284 + 0.764786i \(0.722845\pi\)
\(152\) 1.79322e6 0.0414173
\(153\) 1.86303e7 0.420532
\(154\) −5.04932e7 −1.11406
\(155\) 3.72229e7 0.802877
\(156\) 0 0
\(157\) −6.58173e7 −1.35735 −0.678674 0.734440i \(-0.737445\pi\)
−0.678674 + 0.734440i \(0.737445\pi\)
\(158\) −3.63061e7 −0.732285
\(159\) −8.53796e6 −0.168447
\(160\) −6.92743e6 −0.133706
\(161\) −4.79229e7 −0.905009
\(162\) 7.91058e6 0.146186
\(163\) 6.52159e7 1.17950 0.589748 0.807587i \(-0.299227\pi\)
0.589748 + 0.807587i \(0.299227\pi\)
\(164\) −1.85059e7 −0.327610
\(165\) −5.88014e7 −1.01905
\(166\) −2.08817e7 −0.354314
\(167\) 6.32815e7 1.05140 0.525701 0.850669i \(-0.323803\pi\)
0.525701 + 0.850669i \(0.323803\pi\)
\(168\) 1.21609e7 0.197872
\(169\) 0 0
\(170\) 2.76318e7 0.431359
\(171\) 3.99380e6 0.0610801
\(172\) −2.57293e7 −0.385548
\(173\) −7.69158e7 −1.12942 −0.564709 0.825290i \(-0.691011\pi\)
−0.564709 + 0.825290i \(0.691011\pi\)
\(174\) −2.91410e7 −0.419356
\(175\) −2.45439e7 −0.346187
\(176\) 3.52140e7 0.486880
\(177\) −8.31801e7 −1.12749
\(178\) −6.30242e7 −0.837602
\(179\) −8.64732e7 −1.12693 −0.563464 0.826141i \(-0.690532\pi\)
−0.563464 + 0.826141i \(0.690532\pi\)
\(180\) −1.54285e7 −0.197183
\(181\) 8.42468e7 1.05603 0.528017 0.849234i \(-0.322936\pi\)
0.528017 + 0.849234i \(0.322936\pi\)
\(182\) 0 0
\(183\) 1.74365e7 0.210320
\(184\) 3.34215e7 0.395516
\(185\) −1.05551e8 −1.22563
\(186\) 4.55709e7 0.519269
\(187\) −1.40460e8 −1.57075
\(188\) −4.15785e6 −0.0456370
\(189\) 7.90296e7 0.851478
\(190\) 5.92348e6 0.0626526
\(191\) −3.21926e7 −0.334302 −0.167151 0.985931i \(-0.553457\pi\)
−0.167151 + 0.985931i \(0.553457\pi\)
\(192\) −8.48105e6 −0.0864760
\(193\) −8.86497e7 −0.887620 −0.443810 0.896121i \(-0.646373\pi\)
−0.443810 + 0.896121i \(0.646373\pi\)
\(194\) 7.31205e7 0.719007
\(195\) 0 0
\(196\) −1.82119e7 −0.172767
\(197\) 8.88151e6 0.0827666 0.0413833 0.999143i \(-0.486824\pi\)
0.0413833 + 0.999143i \(0.486824\pi\)
\(198\) 7.84273e7 0.718024
\(199\) −7.90457e7 −0.711037 −0.355519 0.934669i \(-0.615696\pi\)
−0.355519 + 0.934669i \(0.615696\pi\)
\(200\) 1.71170e7 0.151294
\(201\) −2.88278e7 −0.250395
\(202\) 4.59864e7 0.392554
\(203\) −8.26594e7 −0.693515
\(204\) 3.38289e7 0.278986
\(205\) −6.11297e7 −0.495580
\(206\) −7.37408e7 −0.587723
\(207\) 7.44351e7 0.583286
\(208\) 0 0
\(209\) −3.01107e7 −0.228144
\(210\) 4.01706e7 0.299324
\(211\) −2.17540e8 −1.59423 −0.797114 0.603828i \(-0.793641\pi\)
−0.797114 + 0.603828i \(0.793641\pi\)
\(212\) 1.68898e7 0.121744
\(213\) 1.27961e8 0.907297
\(214\) 1.33720e8 0.932711
\(215\) −8.49904e7 −0.583224
\(216\) −5.51154e7 −0.372121
\(217\) 1.29263e8 0.858748
\(218\) 1.14308e8 0.747275
\(219\) −8.99065e7 −0.578411
\(220\) 1.16321e8 0.736510
\(221\) 0 0
\(222\) −1.29223e8 −0.792692
\(223\) −1.25862e8 −0.760022 −0.380011 0.924982i \(-0.624080\pi\)
−0.380011 + 0.924982i \(0.624080\pi\)
\(224\) −2.40567e7 −0.143011
\(225\) 3.81222e7 0.223120
\(226\) 1.75722e8 1.01262
\(227\) 2.64141e8 1.49880 0.749402 0.662115i \(-0.230341\pi\)
0.749402 + 0.662115i \(0.230341\pi\)
\(228\) 7.25195e6 0.0405212
\(229\) 6.38112e7 0.351134 0.175567 0.984467i \(-0.443824\pi\)
0.175567 + 0.984467i \(0.443824\pi\)
\(230\) 1.10400e8 0.598303
\(231\) −2.04199e8 −1.08996
\(232\) 5.76468e7 0.303087
\(233\) 1.58319e8 0.819947 0.409974 0.912097i \(-0.365538\pi\)
0.409974 + 0.912097i \(0.365538\pi\)
\(234\) 0 0
\(235\) −1.37344e7 −0.0690357
\(236\) 1.64547e8 0.814887
\(237\) −1.46825e8 −0.716441
\(238\) 9.59565e7 0.461376
\(239\) −2.79618e8 −1.32487 −0.662434 0.749120i \(-0.730477\pi\)
−0.662434 + 0.749120i \(0.730477\pi\)
\(240\) −2.80151e7 −0.130813
\(241\) 2.26300e8 1.04142 0.520710 0.853734i \(-0.325667\pi\)
0.520710 + 0.853734i \(0.325667\pi\)
\(242\) −4.35395e8 −1.97483
\(243\) −2.03433e8 −0.909495
\(244\) −3.44929e7 −0.152007
\(245\) −6.01587e7 −0.261347
\(246\) −7.48393e7 −0.320521
\(247\) 0 0
\(248\) −9.01484e7 −0.375299
\(249\) −8.44474e7 −0.346648
\(250\) 1.88672e8 0.763690
\(251\) 2.16438e8 0.863925 0.431962 0.901892i \(-0.357821\pi\)
0.431962 + 0.901892i \(0.357821\pi\)
\(252\) −5.35782e7 −0.210905
\(253\) −5.61193e8 −2.17867
\(254\) 1.71209e8 0.655554
\(255\) 1.11745e8 0.422026
\(256\) 1.67772e7 0.0625000
\(257\) 2.43576e8 0.895094 0.447547 0.894260i \(-0.352298\pi\)
0.447547 + 0.894260i \(0.352298\pi\)
\(258\) −1.04051e8 −0.377206
\(259\) −3.66545e8 −1.31093
\(260\) 0 0
\(261\) 1.28389e8 0.446977
\(262\) −2.23640e8 −0.768238
\(263\) −5.04503e6 −0.0171009 −0.00855045 0.999963i \(-0.502722\pi\)
−0.00855045 + 0.999963i \(0.502722\pi\)
\(264\) 1.42408e8 0.476345
\(265\) 5.57913e7 0.184164
\(266\) 2.05703e7 0.0670125
\(267\) −2.54875e8 −0.819479
\(268\) 5.70272e7 0.180972
\(269\) −4.65369e8 −1.45769 −0.728844 0.684680i \(-0.759942\pi\)
−0.728844 + 0.684680i \(0.759942\pi\)
\(270\) −1.82060e8 −0.562913
\(271\) 3.31774e8 1.01263 0.506314 0.862349i \(-0.331008\pi\)
0.506314 + 0.862349i \(0.331008\pi\)
\(272\) −6.69203e7 −0.201635
\(273\) 0 0
\(274\) 3.58226e8 1.05204
\(275\) −2.87417e8 −0.833389
\(276\) 1.35159e8 0.386959
\(277\) −4.08534e8 −1.15491 −0.577456 0.816422i \(-0.695955\pi\)
−0.577456 + 0.816422i \(0.695955\pi\)
\(278\) −1.91557e8 −0.534739
\(279\) −2.00775e8 −0.553471
\(280\) −7.94655e7 −0.216334
\(281\) 6.26412e8 1.68418 0.842089 0.539339i \(-0.181326\pi\)
0.842089 + 0.539339i \(0.181326\pi\)
\(282\) −1.68147e7 −0.0446496
\(283\) −2.74870e7 −0.0720901 −0.0360450 0.999350i \(-0.511476\pi\)
−0.0360450 + 0.999350i \(0.511476\pi\)
\(284\) −2.53133e8 −0.655744
\(285\) 2.39550e7 0.0612971
\(286\) 0 0
\(287\) −2.12284e8 −0.530066
\(288\) 3.73655e7 0.0921717
\(289\) −1.43410e8 −0.349492
\(290\) 1.90422e8 0.458484
\(291\) 2.95705e8 0.703451
\(292\) 1.77853e8 0.418043
\(293\) −1.85059e8 −0.429807 −0.214904 0.976635i \(-0.568944\pi\)
−0.214904 + 0.976635i \(0.568944\pi\)
\(294\) −7.36506e7 −0.169029
\(295\) 5.43540e8 1.23269
\(296\) 2.55629e8 0.572914
\(297\) 9.25462e8 2.04980
\(298\) 3.14535e8 0.688513
\(299\) 0 0
\(300\) 6.92223e7 0.148021
\(301\) −2.95144e8 −0.623809
\(302\) 4.36131e8 0.911155
\(303\) 1.85973e8 0.384061
\(304\) −1.43458e7 −0.0292865
\(305\) −1.13939e8 −0.229944
\(306\) −1.49042e8 −0.297361
\(307\) −2.08464e7 −0.0411194 −0.0205597 0.999789i \(-0.506545\pi\)
−0.0205597 + 0.999789i \(0.506545\pi\)
\(308\) 4.03946e8 0.787763
\(309\) −2.98214e8 −0.575007
\(310\) −2.97783e8 −0.567720
\(311\) −7.13088e7 −0.134426 −0.0672128 0.997739i \(-0.521411\pi\)
−0.0672128 + 0.997739i \(0.521411\pi\)
\(312\) 0 0
\(313\) 3.19037e8 0.588080 0.294040 0.955793i \(-0.405000\pi\)
0.294040 + 0.955793i \(0.405000\pi\)
\(314\) 5.26538e8 0.959790
\(315\) −1.76982e8 −0.319039
\(316\) 2.90449e8 0.517803
\(317\) 3.53993e8 0.624147 0.312074 0.950058i \(-0.398976\pi\)
0.312074 + 0.950058i \(0.398976\pi\)
\(318\) 6.83037e7 0.119110
\(319\) −9.67968e8 −1.66953
\(320\) 5.54194e7 0.0945447
\(321\) 5.40773e8 0.912531
\(322\) 3.83383e8 0.639938
\(323\) 5.72219e7 0.0944830
\(324\) −6.32846e7 −0.103369
\(325\) 0 0
\(326\) −5.21727e8 −0.834030
\(327\) 4.62273e8 0.731107
\(328\) 1.48047e8 0.231655
\(329\) −4.76954e7 −0.0738398
\(330\) 4.70411e8 0.720575
\(331\) −1.00884e9 −1.52907 −0.764533 0.644584i \(-0.777030\pi\)
−0.764533 + 0.644584i \(0.777030\pi\)
\(332\) 1.67054e8 0.250538
\(333\) 5.69327e8 0.844903
\(334\) −5.06252e8 −0.743454
\(335\) 1.88375e8 0.273758
\(336\) −9.72874e7 −0.139917
\(337\) −6.85528e8 −0.975709 −0.487855 0.872925i \(-0.662220\pi\)
−0.487855 + 0.872925i \(0.662220\pi\)
\(338\) 0 0
\(339\) 7.10636e8 0.990714
\(340\) −2.21055e8 −0.305017
\(341\) 1.51371e9 2.06730
\(342\) −3.19504e7 −0.0431902
\(343\) −8.13519e8 −1.08852
\(344\) 2.05834e8 0.272623
\(345\) 4.46466e8 0.585358
\(346\) 6.15327e8 0.798619
\(347\) −4.98296e8 −0.640227 −0.320114 0.947379i \(-0.603721\pi\)
−0.320114 + 0.947379i \(0.603721\pi\)
\(348\) 2.33128e8 0.296529
\(349\) 2.80984e8 0.353828 0.176914 0.984226i \(-0.443388\pi\)
0.176914 + 0.984226i \(0.443388\pi\)
\(350\) 1.96351e8 0.244791
\(351\) 0 0
\(352\) −2.81712e8 −0.344276
\(353\) 6.59832e8 0.798403 0.399201 0.916863i \(-0.369287\pi\)
0.399201 + 0.916863i \(0.369287\pi\)
\(354\) 6.65441e8 0.797256
\(355\) −8.36162e8 −0.991953
\(356\) 5.04194e8 0.592274
\(357\) 3.88056e8 0.451394
\(358\) 6.91786e8 0.796858
\(359\) −3.72973e7 −0.0425448 −0.0212724 0.999774i \(-0.506772\pi\)
−0.0212724 + 0.999774i \(0.506772\pi\)
\(360\) 1.23428e8 0.139429
\(361\) −8.81605e8 −0.986277
\(362\) −6.73974e8 −0.746729
\(363\) −1.76077e9 −1.93210
\(364\) 0 0
\(365\) 5.87494e8 0.632380
\(366\) −1.39492e8 −0.148719
\(367\) −7.20486e8 −0.760841 −0.380421 0.924814i \(-0.624221\pi\)
−0.380421 + 0.924814i \(0.624221\pi\)
\(368\) −2.67372e8 −0.279672
\(369\) 3.29725e8 0.341632
\(370\) 8.44407e8 0.866655
\(371\) 1.93745e8 0.196980
\(372\) −3.64567e8 −0.367179
\(373\) −2.91004e8 −0.290348 −0.145174 0.989406i \(-0.546374\pi\)
−0.145174 + 0.989406i \(0.546374\pi\)
\(374\) 1.12368e9 1.11069
\(375\) 7.63004e8 0.747167
\(376\) 3.32628e7 0.0322702
\(377\) 0 0
\(378\) −6.32236e8 −0.602086
\(379\) 1.05379e9 0.994303 0.497152 0.867664i \(-0.334379\pi\)
0.497152 + 0.867664i \(0.334379\pi\)
\(380\) −4.73878e7 −0.0443021
\(381\) 6.92383e8 0.641370
\(382\) 2.57541e8 0.236387
\(383\) 1.86673e9 1.69779 0.848896 0.528559i \(-0.177268\pi\)
0.848896 + 0.528559i \(0.177268\pi\)
\(384\) 6.78484e7 0.0611478
\(385\) 1.33433e9 1.19166
\(386\) 7.09198e8 0.627642
\(387\) 4.58426e8 0.402051
\(388\) −5.84964e8 −0.508415
\(389\) −1.47943e9 −1.27430 −0.637151 0.770739i \(-0.719887\pi\)
−0.637151 + 0.770739i \(0.719887\pi\)
\(390\) 0 0
\(391\) 1.06648e9 0.902268
\(392\) 1.45696e8 0.122164
\(393\) −9.04420e8 −0.751616
\(394\) −7.10521e7 −0.0585248
\(395\) 9.59426e8 0.783289
\(396\) −6.27419e8 −0.507720
\(397\) −2.25104e9 −1.80558 −0.902789 0.430084i \(-0.858484\pi\)
−0.902789 + 0.430084i \(0.858484\pi\)
\(398\) 6.32365e8 0.502779
\(399\) 8.31882e7 0.0655626
\(400\) −1.36936e8 −0.106981
\(401\) 1.87787e9 1.45432 0.727161 0.686467i \(-0.240839\pi\)
0.727161 + 0.686467i \(0.240839\pi\)
\(402\) 2.30623e8 0.177056
\(403\) 0 0
\(404\) −3.67891e8 −0.277578
\(405\) −2.09045e8 −0.156368
\(406\) 6.61275e8 0.490389
\(407\) −4.29236e9 −3.15584
\(408\) −2.70631e8 −0.197273
\(409\) 6.36851e8 0.460263 0.230132 0.973160i \(-0.426084\pi\)
0.230132 + 0.973160i \(0.426084\pi\)
\(410\) 4.89037e8 0.350428
\(411\) 1.44870e9 1.02927
\(412\) 5.89927e8 0.415583
\(413\) 1.88754e9 1.31847
\(414\) −5.95481e8 −0.412446
\(415\) 5.51821e8 0.378992
\(416\) 0 0
\(417\) −7.74673e8 −0.523169
\(418\) 2.40886e8 0.161322
\(419\) −1.55430e9 −1.03225 −0.516125 0.856513i \(-0.672626\pi\)
−0.516125 + 0.856513i \(0.672626\pi\)
\(420\) −3.21365e8 −0.211654
\(421\) 9.46533e8 0.618228 0.309114 0.951025i \(-0.399968\pi\)
0.309114 + 0.951025i \(0.399968\pi\)
\(422\) 1.74032e9 1.12729
\(423\) 7.40817e7 0.0475904
\(424\) −1.35118e8 −0.0860863
\(425\) 5.46203e8 0.345138
\(426\) −1.02369e9 −0.641556
\(427\) −3.95673e8 −0.245945
\(428\) −1.06976e9 −0.659526
\(429\) 0 0
\(430\) 6.79923e8 0.412401
\(431\) −5.19470e7 −0.0312529 −0.0156264 0.999878i \(-0.504974\pi\)
−0.0156264 + 0.999878i \(0.504974\pi\)
\(432\) 4.40923e8 0.263129
\(433\) 1.56815e9 0.928280 0.464140 0.885762i \(-0.346363\pi\)
0.464140 + 0.885762i \(0.346363\pi\)
\(434\) −1.03411e9 −0.607226
\(435\) 7.70082e8 0.448564
\(436\) −9.14467e8 −0.528403
\(437\) 2.28624e8 0.131050
\(438\) 7.19252e8 0.408999
\(439\) 8.59457e8 0.484840 0.242420 0.970171i \(-0.422059\pi\)
0.242420 + 0.970171i \(0.422059\pi\)
\(440\) −9.30568e8 −0.520791
\(441\) 3.24487e8 0.180162
\(442\) 0 0
\(443\) 3.13741e8 0.171458 0.0857292 0.996318i \(-0.472678\pi\)
0.0857292 + 0.996318i \(0.472678\pi\)
\(444\) 1.03378e9 0.560518
\(445\) 1.66548e9 0.895941
\(446\) 1.00689e9 0.537417
\(447\) 1.27201e9 0.673617
\(448\) 1.92454e8 0.101124
\(449\) −8.17430e7 −0.0426175 −0.0213088 0.999773i \(-0.506783\pi\)
−0.0213088 + 0.999773i \(0.506783\pi\)
\(450\) −3.04978e8 −0.157770
\(451\) −2.48591e9 −1.27605
\(452\) −1.40578e9 −0.716032
\(453\) 1.76375e9 0.891441
\(454\) −2.11313e9 −1.05981
\(455\) 0 0
\(456\) −5.80156e7 −0.0286528
\(457\) 1.94892e9 0.955183 0.477592 0.878582i \(-0.341510\pi\)
0.477592 + 0.878582i \(0.341510\pi\)
\(458\) −5.10490e8 −0.248289
\(459\) −1.75873e9 −0.848899
\(460\) −8.83199e8 −0.423064
\(461\) −3.46407e9 −1.64677 −0.823386 0.567481i \(-0.807918\pi\)
−0.823386 + 0.567481i \(0.807918\pi\)
\(462\) 1.63359e9 0.770719
\(463\) −1.13332e9 −0.530665 −0.265332 0.964157i \(-0.585482\pi\)
−0.265332 + 0.964157i \(0.585482\pi\)
\(464\) −4.61174e8 −0.214315
\(465\) −1.20426e9 −0.555436
\(466\) −1.26655e9 −0.579790
\(467\) −2.08755e9 −0.948479 −0.474239 0.880396i \(-0.657277\pi\)
−0.474239 + 0.880396i \(0.657277\pi\)
\(468\) 0 0
\(469\) 6.54167e8 0.292809
\(470\) 1.09876e8 0.0488156
\(471\) 2.12936e9 0.939024
\(472\) −1.31637e9 −0.576212
\(473\) −3.45624e9 −1.50172
\(474\) 1.17460e9 0.506600
\(475\) 1.17090e8 0.0501295
\(476\) −7.67652e8 −0.326242
\(477\) −3.00930e8 −0.126955
\(478\) 2.23694e9 0.936823
\(479\) 1.84769e8 0.0768164 0.0384082 0.999262i \(-0.487771\pi\)
0.0384082 + 0.999262i \(0.487771\pi\)
\(480\) 2.24121e8 0.0924991
\(481\) 0 0
\(482\) −1.81040e9 −0.736394
\(483\) 1.55043e9 0.626092
\(484\) 3.48316e9 1.39641
\(485\) −1.93228e9 −0.769086
\(486\) 1.62747e9 0.643110
\(487\) 2.28011e9 0.894551 0.447275 0.894396i \(-0.352394\pi\)
0.447275 + 0.894396i \(0.352394\pi\)
\(488\) 2.75943e8 0.107485
\(489\) −2.10991e9 −0.815985
\(490\) 4.81269e8 0.184800
\(491\) 1.95146e9 0.744003 0.372001 0.928232i \(-0.378672\pi\)
0.372001 + 0.928232i \(0.378672\pi\)
\(492\) 5.98715e8 0.226643
\(493\) 1.83951e9 0.691415
\(494\) 0 0
\(495\) −2.07252e9 −0.768035
\(496\) 7.21187e8 0.265376
\(497\) −2.90372e9 −1.06098
\(498\) 6.75579e8 0.245117
\(499\) −3.18870e9 −1.14885 −0.574423 0.818559i \(-0.694773\pi\)
−0.574423 + 0.818559i \(0.694773\pi\)
\(500\) −1.50937e9 −0.540010
\(501\) −2.04732e9 −0.727369
\(502\) −1.73151e9 −0.610887
\(503\) −1.77625e9 −0.622322 −0.311161 0.950357i \(-0.600718\pi\)
−0.311161 + 0.950357i \(0.600718\pi\)
\(504\) 4.28626e8 0.149132
\(505\) −1.21524e9 −0.419896
\(506\) 4.48955e9 1.54055
\(507\) 0 0
\(508\) −1.36967e9 −0.463546
\(509\) −5.90283e9 −1.98403 −0.992015 0.126117i \(-0.959748\pi\)
−0.992015 + 0.126117i \(0.959748\pi\)
\(510\) −8.93963e8 −0.298417
\(511\) 2.04018e9 0.676387
\(512\) −1.34218e8 −0.0441942
\(513\) −3.77023e8 −0.123298
\(514\) −1.94861e9 −0.632927
\(515\) 1.94868e9 0.628658
\(516\) 8.32411e8 0.266725
\(517\) −5.58528e8 −0.177758
\(518\) 2.93236e9 0.926964
\(519\) 2.48843e9 0.781340
\(520\) 0 0
\(521\) 2.84267e9 0.880633 0.440317 0.897843i \(-0.354866\pi\)
0.440317 + 0.897843i \(0.354866\pi\)
\(522\) −1.02711e9 −0.316060
\(523\) −3.06905e9 −0.938096 −0.469048 0.883173i \(-0.655403\pi\)
−0.469048 + 0.883173i \(0.655403\pi\)
\(524\) 1.78912e9 0.543226
\(525\) 7.94060e8 0.239495
\(526\) 4.03603e7 0.0120922
\(527\) −2.87664e9 −0.856147
\(528\) −1.13927e9 −0.336827
\(529\) 8.56187e8 0.251463
\(530\) −4.46330e8 −0.130224
\(531\) −2.93178e9 −0.849767
\(532\) −1.64563e8 −0.0473850
\(533\) 0 0
\(534\) 2.03900e9 0.579459
\(535\) −3.53368e9 −0.997675
\(536\) −4.56218e8 −0.127966
\(537\) 2.79764e9 0.779617
\(538\) 3.72295e9 1.03074
\(539\) −2.44643e9 −0.672933
\(540\) 1.45648e9 0.398040
\(541\) −2.24439e9 −0.609407 −0.304703 0.952447i \(-0.598557\pi\)
−0.304703 + 0.952447i \(0.598557\pi\)
\(542\) −2.65419e9 −0.716036
\(543\) −2.72561e9 −0.730573
\(544\) 5.35362e8 0.142578
\(545\) −3.02072e9 −0.799323
\(546\) 0 0
\(547\) −3.05066e9 −0.796963 −0.398481 0.917176i \(-0.630463\pi\)
−0.398481 + 0.917176i \(0.630463\pi\)
\(548\) −2.86581e9 −0.743902
\(549\) 6.14569e8 0.158514
\(550\) 2.29934e9 0.589295
\(551\) 3.94339e8 0.100424
\(552\) −1.08128e9 −0.273621
\(553\) 3.33178e9 0.837797
\(554\) 3.26827e9 0.816646
\(555\) 3.41485e9 0.847904
\(556\) 1.53246e9 0.378117
\(557\) −1.98131e9 −0.485801 −0.242901 0.970051i \(-0.578099\pi\)
−0.242901 + 0.970051i \(0.578099\pi\)
\(558\) 1.60620e9 0.391363
\(559\) 0 0
\(560\) 6.35724e8 0.152972
\(561\) 4.54426e9 1.08666
\(562\) −5.01129e9 −1.19089
\(563\) 6.38984e9 1.50907 0.754537 0.656257i \(-0.227861\pi\)
0.754537 + 0.656257i \(0.227861\pi\)
\(564\) 1.34518e8 0.0315720
\(565\) −4.64365e9 −1.08315
\(566\) 2.19896e8 0.0509754
\(567\) −7.25947e8 −0.167249
\(568\) 2.02506e9 0.463681
\(569\) −3.95616e9 −0.900286 −0.450143 0.892956i \(-0.648627\pi\)
−0.450143 + 0.892956i \(0.648627\pi\)
\(570\) −1.91640e8 −0.0433436
\(571\) 1.72462e9 0.387675 0.193837 0.981034i \(-0.437907\pi\)
0.193837 + 0.981034i \(0.437907\pi\)
\(572\) 0 0
\(573\) 1.04152e9 0.231273
\(574\) 1.69827e9 0.374814
\(575\) 2.18229e9 0.478713
\(576\) −2.98924e8 −0.0651752
\(577\) −1.44292e9 −0.312698 −0.156349 0.987702i \(-0.549973\pi\)
−0.156349 + 0.987702i \(0.549973\pi\)
\(578\) 1.14728e9 0.247128
\(579\) 2.86805e9 0.614062
\(580\) −1.52338e9 −0.324197
\(581\) 1.91630e9 0.405366
\(582\) −2.36564e9 −0.497415
\(583\) 2.26882e9 0.474199
\(584\) −1.42282e9 −0.295601
\(585\) 0 0
\(586\) 1.48047e9 0.303919
\(587\) −5.41113e9 −1.10422 −0.552108 0.833772i \(-0.686177\pi\)
−0.552108 + 0.833772i \(0.686177\pi\)
\(588\) 5.89205e8 0.119521
\(589\) −6.16670e8 −0.124351
\(590\) −4.34832e9 −0.871644
\(591\) −2.87341e8 −0.0572586
\(592\) −2.04503e9 −0.405111
\(593\) 1.30921e9 0.257820 0.128910 0.991656i \(-0.458852\pi\)
0.128910 + 0.991656i \(0.458852\pi\)
\(594\) −7.40370e9 −1.44943
\(595\) −2.53575e9 −0.493511
\(596\) −2.51628e9 −0.486852
\(597\) 2.55734e9 0.491901
\(598\) 0 0
\(599\) −5.82086e9 −1.10661 −0.553303 0.832980i \(-0.686633\pi\)
−0.553303 + 0.832980i \(0.686633\pi\)
\(600\) −5.53779e8 −0.104666
\(601\) −9.30512e9 −1.74848 −0.874241 0.485492i \(-0.838641\pi\)
−0.874241 + 0.485492i \(0.838641\pi\)
\(602\) 2.36116e9 0.441100
\(603\) −1.01607e9 −0.188718
\(604\) −3.48905e9 −0.644284
\(605\) 1.15057e10 2.11238
\(606\) −1.48778e9 −0.271572
\(607\) −3.54931e9 −0.644145 −0.322072 0.946715i \(-0.604379\pi\)
−0.322072 + 0.946715i \(0.604379\pi\)
\(608\) 1.14766e8 0.0207087
\(609\) 2.67425e9 0.479779
\(610\) 9.11509e8 0.162595
\(611\) 0 0
\(612\) 1.19234e9 0.210266
\(613\) −6.21892e9 −1.09044 −0.545222 0.838292i \(-0.683555\pi\)
−0.545222 + 0.838292i \(0.683555\pi\)
\(614\) 1.66771e8 0.0290758
\(615\) 1.97771e9 0.342846
\(616\) −3.23156e9 −0.557032
\(617\) −3.25505e9 −0.557905 −0.278952 0.960305i \(-0.589987\pi\)
−0.278952 + 0.960305i \(0.589987\pi\)
\(618\) 2.38571e9 0.406591
\(619\) −8.80728e9 −1.49254 −0.746268 0.665646i \(-0.768156\pi\)
−0.746268 + 0.665646i \(0.768156\pi\)
\(620\) 2.38226e9 0.401438
\(621\) −7.02682e9 −1.17744
\(622\) 5.70470e8 0.0950532
\(623\) 5.78368e9 0.958289
\(624\) 0 0
\(625\) −2.37401e9 −0.388957
\(626\) −2.55230e9 −0.415835
\(627\) 9.74161e8 0.157832
\(628\) −4.21230e9 −0.678674
\(629\) 8.15714e9 1.30695
\(630\) 1.41586e9 0.225594
\(631\) 4.89230e9 0.775194 0.387597 0.921829i \(-0.373305\pi\)
0.387597 + 0.921829i \(0.373305\pi\)
\(632\) −2.32359e9 −0.366142
\(633\) 7.03800e9 1.10290
\(634\) −2.83194e9 −0.441339
\(635\) −4.52437e9 −0.701213
\(636\) −5.46430e8 −0.0842237
\(637\) 0 0
\(638\) 7.74375e9 1.18053
\(639\) 4.51014e9 0.683812
\(640\) −4.43355e8 −0.0668532
\(641\) 2.90582e9 0.435778 0.217889 0.975974i \(-0.430083\pi\)
0.217889 + 0.975974i \(0.430083\pi\)
\(642\) −4.32618e9 −0.645257
\(643\) 3.76445e8 0.0558422 0.0279211 0.999610i \(-0.491111\pi\)
0.0279211 + 0.999610i \(0.491111\pi\)
\(644\) −3.06707e9 −0.452504
\(645\) 2.74966e9 0.403479
\(646\) −4.57775e8 −0.0668096
\(647\) 3.39531e9 0.492850 0.246425 0.969162i \(-0.420744\pi\)
0.246425 + 0.969162i \(0.420744\pi\)
\(648\) 5.06277e8 0.0730930
\(649\) 2.21037e10 3.17401
\(650\) 0 0
\(651\) −4.18201e9 −0.594089
\(652\) 4.17382e9 0.589748
\(653\) 1.29254e10 1.81655 0.908273 0.418378i \(-0.137401\pi\)
0.908273 + 0.418378i \(0.137401\pi\)
\(654\) −3.69818e9 −0.516971
\(655\) 5.90993e9 0.821746
\(656\) −1.18438e9 −0.163805
\(657\) −3.16886e9 −0.435937
\(658\) 3.81563e8 0.0522126
\(659\) 5.00014e9 0.680586 0.340293 0.940319i \(-0.389474\pi\)
0.340293 + 0.940319i \(0.389474\pi\)
\(660\) −3.76329e9 −0.509523
\(661\) −1.27889e10 −1.72238 −0.861189 0.508285i \(-0.830279\pi\)
−0.861189 + 0.508285i \(0.830279\pi\)
\(662\) 8.07076e9 1.08121
\(663\) 0 0
\(664\) −1.33643e9 −0.177157
\(665\) −5.43593e8 −0.0716800
\(666\) −4.55461e9 −0.597436
\(667\) 7.34956e9 0.959006
\(668\) 4.05002e9 0.525701
\(669\) 4.07196e9 0.525789
\(670\) −1.50700e9 −0.193576
\(671\) −4.63346e9 −0.592074
\(672\) 7.78299e8 0.0989360
\(673\) 3.92175e9 0.495937 0.247969 0.968768i \(-0.420237\pi\)
0.247969 + 0.968768i \(0.420237\pi\)
\(674\) 5.48422e9 0.689931
\(675\) −3.59881e9 −0.450397
\(676\) 0 0
\(677\) 1.10745e10 1.37171 0.685855 0.727739i \(-0.259429\pi\)
0.685855 + 0.727739i \(0.259429\pi\)
\(678\) −5.68509e9 −0.700540
\(679\) −6.71021e9 −0.822606
\(680\) 1.76844e9 0.215679
\(681\) −8.54565e9 −1.03688
\(682\) −1.21097e10 −1.46180
\(683\) 2.65815e9 0.319232 0.159616 0.987179i \(-0.448974\pi\)
0.159616 + 0.987179i \(0.448974\pi\)
\(684\) 2.55603e8 0.0305401
\(685\) −9.46650e9 −1.12531
\(686\) 6.50815e9 0.769703
\(687\) −2.06446e9 −0.242917
\(688\) −1.64667e9 −0.192774
\(689\) 0 0
\(690\) −3.57173e9 −0.413910
\(691\) 3.23306e9 0.372770 0.186385 0.982477i \(-0.440323\pi\)
0.186385 + 0.982477i \(0.440323\pi\)
\(692\) −4.92261e9 −0.564709
\(693\) −7.19721e9 −0.821482
\(694\) 3.98637e9 0.452709
\(695\) 5.06210e9 0.571984
\(696\) −1.86503e9 −0.209678
\(697\) 4.72419e9 0.528461
\(698\) −2.24787e9 −0.250194
\(699\) −5.12202e9 −0.567246
\(700\) −1.57081e9 −0.173093
\(701\) 1.01439e10 1.11223 0.556114 0.831106i \(-0.312292\pi\)
0.556114 + 0.831106i \(0.312292\pi\)
\(702\) 0 0
\(703\) 1.74866e9 0.189828
\(704\) 2.25370e9 0.243440
\(705\) 4.44346e8 0.0477594
\(706\) −5.27866e9 −0.564556
\(707\) −4.22013e9 −0.449116
\(708\) −5.32352e9 −0.563745
\(709\) −2.65037e8 −0.0279283 −0.0139642 0.999902i \(-0.504445\pi\)
−0.0139642 + 0.999902i \(0.504445\pi\)
\(710\) 6.68929e9 0.701417
\(711\) −5.17501e9 −0.539967
\(712\) −4.03355e9 −0.418801
\(713\) −1.14933e10 −1.18749
\(714\) −3.10445e9 −0.319184
\(715\) 0 0
\(716\) −5.53429e9 −0.563464
\(717\) 9.04639e9 0.916554
\(718\) 2.98378e8 0.0300837
\(719\) 2.61758e9 0.262633 0.131317 0.991340i \(-0.458080\pi\)
0.131317 + 0.991340i \(0.458080\pi\)
\(720\) −9.87423e8 −0.0985915
\(721\) 6.76714e9 0.672406
\(722\) 7.05284e9 0.697403
\(723\) −7.32142e9 −0.720462
\(724\) 5.39179e9 0.528017
\(725\) 3.76410e9 0.366842
\(726\) 1.40862e10 1.36620
\(727\) −1.98815e10 −1.91902 −0.959509 0.281676i \(-0.909110\pi\)
−0.959509 + 0.281676i \(0.909110\pi\)
\(728\) 0 0
\(729\) 8.74416e9 0.835934
\(730\) −4.69995e9 −0.447160
\(731\) 6.56819e9 0.621920
\(732\) 1.11594e9 0.105160
\(733\) −1.77576e10 −1.66541 −0.832703 0.553720i \(-0.813208\pi\)
−0.832703 + 0.553720i \(0.813208\pi\)
\(734\) 5.76388e9 0.537996
\(735\) 1.94629e9 0.180802
\(736\) 2.13898e9 0.197758
\(737\) 7.66052e9 0.704891
\(738\) −2.63780e9 −0.241571
\(739\) 1.12945e10 1.02947 0.514734 0.857350i \(-0.327891\pi\)
0.514734 + 0.857350i \(0.327891\pi\)
\(740\) −6.75526e9 −0.612817
\(741\) 0 0
\(742\) −1.54996e9 −0.139286
\(743\) −7.83255e9 −0.700555 −0.350278 0.936646i \(-0.613913\pi\)
−0.350278 + 0.936646i \(0.613913\pi\)
\(744\) 2.91654e9 0.259635
\(745\) −8.31192e9 −0.736469
\(746\) 2.32803e9 0.205307
\(747\) −2.97645e9 −0.261262
\(748\) −8.98946e9 −0.785377
\(749\) −1.22713e10 −1.06710
\(750\) −6.10403e9 −0.528327
\(751\) −2.35874e9 −0.203208 −0.101604 0.994825i \(-0.532397\pi\)
−0.101604 + 0.994825i \(0.532397\pi\)
\(752\) −2.66103e8 −0.0228185
\(753\) −7.00235e9 −0.597670
\(754\) 0 0
\(755\) −1.15252e10 −0.974618
\(756\) 5.05789e9 0.425739
\(757\) 1.28454e10 1.07625 0.538125 0.842865i \(-0.319133\pi\)
0.538125 + 0.842865i \(0.319133\pi\)
\(758\) −8.43036e9 −0.703079
\(759\) 1.81561e10 1.50722
\(760\) 3.79103e8 0.0313263
\(761\) 9.88665e8 0.0813210 0.0406605 0.999173i \(-0.487054\pi\)
0.0406605 + 0.999173i \(0.487054\pi\)
\(762\) −5.53906e9 −0.453517
\(763\) −1.04900e10 −0.854947
\(764\) −2.06033e9 −0.167151
\(765\) 3.93859e9 0.318072
\(766\) −1.49338e10 −1.20052
\(767\) 0 0
\(768\) −5.42787e8 −0.0432380
\(769\) −1.33874e10 −1.06158 −0.530792 0.847502i \(-0.678106\pi\)
−0.530792 + 0.847502i \(0.678106\pi\)
\(770\) −1.06747e10 −0.842631
\(771\) −7.88033e9 −0.619233
\(772\) −5.67358e9 −0.443810
\(773\) 1.06787e10 0.831551 0.415776 0.909467i \(-0.363510\pi\)
0.415776 + 0.909467i \(0.363510\pi\)
\(774\) −3.66741e9 −0.284293
\(775\) −5.88633e9 −0.454243
\(776\) 4.67971e9 0.359503
\(777\) 1.18587e10 0.906908
\(778\) 1.18355e10 0.901067
\(779\) 1.01273e9 0.0767562
\(780\) 0 0
\(781\) −3.40036e10 −2.55415
\(782\) −8.53187e9 −0.638000
\(783\) −1.21201e10 −0.902281
\(784\) −1.16556e9 −0.0863833
\(785\) −1.39143e10 −1.02664
\(786\) 7.23536e9 0.531473
\(787\) −1.54726e10 −1.13150 −0.565748 0.824579i \(-0.691412\pi\)
−0.565748 + 0.824579i \(0.691412\pi\)
\(788\) 5.68417e8 0.0413833
\(789\) 1.63220e8 0.0118305
\(790\) −7.67541e9 −0.553869
\(791\) −1.61259e10 −1.15853
\(792\) 5.01935e9 0.359012
\(793\) 0 0
\(794\) 1.80083e10 1.27674
\(795\) −1.80500e9 −0.127406
\(796\) −5.05892e9 −0.355519
\(797\) 1.83143e10 1.28141 0.640703 0.767789i \(-0.278643\pi\)
0.640703 + 0.767789i \(0.278643\pi\)
\(798\) −6.65505e8 −0.0463598
\(799\) 1.06142e9 0.0736162
\(800\) 1.09548e9 0.0756470
\(801\) −8.98336e9 −0.617625
\(802\) −1.50230e10 −1.02836
\(803\) 2.38912e10 1.62829
\(804\) −1.84498e9 −0.125198
\(805\) −1.01313e10 −0.684510
\(806\) 0 0
\(807\) 1.50559e10 1.00844
\(808\) 2.94313e9 0.196277
\(809\) 6.06212e9 0.402536 0.201268 0.979536i \(-0.435494\pi\)
0.201268 + 0.979536i \(0.435494\pi\)
\(810\) 1.67236e9 0.110569
\(811\) 2.18462e10 1.43815 0.719074 0.694933i \(-0.244566\pi\)
0.719074 + 0.694933i \(0.244566\pi\)
\(812\) −5.29020e9 −0.346758
\(813\) −1.07338e10 −0.700544
\(814\) 3.43389e10 2.23152
\(815\) 1.37872e10 0.892121
\(816\) 2.16505e9 0.139493
\(817\) 1.40803e9 0.0903307
\(818\) −5.09481e9 −0.325455
\(819\) 0 0
\(820\) −3.91230e9 −0.247790
\(821\) 2.61422e10 1.64870 0.824350 0.566080i \(-0.191541\pi\)
0.824350 + 0.566080i \(0.191541\pi\)
\(822\) −1.15896e10 −0.727807
\(823\) 8.16231e9 0.510403 0.255202 0.966888i \(-0.417858\pi\)
0.255202 + 0.966888i \(0.417858\pi\)
\(824\) −4.71941e9 −0.293862
\(825\) 9.29870e9 0.576545
\(826\) −1.51003e10 −0.932301
\(827\) 2.10648e10 1.29505 0.647527 0.762042i \(-0.275803\pi\)
0.647527 + 0.762042i \(0.275803\pi\)
\(828\) 4.76385e9 0.291643
\(829\) 2.88820e10 1.76071 0.880353 0.474319i \(-0.157306\pi\)
0.880353 + 0.474319i \(0.157306\pi\)
\(830\) −4.41457e9 −0.267988
\(831\) 1.32172e10 0.798977
\(832\) 0 0
\(833\) 4.64915e9 0.278687
\(834\) 6.19738e9 0.369936
\(835\) 1.33782e10 0.795236
\(836\) −1.92708e9 −0.114072
\(837\) 1.89535e10 1.11725
\(838\) 1.24344e10 0.729911
\(839\) 1.18330e10 0.691719 0.345859 0.938286i \(-0.387587\pi\)
0.345859 + 0.938286i \(0.387587\pi\)
\(840\) 2.57092e9 0.149662
\(841\) −4.57306e9 −0.265107
\(842\) −7.57226e9 −0.437153
\(843\) −2.02661e10 −1.16513
\(844\) −1.39226e10 −0.797114
\(845\) 0 0
\(846\) −5.92653e8 −0.0336515
\(847\) 3.99558e10 2.25937
\(848\) 1.08095e9 0.0608722
\(849\) 8.89278e8 0.0498725
\(850\) −4.36962e9 −0.244049
\(851\) 3.25909e10 1.81277
\(852\) 8.18951e9 0.453649
\(853\) 4.54152e9 0.250542 0.125271 0.992123i \(-0.460020\pi\)
0.125271 + 0.992123i \(0.460020\pi\)
\(854\) 3.16538e9 0.173910
\(855\) 8.44322e8 0.0461984
\(856\) 8.55806e9 0.466355
\(857\) −2.71958e10 −1.47594 −0.737971 0.674833i \(-0.764216\pi\)
−0.737971 + 0.674833i \(0.764216\pi\)
\(858\) 0 0
\(859\) −1.24708e10 −0.671304 −0.335652 0.941986i \(-0.608957\pi\)
−0.335652 + 0.941986i \(0.608957\pi\)
\(860\) −5.43938e9 −0.291612
\(861\) 6.86794e9 0.366704
\(862\) 4.15576e8 0.0220991
\(863\) −3.88024e9 −0.205504 −0.102752 0.994707i \(-0.532765\pi\)
−0.102752 + 0.994707i \(0.532765\pi\)
\(864\) −3.52738e9 −0.186061
\(865\) −1.62606e10 −0.854243
\(866\) −1.25452e10 −0.656393
\(867\) 4.63969e9 0.241781
\(868\) 8.27284e9 0.429374
\(869\) 3.90163e10 2.01686
\(870\) −6.16066e9 −0.317183
\(871\) 0 0
\(872\) 7.31574e9 0.373638
\(873\) 1.04225e10 0.530177
\(874\) −1.82899e9 −0.0926662
\(875\) −1.73143e10 −0.873727
\(876\) −5.75402e9 −0.289206
\(877\) −3.12728e10 −1.56555 −0.782777 0.622302i \(-0.786198\pi\)
−0.782777 + 0.622302i \(0.786198\pi\)
\(878\) −6.87566e9 −0.342834
\(879\) 5.98715e9 0.297344
\(880\) 7.44454e9 0.368255
\(881\) 8.00605e9 0.394460 0.197230 0.980357i \(-0.436805\pi\)
0.197230 + 0.980357i \(0.436805\pi\)
\(882\) −2.59590e9 −0.127394
\(883\) −5.19038e9 −0.253709 −0.126855 0.991921i \(-0.540488\pi\)
−0.126855 + 0.991921i \(0.540488\pi\)
\(884\) 0 0
\(885\) −1.75850e10 −0.852785
\(886\) −2.50993e9 −0.121239
\(887\) 2.60354e10 1.25266 0.626329 0.779559i \(-0.284557\pi\)
0.626329 + 0.779559i \(0.284557\pi\)
\(888\) −8.27028e9 −0.396346
\(889\) −1.57117e10 −0.750010
\(890\) −1.33238e10 −0.633526
\(891\) −8.50108e9 −0.402626
\(892\) −8.05514e9 −0.380011
\(893\) 2.27538e8 0.0106924
\(894\) −1.01760e10 −0.476319
\(895\) −1.82812e10 −0.852360
\(896\) −1.53963e9 −0.0715054
\(897\) 0 0
\(898\) 6.53944e8 0.0301351
\(899\) −1.98241e10 −0.909985
\(900\) 2.43982e9 0.111560
\(901\) −4.31164e9 −0.196384
\(902\) 1.98873e10 0.902304
\(903\) 9.54871e9 0.431556
\(904\) 1.12462e10 0.506311
\(905\) 1.78105e10 0.798740
\(906\) −1.41100e10 −0.630344
\(907\) −3.66202e10 −1.62965 −0.814826 0.579706i \(-0.803167\pi\)
−0.814826 + 0.579706i \(0.803167\pi\)
\(908\) 1.69050e10 0.749402
\(909\) 6.55482e9 0.289459
\(910\) 0 0
\(911\) 3.91136e10 1.71401 0.857006 0.515306i \(-0.172322\pi\)
0.857006 + 0.515306i \(0.172322\pi\)
\(912\) 4.64125e8 0.0202606
\(913\) 2.24405e10 0.975854
\(914\) −1.55913e10 −0.675416
\(915\) 3.68622e9 0.159077
\(916\) 4.08392e9 0.175567
\(917\) 2.05233e10 0.878930
\(918\) 1.40699e10 0.600262
\(919\) 1.29642e10 0.550986 0.275493 0.961303i \(-0.411159\pi\)
0.275493 + 0.961303i \(0.411159\pi\)
\(920\) 7.06559e9 0.299151
\(921\) 6.74436e8 0.0284467
\(922\) 2.77126e10 1.16444
\(923\) 0 0
\(924\) −1.30687e10 −0.544980
\(925\) 1.66915e10 0.693427
\(926\) 9.06659e9 0.375237
\(927\) −1.05109e10 −0.433372
\(928\) 3.68939e9 0.151543
\(929\) 5.89433e9 0.241201 0.120601 0.992701i \(-0.461518\pi\)
0.120601 + 0.992701i \(0.461518\pi\)
\(930\) 9.63407e9 0.392753
\(931\) 9.96646e8 0.0404778
\(932\) 1.01324e10 0.409974
\(933\) 2.30703e9 0.0929966
\(934\) 1.67004e10 0.670676
\(935\) −2.96945e10 −1.18805
\(936\) 0 0
\(937\) 2.40381e10 0.954577 0.477288 0.878747i \(-0.341620\pi\)
0.477288 + 0.878747i \(0.341620\pi\)
\(938\) −5.23334e9 −0.207047
\(939\) −1.03217e10 −0.406838
\(940\) −8.79005e8 −0.0345178
\(941\) −5.30161e9 −0.207417 −0.103708 0.994608i \(-0.533071\pi\)
−0.103708 + 0.994608i \(0.533071\pi\)
\(942\) −1.70349e10 −0.663990
\(943\) 1.88750e10 0.732986
\(944\) 1.05310e10 0.407443
\(945\) 1.67075e10 0.644021
\(946\) 2.76499e10 1.06188
\(947\) 2.87596e10 1.10042 0.550210 0.835027i \(-0.314548\pi\)
0.550210 + 0.835027i \(0.314548\pi\)
\(948\) −9.39679e9 −0.358220
\(949\) 0 0
\(950\) −9.36723e8 −0.0354469
\(951\) −1.14526e10 −0.431790
\(952\) 6.14122e9 0.230688
\(953\) −3.46970e10 −1.29858 −0.649288 0.760543i \(-0.724933\pi\)
−0.649288 + 0.760543i \(0.724933\pi\)
\(954\) 2.40744e9 0.0897711
\(955\) −6.80578e9 −0.252852
\(956\) −1.78956e10 −0.662434
\(957\) 3.13163e10 1.15499
\(958\) −1.47815e9 −0.0543174
\(959\) −3.28741e10 −1.20362
\(960\) −1.79296e9 −0.0654067
\(961\) 3.48839e9 0.126792
\(962\) 0 0
\(963\) 1.90602e10 0.687756
\(964\) 1.44832e10 0.520710
\(965\) −1.87413e10 −0.671358
\(966\) −1.24035e10 −0.442714
\(967\) 2.32799e10 0.827921 0.413960 0.910295i \(-0.364145\pi\)
0.413960 + 0.910295i \(0.364145\pi\)
\(968\) −2.78652e10 −0.987414
\(969\) −1.85128e9 −0.0653641
\(970\) 1.54583e10 0.543826
\(971\) −2.08019e9 −0.0729181 −0.0364591 0.999335i \(-0.511608\pi\)
−0.0364591 + 0.999335i \(0.511608\pi\)
\(972\) −1.30197e10 −0.454747
\(973\) 1.75790e10 0.611787
\(974\) −1.82409e10 −0.632543
\(975\) 0 0
\(976\) −2.20754e9 −0.0760037
\(977\) −9.82633e9 −0.337101 −0.168551 0.985693i \(-0.553909\pi\)
−0.168551 + 0.985693i \(0.553909\pi\)
\(978\) 1.68793e10 0.576989
\(979\) 6.77288e10 2.30693
\(980\) −3.85015e9 −0.130673
\(981\) 1.62933e10 0.551021
\(982\) −1.56117e10 −0.526089
\(983\) 3.81722e10 1.28177 0.640885 0.767637i \(-0.278568\pi\)
0.640885 + 0.767637i \(0.278568\pi\)
\(984\) −4.78972e9 −0.160261
\(985\) 1.87763e9 0.0626011
\(986\) −1.47161e10 −0.488904
\(987\) 1.54307e9 0.0510830
\(988\) 0 0
\(989\) 2.62424e10 0.862615
\(990\) 1.65802e10 0.543083
\(991\) 1.33232e10 0.434860 0.217430 0.976076i \(-0.430233\pi\)
0.217430 + 0.976076i \(0.430233\pi\)
\(992\) −5.76949e9 −0.187649
\(993\) 3.26388e10 1.05782
\(994\) 2.32298e10 0.750227
\(995\) −1.67109e10 −0.537798
\(996\) −5.40464e9 −0.173324
\(997\) 3.83592e10 1.22585 0.612923 0.790142i \(-0.289993\pi\)
0.612923 + 0.790142i \(0.289993\pi\)
\(998\) 2.55096e10 0.812356
\(999\) −5.37456e10 −1.70555
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.8.a.m.1.3 8
13.2 odd 12 26.8.e.a.17.3 16
13.5 odd 4 338.8.b.i.337.11 16
13.7 odd 12 26.8.e.a.23.3 yes 16
13.8 odd 4 338.8.b.i.337.3 16
13.12 even 2 338.8.a.n.1.3 8
39.2 even 12 234.8.l.c.199.7 16
39.20 even 12 234.8.l.c.127.6 16
52.7 even 12 208.8.w.b.49.3 16
52.15 even 12 208.8.w.b.17.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.e.a.17.3 16 13.2 odd 12
26.8.e.a.23.3 yes 16 13.7 odd 12
208.8.w.b.17.3 16 52.15 even 12
208.8.w.b.49.3 16 52.7 even 12
234.8.l.c.127.6 16 39.20 even 12
234.8.l.c.199.7 16 39.2 even 12
338.8.a.m.1.3 8 1.1 even 1 trivial
338.8.a.n.1.3 8 13.12 even 2
338.8.b.i.337.3 16 13.8 odd 4
338.8.b.i.337.11 16 13.5 odd 4