Properties

Label 208.8.w.b.17.3
Level $208$
Weight $8$
Character 208.17
Analytic conductor $64.976$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,8,Mod(17,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.17"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 208.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.9760853007\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 22180 x^{14} + 184473654 x^{12} + 707524481236 x^{10} + \cdots + 18\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{4}\cdot 13^{2} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.3
Root \(-32.3527i\) of defining polynomial
Character \(\chi\) \(=\) 208.17
Dual form 208.8.w.b.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-16.1763 + 28.0182i) q^{3} -211.408i q^{5} +(-635.796 + 367.077i) q^{7} +(570.153 + 987.534i) q^{9} +(7445.38 + 4298.59i) q^{11} +(-6928.10 - 3840.57i) q^{13} +(5923.28 + 3419.81i) q^{15} +(-8168.98 - 14149.1i) q^{17} +(-3033.16 + 1751.20i) q^{19} -23751.8i q^{21} +(32638.2 - 56531.0i) q^{23} +33431.5 q^{25} -107647. q^{27} +(56295.7 - 97507.0i) q^{29} +176071. i q^{31} +(-240878. + 139071. i) q^{33} +(77603.1 + 134412. i) q^{35} +(432385. + 249638. i) q^{37} +(219677. - 131987. i) q^{39} +(-250415. - 144577. i) q^{41} +(201010. + 348160. i) q^{43} +(208773. - 120535. i) q^{45} +64966.5i q^{47} +(-142281. + 246438. i) q^{49} +528576. q^{51} +263903. q^{53} +(908757. - 1.57401e6i) q^{55} -113312. i q^{57} +(-2.22659e6 + 1.28552e6i) q^{59} +(269475. + 466745. i) q^{61} +(-725002. - 418580. i) q^{63} +(-811929. + 1.46466e6i) q^{65} +(-771672. - 445525. i) q^{67} +(1.05593e6 + 1.82893e6i) q^{69} +(-3.42530e6 + 1.97760e6i) q^{71} +2.77895e6i q^{73} +(-540800. + 936692. i) q^{75} -6.31165e6 q^{77} -4.53826e6 q^{79} +(494411. - 856345. i) q^{81} +2.61022e6i q^{83} +(-2.99123e6 + 1.72699e6i) q^{85} +(1.82131e6 + 3.15461e6i) q^{87} +(-6.82257e6 - 3.93901e6i) q^{89} +(5.81464e6 - 101323. i) q^{91} +(-4.93320e6 - 2.84818e6i) q^{93} +(370217. + 641235. i) q^{95} +(7.91553e6 - 4.57003e6i) q^{97} +9.80341e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2520 q^{7} - 4684 q^{9} + 8496 q^{11} - 3620 q^{13} - 51648 q^{15} + 41520 q^{17} + 54432 q^{19} + 7560 q^{23} - 273960 q^{25} - 133920 q^{27} - 346056 q^{29} + 486300 q^{33} + 283248 q^{35} - 68280 q^{37}+ \cdots + 83706300 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −16.1763 + 28.0182i −0.345904 + 0.599123i −0.985518 0.169573i \(-0.945761\pi\)
0.639614 + 0.768697i \(0.279094\pi\)
\(4\) 0 0
\(5\) 211.408i 0.756357i −0.925733 0.378179i \(-0.876551\pi\)
0.925733 0.378179i \(-0.123449\pi\)
\(6\) 0 0
\(7\) −635.796 + 367.077i −0.700607 + 0.404496i −0.807573 0.589767i \(-0.799220\pi\)
0.106967 + 0.994263i \(0.465886\pi\)
\(8\) 0 0
\(9\) 570.153 + 987.534i 0.260701 + 0.451547i
\(10\) 0 0
\(11\) 7445.38 + 4298.59i 1.68660 + 0.973759i 0.957091 + 0.289789i \(0.0935851\pi\)
0.729510 + 0.683970i \(0.239748\pi\)
\(12\) 0 0
\(13\) −6928.10 3840.57i −0.874605 0.484836i
\(14\) 0 0
\(15\) 5923.28 + 3419.81i 0.453151 + 0.261627i
\(16\) 0 0
\(17\) −8168.98 14149.1i −0.403271 0.698485i 0.590848 0.806783i \(-0.298793\pi\)
−0.994118 + 0.108298i \(0.965460\pi\)
\(18\) 0 0
\(19\) −3033.16 + 1751.20i −0.101451 + 0.0585730i −0.549867 0.835252i \(-0.685322\pi\)
0.448416 + 0.893825i \(0.351988\pi\)
\(20\) 0 0
\(21\) 23751.8i 0.559666i
\(22\) 0 0
\(23\) 32638.2 56531.0i 0.559344 0.968812i −0.438207 0.898874i \(-0.644386\pi\)
0.997551 0.0699383i \(-0.0222802\pi\)
\(24\) 0 0
\(25\) 33431.5 0.427924
\(26\) 0 0
\(27\) −107647. −1.05252
\(28\) 0 0
\(29\) 56295.7 97507.0i 0.428630 0.742408i −0.568122 0.822944i \(-0.692330\pi\)
0.996752 + 0.0805360i \(0.0256632\pi\)
\(30\) 0 0
\(31\) 176071.i 1.06150i 0.847527 + 0.530752i \(0.178091\pi\)
−0.847527 + 0.530752i \(0.821909\pi\)
\(32\) 0 0
\(33\) −240878. + 139071.i −1.16680 + 0.673654i
\(34\) 0 0
\(35\) 77603.1 + 134412.i 0.305943 + 0.529909i
\(36\) 0 0
\(37\) 432385. + 249638.i 1.40335 + 0.810222i 0.994734 0.102486i \(-0.0326798\pi\)
0.408611 + 0.912708i \(0.366013\pi\)
\(38\) 0 0
\(39\) 219677. 131987.i 0.593006 0.356290i
\(40\) 0 0
\(41\) −250415. 144577.i −0.567436 0.327610i 0.188688 0.982037i \(-0.439576\pi\)
−0.756125 + 0.654427i \(0.772910\pi\)
\(42\) 0 0
\(43\) 201010. + 348160.i 0.385548 + 0.667788i 0.991845 0.127450i \(-0.0406792\pi\)
−0.606297 + 0.795238i \(0.707346\pi\)
\(44\) 0 0
\(45\) 208773. 120535.i 0.341531 0.197183i
\(46\) 0 0
\(47\) 64966.5i 0.0912739i 0.998958 + 0.0456370i \(0.0145317\pi\)
−0.998958 + 0.0456370i \(0.985468\pi\)
\(48\) 0 0
\(49\) −142281. + 246438.i −0.172767 + 0.299241i
\(50\) 0 0
\(51\) 528576. 0.557971
\(52\) 0 0
\(53\) 263903. 0.243489 0.121744 0.992561i \(-0.461151\pi\)
0.121744 + 0.992561i \(0.461151\pi\)
\(54\) 0 0
\(55\) 908757. 1.57401e6i 0.736510 1.27567i
\(56\) 0 0
\(57\) 113312.i 0.0810425i
\(58\) 0 0
\(59\) −2.22659e6 + 1.28552e6i −1.41143 + 0.814887i −0.995523 0.0945221i \(-0.969868\pi\)
−0.415903 + 0.909409i \(0.636534\pi\)
\(60\) 0 0
\(61\) 269475. + 466745.i 0.152007 + 0.263285i 0.931965 0.362547i \(-0.118093\pi\)
−0.779958 + 0.625832i \(0.784760\pi\)
\(62\) 0 0
\(63\) −725002. 418580.i −0.365298 0.210905i
\(64\) 0 0
\(65\) −811929. + 1.46466e6i −0.366709 + 0.661514i
\(66\) 0 0
\(67\) −771672. 445525.i −0.313452 0.180972i 0.335018 0.942212i \(-0.391258\pi\)
−0.648470 + 0.761240i \(0.724591\pi\)
\(68\) 0 0
\(69\) 1.05593e6 + 1.82893e6i 0.386959 + 0.670232i
\(70\) 0 0
\(71\) −3.42530e6 + 1.97760e6i −1.13578 + 0.655744i −0.945382 0.325963i \(-0.894311\pi\)
−0.190399 + 0.981707i \(0.560978\pi\)
\(72\) 0 0
\(73\) 2.77895e6i 0.836087i 0.908427 + 0.418043i \(0.137284\pi\)
−0.908427 + 0.418043i \(0.862716\pi\)
\(74\) 0 0
\(75\) −540800. + 936692.i −0.148021 + 0.256379i
\(76\) 0 0
\(77\) −6.31165e6 −1.57553
\(78\) 0 0
\(79\) −4.53826e6 −1.03561 −0.517803 0.855500i \(-0.673250\pi\)
−0.517803 + 0.855500i \(0.673250\pi\)
\(80\) 0 0
\(81\) 494411. 856345.i 0.103369 0.179040i
\(82\) 0 0
\(83\) 2.61022e6i 0.501076i 0.968107 + 0.250538i \(0.0806074\pi\)
−0.968107 + 0.250538i \(0.919393\pi\)
\(84\) 0 0
\(85\) −2.99123e6 + 1.72699e6i −0.528304 + 0.305017i
\(86\) 0 0
\(87\) 1.82131e6 + 3.15461e6i 0.296529 + 0.513604i
\(88\) 0 0
\(89\) −6.82257e6 3.93901e6i −1.02585 0.592274i −0.110056 0.993925i \(-0.535103\pi\)
−0.915793 + 0.401652i \(0.868436\pi\)
\(90\) 0 0
\(91\) 5.81464e6 101323.i 0.808868 0.0140949i
\(92\) 0 0
\(93\) −4.93320e6 2.84818e6i −0.635972 0.367179i
\(94\) 0 0
\(95\) 370217. + 641235.i 0.0443021 + 0.0767335i
\(96\) 0 0
\(97\) 7.91553e6 4.57003e6i 0.880600 0.508415i 0.00974386 0.999953i \(-0.496898\pi\)
0.870856 + 0.491538i \(0.163565\pi\)
\(98\) 0 0
\(99\) 9.80341e6i 1.01544i
\(100\) 0 0
\(101\) −2.87415e6 + 4.97817e6i −0.277578 + 0.480779i −0.970782 0.239962i \(-0.922865\pi\)
0.693205 + 0.720741i \(0.256198\pi\)
\(102\) 0 0
\(103\) 9.21760e6 0.831166 0.415583 0.909555i \(-0.363578\pi\)
0.415583 + 0.909555i \(0.363578\pi\)
\(104\) 0 0
\(105\) −5.02133e6 −0.423308
\(106\) 0 0
\(107\) −8.35748e6 + 1.44756e7i −0.659526 + 1.14233i 0.321212 + 0.947007i \(0.395910\pi\)
−0.980738 + 0.195325i \(0.937424\pi\)
\(108\) 0 0
\(109\) 1.42886e7i 1.05681i 0.848993 + 0.528403i \(0.177209\pi\)
−0.848993 + 0.528403i \(0.822791\pi\)
\(110\) 0 0
\(111\) −1.39888e7 + 8.07644e6i −0.970846 + 0.560518i
\(112\) 0 0
\(113\) 1.09827e7 + 1.90225e7i 0.716032 + 1.24020i 0.962560 + 0.271069i \(0.0873770\pi\)
−0.246528 + 0.969136i \(0.579290\pi\)
\(114\) 0 0
\(115\) −1.19511e7 6.89999e6i −0.732768 0.423064i
\(116\) 0 0
\(117\) −157377. 9.03144e6i −0.00908428 0.521323i
\(118\) 0 0
\(119\) 1.03876e7 + 5.99728e6i 0.565068 + 0.326242i
\(120\) 0 0
\(121\) 2.72122e7 + 4.71328e7i 1.39641 + 2.41866i
\(122\) 0 0
\(123\) 8.10159e6 4.67746e6i 0.392557 0.226643i
\(124\) 0 0
\(125\) 2.35840e7i 1.08002i
\(126\) 0 0
\(127\) 1.07006e7 1.85339e7i 0.463546 0.802886i −0.535588 0.844479i \(-0.679910\pi\)
0.999135 + 0.0415933i \(0.0132434\pi\)
\(128\) 0 0
\(129\) −1.30064e7 −0.533450
\(130\) 0 0
\(131\) −2.79550e7 −1.08645 −0.543226 0.839587i \(-0.682797\pi\)
−0.543226 + 0.839587i \(0.682797\pi\)
\(132\) 0 0
\(133\) 1.28565e6 2.22681e6i 0.0473850 0.0820732i
\(134\) 0 0
\(135\) 2.27575e7i 0.796079i
\(136\) 0 0
\(137\) −3.87791e7 + 2.23891e7i −1.28848 + 0.743902i −0.978382 0.206804i \(-0.933694\pi\)
−0.310093 + 0.950706i \(0.600360\pi\)
\(138\) 0 0
\(139\) 1.19723e7 + 2.07367e7i 0.378117 + 0.654918i 0.990788 0.135420i \(-0.0432383\pi\)
−0.612671 + 0.790338i \(0.709905\pi\)
\(140\) 0 0
\(141\) −1.82024e6 1.05092e6i −0.0546843 0.0315720i
\(142\) 0 0
\(143\) −3.50732e7 5.83756e7i −1.00300 1.66938i
\(144\) 0 0
\(145\) −2.06138e7 1.19014e7i −0.561526 0.324197i
\(146\) 0 0
\(147\) −4.60316e6 7.97291e6i −0.119521 0.207017i
\(148\) 0 0
\(149\) 3.40494e7 1.96584e7i 0.843253 0.486852i −0.0151156 0.999886i \(-0.504812\pi\)
0.858369 + 0.513033i \(0.171478\pi\)
\(150\) 0 0
\(151\) 5.45163e7i 1.28857i 0.764786 + 0.644284i \(0.222845\pi\)
−0.764786 + 0.644284i \(0.777155\pi\)
\(152\) 0 0
\(153\) 9.31513e6 1.61343e7i 0.210266 0.364191i
\(154\) 0 0
\(155\) 3.72229e7 0.802877
\(156\) 0 0
\(157\) −6.58173e7 −1.35735 −0.678674 0.734440i \(-0.737445\pi\)
−0.678674 + 0.734440i \(0.737445\pi\)
\(158\) 0 0
\(159\) −4.26898e6 + 7.39409e6i −0.0842237 + 0.145880i
\(160\) 0 0
\(161\) 4.79229e7i 0.905009i
\(162\) 0 0
\(163\) −5.64786e7 + 3.26079e7i −1.02147 + 0.589748i −0.914531 0.404517i \(-0.867440\pi\)
−0.106944 + 0.994265i \(0.534106\pi\)
\(164\) 0 0
\(165\) 2.94007e7 + 5.09235e7i 0.509523 + 0.882520i
\(166\) 0 0
\(167\) 5.48034e7 + 3.16407e7i 0.910541 + 0.525701i 0.880605 0.473851i \(-0.157136\pi\)
0.0299360 + 0.999552i \(0.490470\pi\)
\(168\) 0 0
\(169\) 3.32485e7 + 5.32157e7i 0.529869 + 0.848079i
\(170\) 0 0
\(171\) −3.45873e6 1.99690e6i −0.0528969 0.0305401i
\(172\) 0 0
\(173\) −3.84579e7 6.66111e7i −0.564709 0.978104i −0.997077 0.0764069i \(-0.975655\pi\)
0.432368 0.901697i \(-0.357678\pi\)
\(174\) 0 0
\(175\) −2.12556e7 + 1.22719e7i −0.299806 + 0.173093i
\(176\) 0 0
\(177\) 8.31801e7i 1.12749i
\(178\) 0 0
\(179\) 4.32366e7 7.48880e7i 0.563464 0.975948i −0.433727 0.901044i \(-0.642802\pi\)
0.997191 0.0749036i \(-0.0238649\pi\)
\(180\) 0 0
\(181\) −8.42468e7 −1.05603 −0.528017 0.849234i \(-0.677064\pi\)
−0.528017 + 0.849234i \(0.677064\pi\)
\(182\) 0 0
\(183\) −1.74365e7 −0.210320
\(184\) 0 0
\(185\) 5.27755e7 9.14098e7i 0.612817 1.06143i
\(186\) 0 0
\(187\) 1.40460e8i 1.57075i
\(188\) 0 0
\(189\) 6.84416e7 3.95148e7i 0.737401 0.425739i
\(190\) 0 0
\(191\) −1.60963e7 2.78796e7i −0.167151 0.289514i 0.770266 0.637723i \(-0.220123\pi\)
−0.937417 + 0.348209i \(0.886790\pi\)
\(192\) 0 0
\(193\) 7.67729e7 + 4.43249e7i 0.768701 + 0.443810i 0.832411 0.554159i \(-0.186960\pi\)
−0.0637099 + 0.997968i \(0.520293\pi\)
\(194\) 0 0
\(195\) −2.79030e7 4.64416e7i −0.269482 0.448524i
\(196\) 0 0
\(197\) 7.69162e6 + 4.44076e6i 0.0716780 + 0.0413833i 0.535411 0.844592i \(-0.320157\pi\)
−0.463733 + 0.885975i \(0.653490\pi\)
\(198\) 0 0
\(199\) 3.95228e7 + 6.84555e7i 0.355519 + 0.615776i 0.987207 0.159447i \(-0.0509710\pi\)
−0.631688 + 0.775223i \(0.717638\pi\)
\(200\) 0 0
\(201\) 2.49656e7 1.44139e7i 0.216848 0.125198i
\(202\) 0 0
\(203\) 8.26594e7i 0.693515i
\(204\) 0 0
\(205\) −3.05648e7 + 5.29398e7i −0.247790 + 0.429185i
\(206\) 0 0
\(207\) 7.44351e7 0.583286
\(208\) 0 0
\(209\) −3.01107e7 −0.228144
\(210\) 0 0
\(211\) −1.08770e8 + 1.88395e8i −0.797114 + 1.38064i 0.124373 + 0.992235i \(0.460308\pi\)
−0.921488 + 0.388407i \(0.873025\pi\)
\(212\) 0 0
\(213\) 1.27961e8i 0.907297i
\(214\) 0 0
\(215\) 7.36038e7 4.24952e7i 0.505086 0.291612i
\(216\) 0 0
\(217\) −6.46316e7 1.11945e8i −0.429374 0.743698i
\(218\) 0 0
\(219\) −7.78614e7 4.49533e7i −0.500919 0.289206i
\(220\) 0 0
\(221\) 2.25485e6 + 1.29400e8i 0.0140522 + 0.806419i
\(222\) 0 0
\(223\) 1.08999e8 + 6.29308e7i 0.658198 + 0.380011i 0.791590 0.611052i \(-0.209254\pi\)
−0.133392 + 0.991063i \(0.542587\pi\)
\(224\) 0 0
\(225\) 1.90611e7 + 3.30148e7i 0.111560 + 0.193228i
\(226\) 0 0
\(227\) 2.28753e8 1.32070e8i 1.29800 0.749402i 0.317943 0.948110i \(-0.397008\pi\)
0.980059 + 0.198708i \(0.0636744\pi\)
\(228\) 0 0
\(229\) 6.38112e7i 0.351134i 0.984467 + 0.175567i \(0.0561759\pi\)
−0.984467 + 0.175567i \(0.943824\pi\)
\(230\) 0 0
\(231\) 1.02099e8 1.76841e8i 0.544980 0.943934i
\(232\) 0 0
\(233\) −1.58319e8 −0.819947 −0.409974 0.912097i \(-0.634462\pi\)
−0.409974 + 0.912097i \(0.634462\pi\)
\(234\) 0 0
\(235\) 1.37344e7 0.0690357
\(236\) 0 0
\(237\) 7.34124e7 1.27154e8i 0.358220 0.620456i
\(238\) 0 0
\(239\) 2.79618e8i 1.32487i −0.749120 0.662434i \(-0.769523\pi\)
0.749120 0.662434i \(-0.230477\pi\)
\(240\) 0 0
\(241\) 1.95982e8 1.13150e8i 0.901895 0.520710i 0.0240807 0.999710i \(-0.492334\pi\)
0.877815 + 0.479000i \(0.159001\pi\)
\(242\) 0 0
\(243\) −1.01717e8 1.76178e8i −0.454747 0.787646i
\(244\) 0 0
\(245\) 5.20989e7 + 3.00793e7i 0.226333 + 0.130673i
\(246\) 0 0
\(247\) 2.77396e7 483375.i 0.117128 0.00204101i
\(248\) 0 0
\(249\) −7.31336e7 4.22237e7i −0.300206 0.173324i
\(250\) 0 0
\(251\) −1.08219e8 1.87441e8i −0.431962 0.748181i 0.565080 0.825036i \(-0.308845\pi\)
−0.997042 + 0.0768554i \(0.975512\pi\)
\(252\) 0 0
\(253\) 4.86008e8 2.80597e8i 1.88678 1.08933i
\(254\) 0 0
\(255\) 1.11745e8i 0.422026i
\(256\) 0 0
\(257\) 1.21788e8 2.10943e8i 0.447547 0.775174i −0.550679 0.834717i \(-0.685631\pi\)
0.998226 + 0.0595432i \(0.0189644\pi\)
\(258\) 0 0
\(259\) −3.66545e8 −1.31093
\(260\) 0 0
\(261\) 1.28389e8 0.446977
\(262\) 0 0
\(263\) −2.52252e6 + 4.36913e6i −0.00855045 + 0.0148098i −0.870269 0.492577i \(-0.836055\pi\)
0.861719 + 0.507387i \(0.169388\pi\)
\(264\) 0 0
\(265\) 5.57913e7i 0.184164i
\(266\) 0 0
\(267\) 2.20728e8 1.27438e8i 0.709690 0.409740i
\(268\) 0 0
\(269\) 2.32684e8 + 4.03021e8i 0.728844 + 1.26239i 0.957372 + 0.288857i \(0.0932752\pi\)
−0.228529 + 0.973537i \(0.573391\pi\)
\(270\) 0 0
\(271\) 2.87325e8 + 1.65887e8i 0.876962 + 0.506314i 0.869655 0.493659i \(-0.164341\pi\)
0.00730633 + 0.999973i \(0.497674\pi\)
\(272\) 0 0
\(273\) −9.12206e7 + 1.64555e8i −0.271346 + 0.489487i
\(274\) 0 0
\(275\) 2.48910e8 + 1.43708e8i 0.721736 + 0.416695i
\(276\) 0 0
\(277\) −2.04267e8 3.53801e8i −0.577456 1.00018i −0.995770 0.0918807i \(-0.970712\pi\)
0.418314 0.908302i \(-0.362621\pi\)
\(278\) 0 0
\(279\) −1.73876e8 + 1.00387e8i −0.479320 + 0.276735i
\(280\) 0 0
\(281\) 6.26412e8i 1.68418i 0.539339 + 0.842089i \(0.318674\pi\)
−0.539339 + 0.842089i \(0.681326\pi\)
\(282\) 0 0
\(283\) 1.37435e7 2.38045e7i 0.0360450 0.0624318i −0.847440 0.530891i \(-0.821857\pi\)
0.883485 + 0.468459i \(0.155191\pi\)
\(284\) 0 0
\(285\) −2.39550e7 −0.0612971
\(286\) 0 0
\(287\) 2.12284e8 0.530066
\(288\) 0 0
\(289\) 7.17049e7 1.24197e8i 0.174746 0.302669i
\(290\) 0 0
\(291\) 2.95705e8i 0.703451i
\(292\) 0 0
\(293\) −1.60266e8 + 9.25295e7i −0.372224 + 0.214904i −0.674430 0.738339i \(-0.735610\pi\)
0.302206 + 0.953243i \(0.402277\pi\)
\(294\) 0 0
\(295\) 2.71770e8 + 4.70719e8i 0.616346 + 1.06754i
\(296\) 0 0
\(297\) −8.01474e8 4.62731e8i −1.77518 1.02490i
\(298\) 0 0
\(299\) −4.43232e8 + 2.66303e8i −0.958920 + 0.576139i
\(300\) 0 0
\(301\) −2.55603e8 1.47572e8i −0.540235 0.311905i
\(302\) 0 0
\(303\) −9.29864e7 1.61057e8i −0.192030 0.332606i
\(304\) 0 0
\(305\) 9.86738e7 5.69693e7i 0.199137 0.114972i
\(306\) 0 0
\(307\) 2.08464e7i 0.0411194i 0.999789 + 0.0205597i \(0.00654481\pi\)
−0.999789 + 0.0205597i \(0.993455\pi\)
\(308\) 0 0
\(309\) −1.49107e8 + 2.58261e8i −0.287504 + 0.497971i
\(310\) 0 0
\(311\) −7.13088e7 −0.134426 −0.0672128 0.997739i \(-0.521411\pi\)
−0.0672128 + 0.997739i \(0.521411\pi\)
\(312\) 0 0
\(313\) 3.19037e8 0.588080 0.294040 0.955793i \(-0.405000\pi\)
0.294040 + 0.955793i \(0.405000\pi\)
\(314\) 0 0
\(315\) −8.84912e7 + 1.53271e8i −0.159519 + 0.276296i
\(316\) 0 0
\(317\) 3.53993e8i 0.624147i −0.950058 0.312074i \(-0.898976\pi\)
0.950058 0.312074i \(-0.101024\pi\)
\(318\) 0 0
\(319\) 8.38285e8 4.83984e8i 1.44585 0.834764i
\(320\) 0 0
\(321\) −2.70387e8 4.68323e8i −0.456265 0.790275i
\(322\) 0 0
\(323\) 4.95556e7 + 2.86110e7i 0.0818247 + 0.0472415i
\(324\) 0 0
\(325\) −2.31617e8 1.28396e8i −0.374264 0.207473i
\(326\) 0 0
\(327\) −4.00340e8 2.31136e8i −0.633157 0.365554i
\(328\) 0 0
\(329\) −2.38477e7 4.13054e7i −0.0369199 0.0639471i
\(330\) 0 0
\(331\) −8.73685e8 + 5.04422e8i −1.32421 + 0.764533i −0.984397 0.175960i \(-0.943697\pi\)
−0.339813 + 0.940493i \(0.610364\pi\)
\(332\) 0 0
\(333\) 5.69327e8i 0.844903i
\(334\) 0 0
\(335\) −9.41877e7 + 1.63138e8i −0.136879 + 0.237082i
\(336\) 0 0
\(337\) 6.85528e8 0.975709 0.487855 0.872925i \(-0.337780\pi\)
0.487855 + 0.872925i \(0.337780\pi\)
\(338\) 0 0
\(339\) −7.10636e8 −0.990714
\(340\) 0 0
\(341\) −7.56857e8 + 1.31091e9i −1.03365 + 1.79033i
\(342\) 0 0
\(343\) 8.13519e8i 1.08852i
\(344\) 0 0
\(345\) 3.86651e8 2.23233e8i 0.506935 0.292679i
\(346\) 0 0
\(347\) −2.49148e8 4.31537e8i −0.320114 0.554453i 0.660398 0.750916i \(-0.270388\pi\)
−0.980511 + 0.196463i \(0.937054\pi\)
\(348\) 0 0
\(349\) −2.43339e8 1.40492e8i −0.306424 0.176914i 0.338901 0.940822i \(-0.389945\pi\)
−0.645325 + 0.763908i \(0.723278\pi\)
\(350\) 0 0
\(351\) 7.45790e8 + 4.13427e8i 0.920538 + 0.510298i
\(352\) 0 0
\(353\) 5.71431e8 + 3.29916e8i 0.691437 + 0.399201i 0.804150 0.594426i \(-0.202621\pi\)
−0.112713 + 0.993628i \(0.535954\pi\)
\(354\) 0 0
\(355\) 4.18081e8 + 7.24137e8i 0.495976 + 0.859056i
\(356\) 0 0
\(357\) −3.36066e8 + 1.94028e8i −0.390919 + 0.225697i
\(358\) 0 0
\(359\) 3.72973e7i 0.0425448i 0.999774 + 0.0212724i \(0.00677172\pi\)
−0.999774 + 0.0212724i \(0.993228\pi\)
\(360\) 0 0
\(361\) −4.40802e8 + 7.63492e8i −0.493138 + 0.854141i
\(362\) 0 0
\(363\) −1.76077e9 −1.93210
\(364\) 0 0
\(365\) 5.87494e8 0.632380
\(366\) 0 0
\(367\) −3.60243e8 + 6.23959e8i −0.380421 + 0.658908i −0.991122 0.132953i \(-0.957554\pi\)
0.610702 + 0.791861i \(0.290887\pi\)
\(368\) 0 0
\(369\) 3.29725e8i 0.341632i
\(370\) 0 0
\(371\) −1.67788e8 + 9.68727e7i −0.170590 + 0.0984901i
\(372\) 0 0
\(373\) 1.45502e8 + 2.52017e8i 0.145174 + 0.251449i 0.929438 0.368979i \(-0.120292\pi\)
−0.784264 + 0.620427i \(0.786959\pi\)
\(374\) 0 0
\(375\) 6.60781e8 + 3.81502e8i 0.647065 + 0.373583i
\(376\) 0 0
\(377\) −7.64505e8 + 4.59330e8i −0.734828 + 0.441499i
\(378\) 0 0
\(379\) −9.12613e8 5.26897e8i −0.861092 0.497152i 0.00328585 0.999995i \(-0.498954\pi\)
−0.864378 + 0.502843i \(0.832287\pi\)
\(380\) 0 0
\(381\) 3.46191e8 + 5.99621e8i 0.320685 + 0.555443i
\(382\) 0 0
\(383\) 1.61663e9 9.33363e8i 1.47033 0.848896i 0.470886 0.882194i \(-0.343934\pi\)
0.999445 + 0.0332976i \(0.0106009\pi\)
\(384\) 0 0
\(385\) 1.33433e9i 1.19166i
\(386\) 0 0
\(387\) −2.29213e8 + 3.97008e8i −0.201025 + 0.348186i
\(388\) 0 0
\(389\) 1.47943e9 1.27430 0.637151 0.770739i \(-0.280113\pi\)
0.637151 + 0.770739i \(0.280113\pi\)
\(390\) 0 0
\(391\) −1.06648e9 −0.902268
\(392\) 0 0
\(393\) 4.52210e8 7.83250e8i 0.375808 0.650919i
\(394\) 0 0
\(395\) 9.59426e8i 0.783289i
\(396\) 0 0
\(397\) −1.94946e9 + 1.12552e9i −1.56368 + 0.902789i −0.566796 + 0.823858i \(0.691817\pi\)
−0.996880 + 0.0789312i \(0.974849\pi\)
\(398\) 0 0
\(399\) 4.15941e7 + 7.20431e7i 0.0327813 + 0.0567789i
\(400\) 0 0
\(401\) −1.62628e9 9.38935e8i −1.25948 0.727161i −0.286506 0.958078i \(-0.592494\pi\)
−0.972973 + 0.230918i \(0.925827\pi\)
\(402\) 0 0
\(403\) 6.76214e8 1.21984e9i 0.514655 0.928398i
\(404\) 0 0
\(405\) −1.81038e8 1.04523e8i −0.135419 0.0781839i
\(406\) 0 0
\(407\) 2.14618e9 + 3.71729e9i 1.57792 + 2.73304i
\(408\) 0 0
\(409\) −5.51529e8 + 3.18426e8i −0.398600 + 0.230132i −0.685880 0.727715i \(-0.740582\pi\)
0.287280 + 0.957847i \(0.407249\pi\)
\(410\) 0 0
\(411\) 1.44870e9i 1.02927i
\(412\) 0 0
\(413\) 9.43770e8 1.63466e9i 0.659236 1.14183i
\(414\) 0 0
\(415\) 5.51821e8 0.378992
\(416\) 0 0
\(417\) −7.74673e8 −0.523169
\(418\) 0 0
\(419\) −7.77149e8 + 1.34606e9i −0.516125 + 0.893955i 0.483699 + 0.875234i \(0.339293\pi\)
−0.999825 + 0.0187211i \(0.994041\pi\)
\(420\) 0 0
\(421\) 9.46533e8i 0.618228i −0.951025 0.309114i \(-0.899968\pi\)
0.951025 0.309114i \(-0.100032\pi\)
\(422\) 0 0
\(423\) −6.41566e7 + 3.70408e7i −0.0412145 + 0.0237952i
\(424\) 0 0
\(425\) −2.73102e8 4.73026e8i −0.172569 0.298898i
\(426\) 0 0
\(427\) −3.42663e8 1.97836e8i −0.212995 0.122973i
\(428\) 0 0
\(429\) 2.20293e9 3.83871e7i 1.34710 0.0234739i
\(430\) 0 0
\(431\) 4.49874e7 + 2.59735e7i 0.0270658 + 0.0156264i 0.513472 0.858106i \(-0.328359\pi\)
−0.486406 + 0.873733i \(0.661692\pi\)
\(432\) 0 0
\(433\) 7.84073e8 + 1.35806e9i 0.464140 + 0.803914i 0.999162 0.0409237i \(-0.0130301\pi\)
−0.535022 + 0.844838i \(0.679697\pi\)
\(434\) 0 0
\(435\) 6.66911e8 3.85041e8i 0.388468 0.224282i
\(436\) 0 0
\(437\) 2.28624e8i 0.131050i
\(438\) 0 0
\(439\) −4.29729e8 + 7.44312e8i −0.242420 + 0.419884i −0.961403 0.275144i \(-0.911275\pi\)
0.718983 + 0.695028i \(0.244608\pi\)
\(440\) 0 0
\(441\) −3.24487e8 −0.180162
\(442\) 0 0
\(443\) −3.13741e8 −0.171458 −0.0857292 0.996318i \(-0.527322\pi\)
−0.0857292 + 0.996318i \(0.527322\pi\)
\(444\) 0 0
\(445\) −8.32740e8 + 1.44235e9i −0.447971 + 0.775908i
\(446\) 0 0
\(447\) 1.27201e9i 0.673617i
\(448\) 0 0
\(449\) −7.07915e7 + 4.08715e7i −0.0369079 + 0.0213088i −0.518340 0.855174i \(-0.673450\pi\)
0.481433 + 0.876483i \(0.340117\pi\)
\(450\) 0 0
\(451\) −1.24296e9 2.15286e9i −0.638026 1.10509i
\(452\) 0 0
\(453\) −1.52745e9 8.81874e8i −0.772011 0.445721i
\(454\) 0 0
\(455\) −2.14204e7 1.22926e9i −0.0106608 0.611793i
\(456\) 0 0
\(457\) 1.68781e9 + 9.74458e8i 0.827213 + 0.477592i 0.852897 0.522079i \(-0.174843\pi\)
−0.0256846 + 0.999670i \(0.508177\pi\)
\(458\) 0 0
\(459\) 8.79367e8 + 1.52311e9i 0.424449 + 0.735168i
\(460\) 0 0
\(461\) 2.99997e9 1.73204e9i 1.42615 0.823386i 0.429333 0.903146i \(-0.358749\pi\)
0.996814 + 0.0797602i \(0.0254155\pi\)
\(462\) 0 0
\(463\) 1.13332e9i 0.530665i 0.964157 + 0.265332i \(0.0854817\pi\)
−0.964157 + 0.265332i \(0.914518\pi\)
\(464\) 0 0
\(465\) −6.02129e8 + 1.04292e9i −0.277718 + 0.481022i
\(466\) 0 0
\(467\) −2.08755e9 −0.948479 −0.474239 0.880396i \(-0.657277\pi\)
−0.474239 + 0.880396i \(0.657277\pi\)
\(468\) 0 0
\(469\) 6.54167e8 0.292809
\(470\) 0 0
\(471\) 1.06468e9 1.84408e9i 0.469512 0.813218i
\(472\) 0 0
\(473\) 3.45624e9i 1.50172i
\(474\) 0 0
\(475\) −1.01403e8 + 5.85452e7i −0.0434134 + 0.0250648i
\(476\) 0 0
\(477\) 1.50465e8 + 2.60613e8i 0.0634777 + 0.109947i
\(478\) 0 0
\(479\) 1.60014e8 + 9.23844e7i 0.0665250 + 0.0384082i 0.532894 0.846182i \(-0.321105\pi\)
−0.466369 + 0.884590i \(0.654438\pi\)
\(480\) 0 0
\(481\) −2.03685e9 3.39012e9i −0.834549 1.38902i
\(482\) 0 0
\(483\) −1.34271e9 7.75217e8i −0.542212 0.313046i
\(484\) 0 0
\(485\) −9.66142e8 1.67341e9i −0.384543 0.666048i
\(486\) 0 0
\(487\) 1.97464e9 1.14006e9i 0.774704 0.447275i −0.0598463 0.998208i \(-0.519061\pi\)
0.834550 + 0.550932i \(0.185728\pi\)
\(488\) 0 0
\(489\) 2.10991e9i 0.815985i
\(490\) 0 0
\(491\) −9.75730e8 + 1.69001e9i −0.372001 + 0.644325i −0.989873 0.141953i \(-0.954662\pi\)
0.617872 + 0.786279i \(0.287995\pi\)
\(492\) 0 0
\(493\) −1.83951e9 −0.691415
\(494\) 0 0
\(495\) 2.07252e9 0.768035
\(496\) 0 0
\(497\) 1.45186e9 2.51470e9i 0.530491 0.918837i
\(498\) 0 0
\(499\) 3.18870e9i 1.14885i −0.818559 0.574423i \(-0.805227\pi\)
0.818559 0.574423i \(-0.194773\pi\)
\(500\) 0 0
\(501\) −1.77303e9 + 1.02366e9i −0.629920 + 0.363684i
\(502\) 0 0
\(503\) −8.88123e8 1.53827e9i −0.311161 0.538947i 0.667453 0.744652i \(-0.267384\pi\)
−0.978614 + 0.205705i \(0.934051\pi\)
\(504\) 0 0
\(505\) 1.05243e9 + 6.07619e8i 0.363640 + 0.209948i
\(506\) 0 0
\(507\) −2.02885e9 + 7.07286e7i −0.691388 + 0.0241028i
\(508\) 0 0
\(509\) −5.11200e9 2.95142e9i −1.71822 0.992015i −0.922169 0.386787i \(-0.873585\pi\)
−0.796052 0.605228i \(-0.793082\pi\)
\(510\) 0 0
\(511\) −1.02009e9 1.76685e9i −0.338193 0.585768i
\(512\) 0 0
\(513\) 3.26511e8 1.88511e8i 0.106779 0.0616491i
\(514\) 0 0
\(515\) 1.94868e9i 0.628658i
\(516\) 0 0
\(517\) −2.79264e8 + 4.83700e8i −0.0888788 + 0.153943i
\(518\) 0 0
\(519\) 2.48843e9 0.781340
\(520\) 0 0
\(521\) 2.84267e9 0.880633 0.440317 0.897843i \(-0.354866\pi\)
0.440317 + 0.897843i \(0.354866\pi\)
\(522\) 0 0
\(523\) −1.53452e9 + 2.65787e9i −0.469048 + 0.812415i −0.999374 0.0353788i \(-0.988736\pi\)
0.530326 + 0.847794i \(0.322070\pi\)
\(524\) 0 0
\(525\) 7.94060e8i 0.239495i
\(526\) 0 0
\(527\) 2.49124e9 1.43832e9i 0.741445 0.428074i
\(528\) 0 0
\(529\) −4.28094e8 7.41480e8i −0.125731 0.217773i
\(530\) 0 0
\(531\) −2.53899e9 1.46589e9i −0.735920 0.424884i
\(532\) 0 0
\(533\) 1.17964e9 + 1.96338e9i 0.337446 + 0.561642i
\(534\) 0 0
\(535\) 3.06026e9 + 1.76684e9i 0.864012 + 0.498837i
\(536\) 0 0
\(537\) 1.39882e9 + 2.42283e9i 0.389809 + 0.675168i
\(538\) 0 0
\(539\) −2.11867e9 + 1.22321e9i −0.582777 + 0.336466i
\(540\) 0 0
\(541\) 2.24439e9i 0.609407i −0.952447 0.304703i \(-0.901443\pi\)
0.952447 0.304703i \(-0.0985573\pi\)
\(542\) 0 0
\(543\) 1.36280e9 2.36044e9i 0.365287 0.632695i
\(544\) 0 0
\(545\) 3.02072e9 0.799323
\(546\) 0 0
\(547\) 3.05066e9 0.796963 0.398481 0.917176i \(-0.369537\pi\)
0.398481 + 0.917176i \(0.369537\pi\)
\(548\) 0 0
\(549\) −3.07284e8 + 5.32232e8i −0.0792569 + 0.137277i
\(550\) 0 0
\(551\) 3.94339e8i 0.100424i
\(552\) 0 0
\(553\) 2.88541e9 1.66589e9i 0.725553 0.418898i
\(554\) 0 0
\(555\) 1.70743e9 + 2.95735e9i 0.423952 + 0.734306i
\(556\) 0 0
\(557\) 1.71586e9 + 9.90653e8i 0.420716 + 0.242901i 0.695384 0.718639i \(-0.255234\pi\)
−0.274668 + 0.961539i \(0.588568\pi\)
\(558\) 0 0
\(559\) −5.54839e7 3.18408e9i −0.0134346 0.770978i
\(560\) 0 0
\(561\) 3.93545e9 + 2.27213e9i 0.941075 + 0.543330i
\(562\) 0 0
\(563\) −3.19492e9 5.53376e9i −0.754537 1.30690i −0.945604 0.325320i \(-0.894528\pi\)
0.191067 0.981577i \(-0.438805\pi\)
\(564\) 0 0
\(565\) 4.02152e9 2.32182e9i 0.938037 0.541576i
\(566\) 0 0
\(567\) 7.25947e8i 0.167249i
\(568\) 0 0
\(569\) −1.97808e9 + 3.42613e9i −0.450143 + 0.779671i −0.998395 0.0566429i \(-0.981960\pi\)
0.548251 + 0.836314i \(0.315294\pi\)
\(570\) 0 0
\(571\) 1.72462e9 0.387675 0.193837 0.981034i \(-0.437907\pi\)
0.193837 + 0.981034i \(0.437907\pi\)
\(572\) 0 0
\(573\) 1.04152e9 0.231273
\(574\) 0 0
\(575\) 1.09115e9 1.88992e9i 0.239357 0.414578i
\(576\) 0 0
\(577\) 1.44292e9i 0.312698i 0.987702 + 0.156349i \(0.0499725\pi\)
−0.987702 + 0.156349i \(0.950027\pi\)
\(578\) 0 0
\(579\) −2.48381e9 + 1.43403e9i −0.531794 + 0.307031i
\(580\) 0 0
\(581\) −9.58150e8 1.65956e9i −0.202683 0.351057i
\(582\) 0 0
\(583\) 1.96486e9 + 1.13441e9i 0.410668 + 0.237099i
\(584\) 0 0
\(585\) −1.90932e9 + 3.32708e7i −0.394306 + 0.00687096i
\(586\) 0 0
\(587\) 4.68617e9 + 2.70556e9i 0.956280 + 0.552108i 0.895026 0.446014i \(-0.147157\pi\)
0.0612537 + 0.998122i \(0.480490\pi\)
\(588\) 0 0
\(589\) −3.08335e8 5.34052e8i −0.0621755 0.107691i
\(590\) 0 0
\(591\) −2.48844e8 + 1.43670e8i −0.0495874 + 0.0286293i
\(592\) 0 0
\(593\) 1.30921e9i 0.257820i 0.991656 + 0.128910i \(0.0411478\pi\)
−0.991656 + 0.128910i \(0.958852\pi\)
\(594\) 0 0
\(595\) 1.26788e9 2.19602e9i 0.246756 0.427393i
\(596\) 0 0
\(597\) −2.55734e9 −0.491901
\(598\) 0 0
\(599\) 5.82086e9 1.10661 0.553303 0.832980i \(-0.313367\pi\)
0.553303 + 0.832980i \(0.313367\pi\)
\(600\) 0 0
\(601\) 4.65256e9 8.05847e9i 0.874241 1.51423i 0.0166722 0.999861i \(-0.494693\pi\)
0.857569 0.514369i \(-0.171974\pi\)
\(602\) 0 0
\(603\) 1.01607e9i 0.188718i
\(604\) 0 0
\(605\) 9.96427e9 5.75287e9i 1.82937 1.05619i
\(606\) 0 0
\(607\) −1.77466e9 3.07379e9i −0.322072 0.557846i 0.658843 0.752280i \(-0.271046\pi\)
−0.980915 + 0.194435i \(0.937713\pi\)
\(608\) 0 0
\(609\) −2.31597e9 1.33712e9i −0.415501 0.239890i
\(610\) 0 0
\(611\) 2.49509e8 4.50094e8i 0.0442528 0.0798287i
\(612\) 0 0
\(613\) −5.38574e9 3.10946e9i −0.944352 0.545222i −0.0530301 0.998593i \(-0.516888\pi\)
−0.891322 + 0.453371i \(0.850221\pi\)
\(614\) 0 0
\(615\) −9.88853e8 1.71274e9i −0.171423 0.296913i
\(616\) 0 0
\(617\) 2.81896e9 1.62753e9i 0.483159 0.278952i −0.238573 0.971125i \(-0.576680\pi\)
0.721732 + 0.692172i \(0.243346\pi\)
\(618\) 0 0
\(619\) 8.80728e9i 1.49254i 0.665646 + 0.746268i \(0.268156\pi\)
−0.665646 + 0.746268i \(0.731844\pi\)
\(620\) 0 0
\(621\) −3.51341e9 + 6.08541e9i −0.588720 + 1.01969i
\(622\) 0 0
\(623\) 5.78368e9 0.958289
\(624\) 0 0
\(625\) −2.37401e9 −0.388957
\(626\) 0 0
\(627\) 4.87080e8 8.43648e8i 0.0789158 0.136686i
\(628\) 0 0
\(629\) 8.15714e9i 1.30695i
\(630\) 0 0
\(631\) −4.23686e9 + 2.44615e9i −0.671338 + 0.387597i −0.796583 0.604529i \(-0.793361\pi\)
0.125246 + 0.992126i \(0.460028\pi\)
\(632\) 0 0
\(633\) −3.51900e9 6.09508e9i −0.551450 0.955139i
\(634\) 0 0
\(635\) −3.91822e9 2.26219e9i −0.607269 0.350607i
\(636\) 0 0
\(637\) 1.93220e9 1.16090e9i 0.296185 0.177954i
\(638\) 0 0
\(639\) −3.90589e9 2.25507e9i −0.592199 0.341906i
\(640\) 0 0
\(641\) 1.45291e9 + 2.51651e9i 0.217889 + 0.377395i 0.954162 0.299289i \(-0.0967496\pi\)
−0.736273 + 0.676684i \(0.763416\pi\)
\(642\) 0 0
\(643\) 3.26011e8 1.88222e8i 0.0483608 0.0279211i −0.475625 0.879648i \(-0.657778\pi\)
0.523985 + 0.851727i \(0.324445\pi\)
\(644\) 0 0
\(645\) 2.74966e9i 0.403479i
\(646\) 0 0
\(647\) −1.69765e9 + 2.94042e9i −0.246425 + 0.426820i −0.962531 0.271171i \(-0.912589\pi\)
0.716106 + 0.697991i \(0.245923\pi\)
\(648\) 0 0
\(649\) −2.21037e10 −3.17401
\(650\) 0 0
\(651\) 4.18201e9 0.594089
\(652\) 0 0
\(653\) −6.46268e9 + 1.11937e10i −0.908273 + 1.57317i −0.0918103 + 0.995777i \(0.529265\pi\)
−0.816463 + 0.577398i \(0.804068\pi\)
\(654\) 0 0
\(655\) 5.90993e9i 0.821746i
\(656\) 0 0
\(657\) −2.74431e9 + 1.58443e9i −0.377533 + 0.217969i
\(658\) 0 0
\(659\) 2.50007e9 + 4.33024e9i 0.340293 + 0.589405i 0.984487 0.175457i \(-0.0561405\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(660\) 0 0
\(661\) 1.10755e10 + 6.39445e9i 1.49162 + 0.861189i 0.999954 0.00959383i \(-0.00305386\pi\)
0.491668 + 0.870782i \(0.336387\pi\)
\(662\) 0 0
\(663\) −3.66203e9 2.03004e9i −0.488005 0.270524i
\(664\) 0 0
\(665\) −4.70765e8 2.71796e8i −0.0620767 0.0358400i
\(666\) 0 0
\(667\) −3.67478e9 6.36491e9i −0.479503 0.830523i
\(668\) 0 0
\(669\) −3.52642e9 + 2.03598e9i −0.455347 + 0.262895i
\(670\) 0 0
\(671\) 4.63346e9i 0.592074i
\(672\) 0 0
\(673\) 1.96087e9 3.39633e9i 0.247969 0.429494i −0.714993 0.699131i \(-0.753570\pi\)
0.962962 + 0.269637i \(0.0869037\pi\)
\(674\) 0 0
\(675\) −3.59881e9 −0.450397
\(676\) 0 0
\(677\) 1.10745e10 1.37171 0.685855 0.727739i \(-0.259429\pi\)
0.685855 + 0.727739i \(0.259429\pi\)
\(678\) 0 0
\(679\) −3.35510e9 + 5.81121e9i −0.411303 + 0.712398i
\(680\) 0 0
\(681\) 8.54565e9i 1.03688i
\(682\) 0 0
\(683\) −2.30202e9 + 1.32907e9i −0.276463 + 0.159616i −0.631821 0.775114i \(-0.717692\pi\)
0.355358 + 0.934730i \(0.384359\pi\)
\(684\) 0 0
\(685\) 4.73325e9 + 8.19823e9i 0.562655 + 0.974548i
\(686\) 0 0
\(687\) −1.78788e9 1.03223e9i −0.210373 0.121459i
\(688\) 0 0
\(689\) −1.82835e9 1.01354e9i −0.212957 0.118052i
\(690\) 0 0
\(691\) −2.79991e9 1.61653e9i −0.322828 0.186385i 0.329824 0.944042i \(-0.393011\pi\)
−0.652653 + 0.757657i \(0.726344\pi\)
\(692\) 0 0
\(693\) −3.59861e9 6.23297e9i −0.410741 0.711424i
\(694\) 0 0
\(695\) 4.38390e9 2.53105e9i 0.495352 0.285992i
\(696\) 0 0
\(697\) 4.72419e9i 0.528461i
\(698\) 0 0
\(699\) 2.56101e9 4.43580e9i 0.283623 0.491249i
\(700\) 0 0
\(701\) −1.01439e10 −1.11223 −0.556114 0.831106i \(-0.687708\pi\)
−0.556114 + 0.831106i \(0.687708\pi\)
\(702\) 0 0
\(703\) −1.74866e9 −0.189828
\(704\) 0 0
\(705\) −2.22173e8 + 3.84815e8i −0.0238797 + 0.0413609i
\(706\) 0 0
\(707\) 4.22013e9i 0.449116i
\(708\) 0 0
\(709\) −2.29529e8 + 1.32519e8i −0.0241867 + 0.0139642i −0.512045 0.858959i \(-0.671112\pi\)
0.487858 + 0.872923i \(0.337778\pi\)
\(710\) 0 0
\(711\) −2.58750e9 4.48169e9i −0.269984 0.467625i
\(712\) 0 0
\(713\) 9.95348e9 + 5.74664e9i 1.02840 + 0.593746i
\(714\) 0 0
\(715\) −1.23411e10 + 7.41477e9i −1.26265 + 0.758624i
\(716\) 0 0
\(717\) 7.83440e9 + 4.52319e9i 0.793759 + 0.458277i
\(718\) 0 0
\(719\) −1.30879e9 2.26689e9i −0.131317 0.227447i 0.792868 0.609394i \(-0.208587\pi\)
−0.924184 + 0.381947i \(0.875254\pi\)
\(720\) 0 0
\(721\) −5.86051e9 + 3.38357e9i −0.582321 + 0.336203i
\(722\) 0 0
\(723\) 7.32142e9i 0.720462i
\(724\) 0 0
\(725\) 1.88205e9 3.25981e9i 0.183421 0.317694i
\(726\) 0 0
\(727\) −1.98815e10 −1.91902 −0.959509 0.281676i \(-0.909110\pi\)
−0.959509 + 0.281676i \(0.909110\pi\)
\(728\) 0 0
\(729\) 8.74416e9 0.835934
\(730\) 0 0
\(731\) 3.28409e9 5.68822e9i 0.310960 0.538599i
\(732\) 0 0
\(733\) 1.77576e10i 1.66541i 0.553720 + 0.832703i \(0.313208\pi\)
−0.553720 + 0.832703i \(0.686792\pi\)
\(734\) 0 0
\(735\) −1.68554e9 + 9.73146e8i −0.156579 + 0.0904008i
\(736\) 0 0
\(737\) −3.83026e9 6.63420e9i −0.352445 0.610453i
\(738\) 0 0
\(739\) 9.78135e9 + 5.64727e9i 0.891545 + 0.514734i 0.874448 0.485120i \(-0.161224\pi\)
0.0170975 + 0.999854i \(0.494557\pi\)
\(740\) 0 0
\(741\) −4.35182e8 + 7.85034e8i −0.0392923 + 0.0708802i
\(742\) 0 0
\(743\) 6.78319e9 + 3.91628e9i 0.606699 + 0.350278i 0.771672 0.636020i \(-0.219421\pi\)
−0.164974 + 0.986298i \(0.552754\pi\)
\(744\) 0 0
\(745\) −4.15596e9 7.19833e9i −0.368234 0.637800i
\(746\) 0 0
\(747\) −2.57768e9 + 1.48822e9i −0.226259 + 0.130631i
\(748\) 0 0
\(749\) 1.22713e10i 1.06710i
\(750\) 0 0
\(751\) 1.17937e9 2.04273e9i 0.101604 0.175983i −0.810742 0.585404i \(-0.800936\pi\)
0.912346 + 0.409421i \(0.134269\pi\)
\(752\) 0 0
\(753\) 7.00235e9 0.597670
\(754\) 0 0
\(755\) 1.15252e10 0.974618
\(756\) 0 0
\(757\) −6.42271e9 + 1.11245e10i −0.538125 + 0.932059i 0.460880 + 0.887462i \(0.347534\pi\)
−0.999005 + 0.0445970i \(0.985800\pi\)
\(758\) 0 0
\(759\) 1.81561e10i 1.50722i
\(760\) 0 0
\(761\) 8.56209e8 4.94332e8i 0.0704261 0.0406605i −0.464373 0.885639i \(-0.653720\pi\)
0.534800 + 0.844979i \(0.320387\pi\)
\(762\) 0 0
\(763\) −5.24500e9 9.08460e9i −0.427474 0.740406i
\(764\) 0 0
\(765\) −3.41092e9 1.96930e9i −0.275459 0.159036i
\(766\) 0 0
\(767\) 2.03632e10 3.54837e8i 1.62953 0.0283952i
\(768\) 0 0
\(769\) −1.15938e10 6.69371e9i −0.919359 0.530792i −0.0359285 0.999354i \(-0.511439\pi\)
−0.883431 + 0.468562i \(0.844772\pi\)
\(770\) 0 0
\(771\) 3.94016e9 + 6.82457e9i 0.309616 + 0.536271i
\(772\) 0 0
\(773\) −9.24800e9 + 5.33934e9i −0.720145 + 0.415776i −0.814806 0.579734i \(-0.803157\pi\)
0.0946613 + 0.995510i \(0.469823\pi\)
\(774\) 0 0
\(775\) 5.88633e9i 0.454243i
\(776\) 0 0
\(777\) 5.92935e9 1.02699e10i 0.453454 0.785406i
\(778\) 0 0
\(779\) 1.01273e9 0.0767562
\(780\) 0 0
\(781\) −3.40036e10 −2.55415
\(782\) 0 0
\(783\) −6.06007e9 + 1.04964e10i −0.451140 + 0.781398i
\(784\) 0 0
\(785\) 1.39143e10i 1.02664i
\(786\) 0 0
\(787\) 1.33997e10 7.73632e9i 0.979903 0.565748i 0.0776624 0.996980i \(-0.475254\pi\)
0.902241 + 0.431232i \(0.141921\pi\)
\(788\) 0 0
\(789\) −8.16101e7 1.41353e8i −0.00591527 0.0102455i
\(790\) 0 0
\(791\) −1.39654e10 8.06295e9i −1.00331 0.579264i
\(792\) 0 0
\(793\) −7.43821e7 4.26859e9i −0.00529679 0.303969i
\(794\) 0 0
\(795\) 1.56317e9 + 9.02498e8i 0.110337 + 0.0637032i
\(796\) 0 0
\(797\) 9.15716e9 + 1.58607e10i 0.640703 + 1.10973i 0.985276 + 0.170971i \(0.0546904\pi\)
−0.344573 + 0.938760i \(0.611976\pi\)
\(798\) 0 0
\(799\) 9.19216e8 5.30710e8i 0.0637535 0.0368081i
\(800\) 0 0
\(801\) 8.98336e9i 0.617625i
\(802\) 0 0
\(803\) −1.19456e10 + 2.06904e10i −0.814147 + 1.41014i
\(804\) 0 0
\(805\) 1.01313e10 0.684510
\(806\) 0 0
\(807\) −1.50559e10 −1.00844
\(808\) 0 0
\(809\) −3.03106e9 + 5.24995e9i −0.201268 + 0.348606i −0.948937 0.315465i \(-0.897840\pi\)
0.747669 + 0.664071i \(0.231173\pi\)
\(810\) 0 0
\(811\) 2.18462e10i 1.43815i 0.694933 + 0.719074i \(0.255434\pi\)
−0.694933 + 0.719074i \(0.744566\pi\)
\(812\) 0 0
\(813\) −9.29572e9 + 5.36689e9i −0.606689 + 0.350272i
\(814\) 0 0
\(815\) 6.89359e9 + 1.19400e10i 0.446060 + 0.772599i
\(816\) 0 0
\(817\) −1.21939e9 7.04016e8i −0.0782287 0.0451653i
\(818\) 0 0
\(819\) 3.41529e9 + 5.68438e9i 0.217237 + 0.361568i
\(820\) 0 0
\(821\) 2.26398e10 + 1.30711e10i 1.42782 + 0.824350i 0.996948 0.0780644i \(-0.0248740\pi\)
0.430868 + 0.902415i \(0.358207\pi\)
\(822\) 0 0
\(823\) −4.08115e9 7.06876e9i −0.255202 0.442022i 0.709749 0.704455i \(-0.248809\pi\)
−0.964950 + 0.262433i \(0.915475\pi\)
\(824\) 0 0
\(825\) −8.05291e9 + 4.64935e9i −0.499303 + 0.288273i
\(826\) 0 0
\(827\) 2.10648e10i 1.29505i −0.762042 0.647527i \(-0.775803\pi\)
0.762042 0.647527i \(-0.224197\pi\)
\(828\) 0 0
\(829\) 1.44410e10 2.50126e10i 0.880353 1.52482i 0.0294044 0.999568i \(-0.490639\pi\)
0.850949 0.525249i \(-0.176028\pi\)
\(830\) 0 0
\(831\) 1.32172e10 0.798977
\(832\) 0 0
\(833\) 4.64915e9 0.278687
\(834\) 0 0
\(835\) 6.68911e9 1.15859e10i 0.397618 0.688695i
\(836\) 0 0
\(837\) 1.89535e10i 1.11725i
\(838\) 0 0
\(839\) −1.02477e10 + 5.91652e9i −0.599046 + 0.345859i −0.768666 0.639650i \(-0.779079\pi\)
0.169620 + 0.985509i \(0.445746\pi\)
\(840\) 0 0
\(841\) 2.28653e9 + 3.96038e9i 0.132553 + 0.229589i
\(842\) 0 0
\(843\) −1.75509e10 1.01330e10i −1.00903 0.582564i
\(844\) 0 0
\(845\) 1.12502e10 7.02901e9i 0.641451 0.400770i
\(846\) 0 0
\(847\) −3.46027e10 1.99779e10i −1.95667 1.12969i
\(848\) 0 0
\(849\) 4.44639e8 + 7.70138e8i 0.0249362 + 0.0431908i
\(850\) 0 0
\(851\) 2.82246e10 1.62955e10i 1.56991 0.906386i
\(852\) 0 0
\(853\) 4.54152e9i 0.250542i 0.992123 + 0.125271i \(0.0399800\pi\)
−0.992123 + 0.125271i \(0.960020\pi\)
\(854\) 0 0
\(855\) −4.22161e8 + 7.31204e8i −0.0230992 + 0.0400090i
\(856\) 0 0
\(857\) 2.71958e10 1.47594 0.737971 0.674833i \(-0.235784\pi\)
0.737971 + 0.674833i \(0.235784\pi\)
\(858\) 0 0
\(859\) 1.24708e10 0.671304 0.335652 0.941986i \(-0.391043\pi\)
0.335652 + 0.941986i \(0.391043\pi\)
\(860\) 0 0
\(861\) −3.43397e9 + 5.94781e9i −0.183352 + 0.317575i
\(862\) 0 0
\(863\) 3.88024e9i 0.205504i −0.994707 0.102752i \(-0.967235\pi\)
0.994707 0.102752i \(-0.0327648\pi\)
\(864\) 0 0
\(865\) −1.40821e10 + 8.13032e9i −0.739796 + 0.427121i
\(866\) 0 0
\(867\) 2.31984e9 + 4.01809e9i 0.120890 + 0.209388i
\(868\) 0 0
\(869\) −3.37891e10 1.95081e10i −1.74665 1.00843i
\(870\) 0 0
\(871\) 3.63514e9 + 6.05030e9i 0.186405 + 0.310251i
\(872\) 0 0
\(873\) 9.02612e9 + 5.21123e9i 0.459147 + 0.265088i
\(874\) 0 0
\(875\) 8.65713e9 + 1.49946e10i 0.436863 + 0.756670i
\(876\) 0 0
\(877\) 2.70830e10 1.56364e10i 1.35581 0.782777i 0.366754 0.930318i \(-0.380469\pi\)
0.989056 + 0.147541i \(0.0471358\pi\)
\(878\) 0 0
\(879\) 5.98715e9i 0.297344i
\(880\) 0 0
\(881\) 4.00303e9 6.93345e9i 0.197230 0.341612i −0.750399 0.660985i \(-0.770139\pi\)
0.947629 + 0.319372i \(0.103472\pi\)
\(882\) 0 0
\(883\) −5.19038e9 −0.253709 −0.126855 0.991921i \(-0.540488\pi\)
−0.126855 + 0.991921i \(0.540488\pi\)
\(884\) 0 0
\(885\) −1.75850e10 −0.852785
\(886\) 0 0
\(887\) 1.30177e10 2.25474e10i 0.626329 1.08483i −0.361954 0.932196i \(-0.617890\pi\)
0.988282 0.152637i \(-0.0487765\pi\)
\(888\) 0 0
\(889\) 1.57117e10i 0.750010i
\(890\) 0 0
\(891\) 7.36215e9 4.25054e9i 0.348685 0.201313i
\(892\) 0 0
\(893\) −1.13769e8 1.97054e8i −0.00534618 0.00925986i
\(894\) 0 0
\(895\) −1.58319e10 9.14058e9i −0.738165 0.426180i
\(896\) 0 0
\(897\) −2.91465e8 1.67264e10i −0.0134838 0.773800i
\(898\) 0 0
\(899\) 1.71682e10 + 9.91204e9i 0.788070 + 0.454992i
\(900\) 0 0
\(901\) −2.15582e9 3.73399e9i −0.0981918 0.170073i
\(902\) 0 0
\(903\) 8.26942e9 4.77435e9i 0.373739 0.215778i
\(904\) 0 0
\(905\) 1.78105e10i 0.798740i
\(906\) 0 0
\(907\) 1.83101e10 3.17140e10i 0.814826 1.41132i −0.0946274 0.995513i \(-0.530166\pi\)
0.909453 0.415807i \(-0.136501\pi\)
\(908\) 0 0
\(909\) −6.55482e9 −0.289459
\(910\) 0 0
\(911\) −3.91136e10 −1.71401 −0.857006 0.515306i \(-0.827678\pi\)
−0.857006 + 0.515306i \(0.827678\pi\)
\(912\) 0 0
\(913\) −1.12202e10 + 1.94340e10i −0.487927 + 0.845114i
\(914\) 0 0
\(915\) 3.68622e9i 0.159077i
\(916\) 0 0
\(917\) 1.77737e10 1.02616e10i 0.761176 0.439465i
\(918\) 0 0
\(919\) 6.48209e9 + 1.12273e10i 0.275493 + 0.477168i 0.970259 0.242068i \(-0.0778256\pi\)
−0.694766 + 0.719235i \(0.744492\pi\)
\(920\) 0 0
\(921\) −5.84078e8 3.37218e8i −0.0246356 0.0142233i
\(922\) 0 0
\(923\) 3.13259e10 5.45868e8i 1.31129 0.0228498i
\(924\) 0 0
\(925\) 1.44553e10 + 8.34577e9i 0.600525 + 0.346713i
\(926\) 0 0
\(927\) 5.25544e9 + 9.10270e9i 0.216686 + 0.375311i
\(928\) 0 0
\(929\) −5.10464e9 + 2.94716e9i −0.208886 + 0.120601i −0.600794 0.799404i \(-0.705149\pi\)
0.391907 + 0.920005i \(0.371815\pi\)
\(930\) 0 0
\(931\) 9.96646e8i 0.0404778i
\(932\) 0 0
\(933\) 1.15351e9 1.99795e9i 0.0464983 0.0805374i
\(934\) 0 0
\(935\) −2.96945e10 −1.18805
\(936\) 0 0
\(937\) 2.40381e10 0.954577 0.477288 0.878747i \(-0.341620\pi\)
0.477288 + 0.878747i \(0.341620\pi\)
\(938\) 0 0
\(939\) −5.16085e9 + 8.93886e9i −0.203419 + 0.352332i
\(940\) 0 0
\(941\) 5.30161e9i 0.207417i 0.994608 + 0.103708i \(0.0330709\pi\)
−0.994608 + 0.103708i \(0.966929\pi\)
\(942\) 0 0
\(943\) −1.63462e10 + 9.43749e9i −0.634784 + 0.366493i
\(944\) 0 0
\(945\) −8.35375e9 1.44691e10i −0.322011 0.557739i
\(946\) 0 0
\(947\) 2.49066e10 + 1.43798e10i 0.952991 + 0.550210i 0.894009 0.448049i \(-0.147881\pi\)
0.0589823 + 0.998259i \(0.481214\pi\)
\(948\) 0 0
\(949\) 1.06728e10 1.92529e10i 0.405365 0.731246i
\(950\) 0 0
\(951\) 9.91825e9 + 5.72630e9i 0.373941 + 0.215895i
\(952\) 0 0
\(953\) −1.73485e10 3.00485e10i −0.649288 1.12460i −0.983293 0.182028i \(-0.941734\pi\)
0.334006 0.942571i \(-0.391600\pi\)
\(954\) 0 0
\(955\) −5.89398e9 + 3.40289e9i −0.218976 + 0.126426i
\(956\) 0 0
\(957\) 3.13163e10i 1.15499i
\(958\) 0 0
\(959\) 1.64371e10 2.84698e10i 0.601810 1.04237i
\(960\) 0 0
\(961\) −3.48839e9 −0.126792
\(962\) 0 0
\(963\) −1.90602e10 −0.687756
\(964\) 0 0
\(965\) 9.37064e9 1.62304e10i 0.335679 0.581413i
\(966\) 0 0
\(967\) 2.32799e10i 0.827921i 0.910295 + 0.413960i \(0.135855\pi\)
−0.910295 + 0.413960i \(0.864145\pi\)
\(968\) 0 0
\(969\) −1.60326e9 + 9.25641e8i −0.0566070 + 0.0326820i
\(970\) 0 0
\(971\) −1.04009e9 1.80150e9i −0.0364591 0.0631489i 0.847220 0.531242i \(-0.178275\pi\)
−0.883679 + 0.468093i \(0.844941\pi\)
\(972\) 0 0
\(973\) −1.52239e10 8.78952e9i −0.529823 0.305894i
\(974\) 0 0
\(975\) 7.34415e9 4.41251e9i 0.253761 0.152465i
\(976\) 0 0
\(977\) −8.50985e9 4.91316e9i −0.291938 0.168551i 0.346877 0.937910i \(-0.387242\pi\)
−0.638816 + 0.769360i \(0.720575\pi\)
\(978\) 0 0
\(979\) −3.38644e10 5.86549e10i −1.15346 1.99786i
\(980\) 0 0
\(981\) −1.41104e10 + 8.14666e9i −0.477198 + 0.275511i
\(982\) 0 0
\(983\) 3.81722e10i 1.28177i −0.767637 0.640885i \(-0.778568\pi\)
0.767637 0.640885i \(-0.221432\pi\)
\(984\) 0 0
\(985\) 9.38813e8 1.62607e9i 0.0313006 0.0542142i
\(986\) 0 0
\(987\) 1.54307e9 0.0510830
\(988\) 0 0
\(989\) 2.62424e10 0.862615
\(990\) 0 0
\(991\) 6.66158e9 1.15382e10i 0.217430 0.376600i −0.736592 0.676338i \(-0.763566\pi\)
0.954022 + 0.299738i \(0.0968993\pi\)
\(992\) 0 0
\(993\) 3.26388e10i 1.05782i
\(994\) 0 0
\(995\) 1.44721e10 8.35545e9i 0.465747 0.268899i
\(996\) 0 0
\(997\) −1.91796e10 3.32200e10i −0.612923 1.06161i −0.990745 0.135736i \(-0.956660\pi\)
0.377822 0.925878i \(-0.376673\pi\)
\(998\) 0 0
\(999\) −4.65450e10 2.68728e10i −1.47705 0.852773i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.8.w.b.17.3 16
4.3 odd 2 26.8.e.a.17.3 16
12.11 even 2 234.8.l.c.199.7 16
13.10 even 6 inner 208.8.w.b.49.3 16
52.7 even 12 338.8.a.m.1.3 8
52.19 even 12 338.8.a.n.1.3 8
52.23 odd 6 26.8.e.a.23.3 yes 16
52.35 odd 6 338.8.b.i.337.11 16
52.43 odd 6 338.8.b.i.337.3 16
156.23 even 6 234.8.l.c.127.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.e.a.17.3 16 4.3 odd 2
26.8.e.a.23.3 yes 16 52.23 odd 6
208.8.w.b.17.3 16 1.1 even 1 trivial
208.8.w.b.49.3 16 13.10 even 6 inner
234.8.l.c.127.6 16 156.23 even 6
234.8.l.c.199.7 16 12.11 even 2
338.8.a.m.1.3 8 52.7 even 12
338.8.a.n.1.3 8 52.19 even 12
338.8.b.i.337.3 16 52.43 odd 6
338.8.b.i.337.11 16 52.35 odd 6