Properties

Label 338.8.a.l.1.3
Level $338$
Weight $8$
Character 338.1
Self dual yes
Analytic conductor $105.586$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,8,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,40,27] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 8883x^{3} + 76436x^{2} + 9553604x - 121499328 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(13.5100\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} +18.5100 q^{3} +64.0000 q^{4} -6.61448 q^{5} +148.080 q^{6} -1604.67 q^{7} +512.000 q^{8} -1844.38 q^{9} -52.9158 q^{10} +1173.55 q^{11} +1184.64 q^{12} -12837.3 q^{14} -122.434 q^{15} +4096.00 q^{16} +28053.1 q^{17} -14755.1 q^{18} +13825.5 q^{19} -423.327 q^{20} -29702.3 q^{21} +9388.37 q^{22} -94424.9 q^{23} +9477.10 q^{24} -78081.2 q^{25} -74620.7 q^{27} -102699. q^{28} +159421. q^{29} -979.470 q^{30} +113805. q^{31} +32768.0 q^{32} +21722.3 q^{33} +224425. q^{34} +10614.0 q^{35} -118040. q^{36} +402800. q^{37} +110604. q^{38} -3386.61 q^{40} +583062. q^{41} -237618. q^{42} -88507.4 q^{43} +75107.0 q^{44} +12199.6 q^{45} -755399. q^{46} +112810. q^{47} +75816.8 q^{48} +1.75141e6 q^{49} -624650. q^{50} +519262. q^{51} +548744. q^{53} -596966. q^{54} -7762.40 q^{55} -821589. q^{56} +255910. q^{57} +1.27536e6 q^{58} +1.69495e6 q^{59} -7835.76 q^{60} +1.33588e6 q^{61} +910442. q^{62} +2.95961e6 q^{63} +262144. q^{64} +173778. q^{66} -719239. q^{67} +1.79540e6 q^{68} -1.74780e6 q^{69} +84912.2 q^{70} +1.85217e6 q^{71} -944323. q^{72} -1.50153e6 q^{73} +3.22240e6 q^{74} -1.44528e6 q^{75} +884833. q^{76} -1.88315e6 q^{77} -6.07672e6 q^{79} -27092.9 q^{80} +2.65244e6 q^{81} +4.66450e6 q^{82} -661334. q^{83} -1.90095e6 q^{84} -185557. q^{85} -708059. q^{86} +2.95087e6 q^{87} +600856. q^{88} -1.03091e7 q^{89} +97597.0 q^{90} -6.04319e6 q^{92} +2.10653e6 q^{93} +902482. q^{94} -91448.6 q^{95} +606534. q^{96} +6.14220e6 q^{97} +1.40113e7 q^{98} -2.16447e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 40 q^{2} + 27 q^{3} + 320 q^{4} + 71 q^{5} + 216 q^{6} + 237 q^{7} + 2560 q^{8} + 6980 q^{9} + 568 q^{10} + 1080 q^{11} + 1728 q^{12} + 1896 q^{14} + 27187 q^{15} + 20480 q^{16} + 3459 q^{17} + 55840 q^{18}+ \cdots - 41946120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) 18.5100 0.395805 0.197902 0.980222i \(-0.436587\pi\)
0.197902 + 0.980222i \(0.436587\pi\)
\(4\) 64.0000 0.500000
\(5\) −6.61448 −0.0236647 −0.0118323 0.999930i \(-0.503766\pi\)
−0.0118323 + 0.999930i \(0.503766\pi\)
\(6\) 148.080 0.279876
\(7\) −1604.67 −1.76824 −0.884120 0.467260i \(-0.845241\pi\)
−0.884120 + 0.467260i \(0.845241\pi\)
\(8\) 512.000 0.353553
\(9\) −1844.38 −0.843339
\(10\) −52.9158 −0.0167335
\(11\) 1173.55 0.265843 0.132922 0.991127i \(-0.457564\pi\)
0.132922 + 0.991127i \(0.457564\pi\)
\(12\) 1184.64 0.197902
\(13\) 0 0
\(14\) −12837.3 −1.25033
\(15\) −122.434 −0.00936659
\(16\) 4096.00 0.250000
\(17\) 28053.1 1.38487 0.692437 0.721478i \(-0.256537\pi\)
0.692437 + 0.721478i \(0.256537\pi\)
\(18\) −14755.1 −0.596330
\(19\) 13825.5 0.462428 0.231214 0.972903i \(-0.425730\pi\)
0.231214 + 0.972903i \(0.425730\pi\)
\(20\) −423.327 −0.0118323
\(21\) −29702.3 −0.699878
\(22\) 9388.37 0.187980
\(23\) −94424.9 −1.61823 −0.809113 0.587653i \(-0.800052\pi\)
−0.809113 + 0.587653i \(0.800052\pi\)
\(24\) 9477.10 0.139938
\(25\) −78081.2 −0.999440
\(26\) 0 0
\(27\) −74620.7 −0.729602
\(28\) −102699. −0.884120
\(29\) 159421. 1.21381 0.606906 0.794774i \(-0.292410\pi\)
0.606906 + 0.794774i \(0.292410\pi\)
\(30\) −979.470 −0.00662318
\(31\) 113805. 0.686114 0.343057 0.939315i \(-0.388538\pi\)
0.343057 + 0.939315i \(0.388538\pi\)
\(32\) 32768.0 0.176777
\(33\) 21722.3 0.105222
\(34\) 224425. 0.979254
\(35\) 10614.0 0.0418448
\(36\) −118040. −0.421669
\(37\) 402800. 1.30732 0.653662 0.756787i \(-0.273232\pi\)
0.653662 + 0.756787i \(0.273232\pi\)
\(38\) 110604. 0.326986
\(39\) 0 0
\(40\) −3386.61 −0.00836673
\(41\) 583062. 1.32121 0.660604 0.750734i \(-0.270300\pi\)
0.660604 + 0.750734i \(0.270300\pi\)
\(42\) −237618. −0.494888
\(43\) −88507.4 −0.169762 −0.0848809 0.996391i \(-0.527051\pi\)
−0.0848809 + 0.996391i \(0.527051\pi\)
\(44\) 75107.0 0.132922
\(45\) 12199.6 0.0199573
\(46\) −755399. −1.14426
\(47\) 112810. 0.158491 0.0792457 0.996855i \(-0.474749\pi\)
0.0792457 + 0.996855i \(0.474749\pi\)
\(48\) 75816.8 0.0989512
\(49\) 1.75141e6 2.12667
\(50\) −624650. −0.706711
\(51\) 519262. 0.548140
\(52\) 0 0
\(53\) 548744. 0.506296 0.253148 0.967428i \(-0.418534\pi\)
0.253148 + 0.967428i \(0.418534\pi\)
\(54\) −596966. −0.515907
\(55\) −7762.40 −0.00629110
\(56\) −821589. −0.625167
\(57\) 255910. 0.183031
\(58\) 1.27536e6 0.858294
\(59\) 1.69495e6 1.07442 0.537211 0.843448i \(-0.319478\pi\)
0.537211 + 0.843448i \(0.319478\pi\)
\(60\) −7835.76 −0.00468330
\(61\) 1.33588e6 0.753554 0.376777 0.926304i \(-0.377032\pi\)
0.376777 + 0.926304i \(0.377032\pi\)
\(62\) 910442. 0.485156
\(63\) 2.95961e6 1.49123
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) 173778. 0.0744033
\(67\) −719239. −0.292154 −0.146077 0.989273i \(-0.546665\pi\)
−0.146077 + 0.989273i \(0.546665\pi\)
\(68\) 1.79540e6 0.692437
\(69\) −1.74780e6 −0.640501
\(70\) 84912.2 0.0295888
\(71\) 1.85217e6 0.614153 0.307077 0.951685i \(-0.400649\pi\)
0.307077 + 0.951685i \(0.400649\pi\)
\(72\) −944323. −0.298165
\(73\) −1.50153e6 −0.451756 −0.225878 0.974156i \(-0.572525\pi\)
−0.225878 + 0.974156i \(0.572525\pi\)
\(74\) 3.22240e6 0.924417
\(75\) −1.44528e6 −0.395583
\(76\) 884833. 0.231214
\(77\) −1.88315e6 −0.470075
\(78\) 0 0
\(79\) −6.07672e6 −1.38667 −0.693337 0.720614i \(-0.743860\pi\)
−0.693337 + 0.720614i \(0.743860\pi\)
\(80\) −27092.9 −0.00591617
\(81\) 2.65244e6 0.554559
\(82\) 4.66450e6 0.934235
\(83\) −661334. −0.126954 −0.0634771 0.997983i \(-0.520219\pi\)
−0.0634771 + 0.997983i \(0.520219\pi\)
\(84\) −1.90095e6 −0.349939
\(85\) −185557. −0.0327726
\(86\) −708059. −0.120040
\(87\) 2.95087e6 0.480432
\(88\) 600856. 0.0939898
\(89\) −1.03091e7 −1.55008 −0.775041 0.631910i \(-0.782271\pi\)
−0.775041 + 0.631910i \(0.782271\pi\)
\(90\) 97597.0 0.0141120
\(91\) 0 0
\(92\) −6.04319e6 −0.809113
\(93\) 2.10653e6 0.271567
\(94\) 902482. 0.112070
\(95\) −91448.6 −0.0109432
\(96\) 606534. 0.0699691
\(97\) 6.14220e6 0.683318 0.341659 0.939824i \(-0.389011\pi\)
0.341659 + 0.939824i \(0.389011\pi\)
\(98\) 1.40113e7 1.50379
\(99\) −2.16447e6 −0.224196
\(100\) −4.99720e6 −0.499720
\(101\) 5.85424e6 0.565387 0.282693 0.959210i \(-0.408772\pi\)
0.282693 + 0.959210i \(0.408772\pi\)
\(102\) 4.15410e6 0.387593
\(103\) −1.80551e6 −0.162806 −0.0814031 0.996681i \(-0.525940\pi\)
−0.0814031 + 0.996681i \(0.525940\pi\)
\(104\) 0 0
\(105\) 196465. 0.0165624
\(106\) 4.38996e6 0.358005
\(107\) 1.32024e7 1.04186 0.520931 0.853599i \(-0.325585\pi\)
0.520931 + 0.853599i \(0.325585\pi\)
\(108\) −4.77572e6 −0.364801
\(109\) 2.36217e7 1.74710 0.873550 0.486734i \(-0.161812\pi\)
0.873550 + 0.486734i \(0.161812\pi\)
\(110\) −62099.2 −0.00444848
\(111\) 7.45581e6 0.517445
\(112\) −6.57271e6 −0.442060
\(113\) 1.03738e7 0.676340 0.338170 0.941085i \(-0.390192\pi\)
0.338170 + 0.941085i \(0.390192\pi\)
\(114\) 2.04728e6 0.129423
\(115\) 624571. 0.0382948
\(116\) 1.02029e7 0.606906
\(117\) 0 0
\(118\) 1.35596e7 0.759732
\(119\) −4.50159e7 −2.44879
\(120\) −62686.1 −0.00331159
\(121\) −1.81100e7 −0.929327
\(122\) 1.06871e7 0.532843
\(123\) 1.07925e7 0.522941
\(124\) 7.28354e6 0.343057
\(125\) 1.03322e6 0.0473161
\(126\) 2.36769e7 1.05446
\(127\) 3.07208e7 1.33082 0.665409 0.746479i \(-0.268257\pi\)
0.665409 + 0.746479i \(0.268257\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) −1.63827e6 −0.0671925
\(130\) 0 0
\(131\) 1.62980e7 0.633411 0.316706 0.948524i \(-0.397423\pi\)
0.316706 + 0.948524i \(0.397423\pi\)
\(132\) 1.39023e6 0.0526110
\(133\) −2.21853e7 −0.817683
\(134\) −5.75391e6 −0.206584
\(135\) 493577. 0.0172658
\(136\) 1.43632e7 0.489627
\(137\) 3.22644e7 1.07202 0.536008 0.844213i \(-0.319932\pi\)
0.536008 + 0.844213i \(0.319932\pi\)
\(138\) −1.39824e7 −0.452903
\(139\) −3.77383e7 −1.19188 −0.595938 0.803030i \(-0.703220\pi\)
−0.595938 + 0.803030i \(0.703220\pi\)
\(140\) 679298. 0.0209224
\(141\) 2.08811e6 0.0627317
\(142\) 1.48174e7 0.434272
\(143\) 0 0
\(144\) −7.55459e6 −0.210835
\(145\) −1.05448e6 −0.0287245
\(146\) −1.20122e7 −0.319439
\(147\) 3.24185e7 0.841748
\(148\) 2.57792e7 0.653662
\(149\) 1.69205e7 0.419045 0.209523 0.977804i \(-0.432809\pi\)
0.209523 + 0.977804i \(0.432809\pi\)
\(150\) −1.15622e7 −0.279720
\(151\) −3.87829e7 −0.916687 −0.458343 0.888775i \(-0.651557\pi\)
−0.458343 + 0.888775i \(0.651557\pi\)
\(152\) 7.07867e6 0.163493
\(153\) −5.17407e7 −1.16792
\(154\) −1.50652e7 −0.332393
\(155\) −752763. −0.0162367
\(156\) 0 0
\(157\) −4.86546e7 −1.00340 −0.501701 0.865041i \(-0.667292\pi\)
−0.501701 + 0.865041i \(0.667292\pi\)
\(158\) −4.86137e7 −0.980526
\(159\) 1.01572e7 0.200394
\(160\) −216743. −0.00418336
\(161\) 1.51520e8 2.86141
\(162\) 2.12195e7 0.392132
\(163\) 8.82607e7 1.59629 0.798143 0.602468i \(-0.205816\pi\)
0.798143 + 0.602468i \(0.205816\pi\)
\(164\) 3.73160e7 0.660604
\(165\) −143682. −0.00249005
\(166\) −5.29067e6 −0.0897702
\(167\) 7.18201e7 1.19327 0.596634 0.802513i \(-0.296504\pi\)
0.596634 + 0.802513i \(0.296504\pi\)
\(168\) −1.52076e7 −0.247444
\(169\) 0 0
\(170\) −1.48446e6 −0.0231737
\(171\) −2.54995e7 −0.389983
\(172\) −5.66447e6 −0.0848809
\(173\) 6.00357e7 0.881553 0.440776 0.897617i \(-0.354703\pi\)
0.440776 + 0.897617i \(0.354703\pi\)
\(174\) 2.36069e7 0.339717
\(175\) 1.25294e8 1.76725
\(176\) 4.80685e6 0.0664609
\(177\) 3.13735e7 0.425262
\(178\) −8.24726e7 −1.09607
\(179\) −1.34440e8 −1.75203 −0.876015 0.482284i \(-0.839807\pi\)
−0.876015 + 0.482284i \(0.839807\pi\)
\(180\) 780776. 0.00997867
\(181\) −1.55862e8 −1.95374 −0.976868 0.213843i \(-0.931402\pi\)
−0.976868 + 0.213843i \(0.931402\pi\)
\(182\) 0 0
\(183\) 2.47272e7 0.298260
\(184\) −4.83455e7 −0.572129
\(185\) −2.66431e6 −0.0309374
\(186\) 1.68522e7 0.192027
\(187\) 3.29217e7 0.368160
\(188\) 7.21985e6 0.0792457
\(189\) 1.19741e8 1.29011
\(190\) −731589. −0.00773801
\(191\) −2.23323e7 −0.231909 −0.115954 0.993255i \(-0.536993\pi\)
−0.115954 + 0.993255i \(0.536993\pi\)
\(192\) 4.85227e6 0.0494756
\(193\) 2.69730e6 0.0270072 0.0135036 0.999909i \(-0.495702\pi\)
0.0135036 + 0.999909i \(0.495702\pi\)
\(194\) 4.91376e7 0.483179
\(195\) 0 0
\(196\) 1.12090e8 1.06334
\(197\) 7.30124e7 0.680401 0.340200 0.940353i \(-0.389505\pi\)
0.340200 + 0.940353i \(0.389505\pi\)
\(198\) −1.73157e7 −0.158531
\(199\) −1.10593e8 −0.994817 −0.497409 0.867516i \(-0.665715\pi\)
−0.497409 + 0.867516i \(0.665715\pi\)
\(200\) −3.99776e7 −0.353355
\(201\) −1.33131e7 −0.115636
\(202\) 4.68339e7 0.399789
\(203\) −2.55817e8 −2.14631
\(204\) 3.32328e7 0.274070
\(205\) −3.85665e6 −0.0312660
\(206\) −1.44441e7 −0.115121
\(207\) 1.74156e8 1.36471
\(208\) 0 0
\(209\) 1.62249e7 0.122933
\(210\) 1.57172e6 0.0117114
\(211\) −7.79932e7 −0.571568 −0.285784 0.958294i \(-0.592254\pi\)
−0.285784 + 0.958294i \(0.592254\pi\)
\(212\) 3.51196e7 0.253148
\(213\) 3.42836e7 0.243085
\(214\) 1.05619e8 0.736708
\(215\) 585430. 0.00401736
\(216\) −3.82058e7 −0.257953
\(217\) −1.82619e8 −1.21322
\(218\) 1.88973e8 1.23539
\(219\) −2.77932e7 −0.178807
\(220\) −496793. −0.00314555
\(221\) 0 0
\(222\) 5.96464e7 0.365889
\(223\) −2.81334e8 −1.69885 −0.849425 0.527709i \(-0.823051\pi\)
−0.849425 + 0.527709i \(0.823051\pi\)
\(224\) −5.25817e7 −0.312584
\(225\) 1.44012e8 0.842866
\(226\) 8.29908e7 0.478245
\(227\) 2.87156e8 1.62940 0.814700 0.579882i \(-0.196901\pi\)
0.814700 + 0.579882i \(0.196901\pi\)
\(228\) 1.63782e7 0.0915156
\(229\) 1.77698e8 0.977819 0.488909 0.872335i \(-0.337395\pi\)
0.488909 + 0.872335i \(0.337395\pi\)
\(230\) 4.99657e6 0.0270785
\(231\) −3.48570e7 −0.186058
\(232\) 8.16233e7 0.429147
\(233\) 1.38051e8 0.714979 0.357490 0.933917i \(-0.383633\pi\)
0.357490 + 0.933917i \(0.383633\pi\)
\(234\) 0 0
\(235\) −746181. −0.00375065
\(236\) 1.08477e8 0.537211
\(237\) −1.12480e8 −0.548852
\(238\) −3.60127e8 −1.73156
\(239\) 6.38380e7 0.302473 0.151237 0.988498i \(-0.451674\pi\)
0.151237 + 0.988498i \(0.451674\pi\)
\(240\) −501489. −0.00234165
\(241\) 1.77813e8 0.818285 0.409143 0.912470i \(-0.365828\pi\)
0.409143 + 0.912470i \(0.365828\pi\)
\(242\) −1.44880e8 −0.657134
\(243\) 2.12292e8 0.949099
\(244\) 8.54966e7 0.376777
\(245\) −1.15846e7 −0.0503271
\(246\) 8.63396e7 0.369775
\(247\) 0 0
\(248\) 5.82683e7 0.242578
\(249\) −1.22413e7 −0.0502491
\(250\) 8.26578e6 0.0334575
\(251\) 2.57165e8 1.02649 0.513244 0.858243i \(-0.328444\pi\)
0.513244 + 0.858243i \(0.328444\pi\)
\(252\) 1.89415e8 0.745613
\(253\) −1.10812e8 −0.430195
\(254\) 2.45766e8 0.941031
\(255\) −3.43465e6 −0.0129716
\(256\) 1.67772e7 0.0625000
\(257\) −2.24906e8 −0.826486 −0.413243 0.910621i \(-0.635604\pi\)
−0.413243 + 0.910621i \(0.635604\pi\)
\(258\) −1.31061e7 −0.0475123
\(259\) −6.46359e8 −2.31166
\(260\) 0 0
\(261\) −2.94032e8 −1.02365
\(262\) 1.30384e8 0.447890
\(263\) 4.78020e8 1.62032 0.810161 0.586208i \(-0.199380\pi\)
0.810161 + 0.586208i \(0.199380\pi\)
\(264\) 1.11218e7 0.0372016
\(265\) −3.62966e6 −0.0119813
\(266\) −1.77483e8 −0.578189
\(267\) −1.90821e8 −0.613530
\(268\) −4.60313e7 −0.146077
\(269\) 1.76243e8 0.552049 0.276025 0.961151i \(-0.410983\pi\)
0.276025 + 0.961151i \(0.410983\pi\)
\(270\) 3.94862e6 0.0122088
\(271\) −1.88337e8 −0.574834 −0.287417 0.957806i \(-0.592797\pi\)
−0.287417 + 0.957806i \(0.592797\pi\)
\(272\) 1.14906e8 0.346219
\(273\) 0 0
\(274\) 2.58115e8 0.758030
\(275\) −9.16320e7 −0.265695
\(276\) −1.11859e8 −0.320251
\(277\) 3.15057e7 0.0890656 0.0445328 0.999008i \(-0.485820\pi\)
0.0445328 + 0.999008i \(0.485820\pi\)
\(278\) −3.01907e8 −0.842784
\(279\) −2.09900e8 −0.578627
\(280\) 5.43438e6 0.0147944
\(281\) 2.67569e8 0.719388 0.359694 0.933070i \(-0.382881\pi\)
0.359694 + 0.933070i \(0.382881\pi\)
\(282\) 1.67049e7 0.0443580
\(283\) −1.31279e8 −0.344303 −0.172152 0.985070i \(-0.555072\pi\)
−0.172152 + 0.985070i \(0.555072\pi\)
\(284\) 1.18539e8 0.307077
\(285\) −1.69271e6 −0.00433137
\(286\) 0 0
\(287\) −9.35620e8 −2.33621
\(288\) −6.04367e7 −0.149083
\(289\) 3.76640e8 0.917876
\(290\) −8.43587e6 −0.0203113
\(291\) 1.13692e8 0.270460
\(292\) −9.60978e7 −0.225878
\(293\) −5.02530e8 −1.16715 −0.583574 0.812060i \(-0.698346\pi\)
−0.583574 + 0.812060i \(0.698346\pi\)
\(294\) 2.59348e8 0.595206
\(295\) −1.12112e7 −0.0254259
\(296\) 2.06233e8 0.462209
\(297\) −8.75709e7 −0.193960
\(298\) 1.35364e8 0.296310
\(299\) 0 0
\(300\) −9.24980e7 −0.197792
\(301\) 1.42025e8 0.300180
\(302\) −3.10263e8 −0.648196
\(303\) 1.08362e8 0.223783
\(304\) 5.66293e7 0.115607
\(305\) −8.83618e6 −0.0178326
\(306\) −4.13926e8 −0.825843
\(307\) −4.04464e7 −0.0797802 −0.0398901 0.999204i \(-0.512701\pi\)
−0.0398901 + 0.999204i \(0.512701\pi\)
\(308\) −1.20522e8 −0.235038
\(309\) −3.34200e7 −0.0644394
\(310\) −6.02210e6 −0.0114811
\(311\) −5.80479e7 −0.109427 −0.0547136 0.998502i \(-0.517425\pi\)
−0.0547136 + 0.998502i \(0.517425\pi\)
\(312\) 0 0
\(313\) 1.87305e8 0.345259 0.172629 0.984987i \(-0.444774\pi\)
0.172629 + 0.984987i \(0.444774\pi\)
\(314\) −3.89237e8 −0.709513
\(315\) −1.95763e7 −0.0352894
\(316\) −3.88910e8 −0.693337
\(317\) 6.09607e7 0.107484 0.0537419 0.998555i \(-0.482885\pi\)
0.0537419 + 0.998555i \(0.482885\pi\)
\(318\) 8.12579e7 0.141700
\(319\) 1.87087e8 0.322684
\(320\) −1.73395e6 −0.00295808
\(321\) 2.44376e8 0.412374
\(322\) 1.21216e9 2.02332
\(323\) 3.87849e8 0.640404
\(324\) 1.69756e8 0.277279
\(325\) 0 0
\(326\) 7.06085e8 1.12874
\(327\) 4.37236e8 0.691511
\(328\) 2.98528e8 0.467118
\(329\) −1.81023e8 −0.280251
\(330\) −1.14945e6 −0.00176073
\(331\) −4.54468e8 −0.688820 −0.344410 0.938819i \(-0.611921\pi\)
−0.344410 + 0.938819i \(0.611921\pi\)
\(332\) −4.23254e7 −0.0634771
\(333\) −7.42916e8 −1.10252
\(334\) 5.74561e8 0.843769
\(335\) 4.75739e6 0.00691372
\(336\) −1.21661e8 −0.174969
\(337\) 2.05246e8 0.292125 0.146063 0.989275i \(-0.453340\pi\)
0.146063 + 0.989275i \(0.453340\pi\)
\(338\) 0 0
\(339\) 1.92019e8 0.267699
\(340\) −1.18756e7 −0.0163863
\(341\) 1.33556e8 0.182399
\(342\) −2.03996e8 −0.275760
\(343\) −1.48891e9 −1.99223
\(344\) −4.53158e7 −0.0600198
\(345\) 1.15608e7 0.0151573
\(346\) 4.80286e8 0.623352
\(347\) 2.99289e8 0.384537 0.192268 0.981342i \(-0.438416\pi\)
0.192268 + 0.981342i \(0.438416\pi\)
\(348\) 1.88856e8 0.240216
\(349\) 1.03098e8 0.129826 0.0649128 0.997891i \(-0.479323\pi\)
0.0649128 + 0.997891i \(0.479323\pi\)
\(350\) 1.00235e9 1.24963
\(351\) 0 0
\(352\) 3.84548e7 0.0469949
\(353\) 3.79231e8 0.458873 0.229436 0.973324i \(-0.426312\pi\)
0.229436 + 0.973324i \(0.426312\pi\)
\(354\) 2.50988e8 0.300705
\(355\) −1.22511e7 −0.0145337
\(356\) −6.59781e8 −0.775041
\(357\) −8.33242e8 −0.969243
\(358\) −1.07552e9 −1.23887
\(359\) 1.29204e9 1.47382 0.736912 0.675988i \(-0.236283\pi\)
0.736912 + 0.675988i \(0.236283\pi\)
\(360\) 6.24621e6 0.00705598
\(361\) −7.02727e8 −0.786161
\(362\) −1.24690e9 −1.38150
\(363\) −3.35215e8 −0.367832
\(364\) 0 0
\(365\) 9.93183e6 0.0106907
\(366\) 1.97817e8 0.210902
\(367\) −3.21664e8 −0.339681 −0.169841 0.985472i \(-0.554325\pi\)
−0.169841 + 0.985472i \(0.554325\pi\)
\(368\) −3.86764e8 −0.404556
\(369\) −1.07539e9 −1.11423
\(370\) −2.13145e7 −0.0218760
\(371\) −8.80551e8 −0.895253
\(372\) 1.34818e8 0.135784
\(373\) −5.95386e8 −0.594043 −0.297021 0.954871i \(-0.595993\pi\)
−0.297021 + 0.954871i \(0.595993\pi\)
\(374\) 2.63373e8 0.260328
\(375\) 1.91249e7 0.0187279
\(376\) 5.77588e7 0.0560352
\(377\) 0 0
\(378\) 9.57930e8 0.912247
\(379\) 1.84954e9 1.74512 0.872562 0.488503i \(-0.162457\pi\)
0.872562 + 0.488503i \(0.162457\pi\)
\(380\) −5.85271e6 −0.00547160
\(381\) 5.68640e8 0.526744
\(382\) −1.78659e8 −0.163984
\(383\) −1.94010e9 −1.76453 −0.882263 0.470757i \(-0.843981\pi\)
−0.882263 + 0.470757i \(0.843981\pi\)
\(384\) 3.88182e7 0.0349845
\(385\) 1.24561e7 0.0111242
\(386\) 2.15784e7 0.0190969
\(387\) 1.63241e8 0.143167
\(388\) 3.93101e8 0.341659
\(389\) −1.63159e9 −1.40536 −0.702680 0.711506i \(-0.748014\pi\)
−0.702680 + 0.711506i \(0.748014\pi\)
\(390\) 0 0
\(391\) −2.64891e9 −2.24104
\(392\) 8.96721e8 0.751893
\(393\) 3.01676e8 0.250707
\(394\) 5.84099e8 0.481116
\(395\) 4.01943e7 0.0328152
\(396\) −1.38526e8 −0.112098
\(397\) −1.46137e9 −1.17218 −0.586090 0.810246i \(-0.699334\pi\)
−0.586090 + 0.810246i \(0.699334\pi\)
\(398\) −8.84747e8 −0.703442
\(399\) −4.10650e8 −0.323643
\(400\) −3.19821e8 −0.249860
\(401\) 2.15957e8 0.167248 0.0836240 0.996497i \(-0.473351\pi\)
0.0836240 + 0.996497i \(0.473351\pi\)
\(402\) −1.06505e8 −0.0817669
\(403\) 0 0
\(404\) 3.74671e8 0.282693
\(405\) −1.75445e7 −0.0131234
\(406\) −2.04653e9 −1.51767
\(407\) 4.72704e8 0.347543
\(408\) 2.65862e8 0.193797
\(409\) 2.10034e9 1.51795 0.758975 0.651120i \(-0.225700\pi\)
0.758975 + 0.651120i \(0.225700\pi\)
\(410\) −3.08532e7 −0.0221084
\(411\) 5.97213e8 0.424309
\(412\) −1.15553e8 −0.0814031
\(413\) −2.71983e9 −1.89984
\(414\) 1.39324e9 0.964997
\(415\) 4.37438e6 0.00300433
\(416\) 0 0
\(417\) −6.98535e8 −0.471750
\(418\) 1.29799e8 0.0869270
\(419\) 4.33365e8 0.287809 0.143905 0.989592i \(-0.454034\pi\)
0.143905 + 0.989592i \(0.454034\pi\)
\(420\) 1.25738e7 0.00828119
\(421\) −2.60776e9 −1.70326 −0.851629 0.524145i \(-0.824385\pi\)
−0.851629 + 0.524145i \(0.824385\pi\)
\(422\) −6.23946e8 −0.404160
\(423\) −2.08065e8 −0.133662
\(424\) 2.80957e8 0.179003
\(425\) −2.19042e9 −1.38410
\(426\) 2.74269e8 0.171887
\(427\) −2.14365e9 −1.33246
\(428\) 8.44954e8 0.520931
\(429\) 0 0
\(430\) 4.68344e6 0.00284070
\(431\) −6.82317e8 −0.410503 −0.205251 0.978709i \(-0.565801\pi\)
−0.205251 + 0.978709i \(0.565801\pi\)
\(432\) −3.05646e8 −0.182401
\(433\) 2.49592e9 1.47749 0.738743 0.673987i \(-0.235420\pi\)
0.738743 + 0.673987i \(0.235420\pi\)
\(434\) −1.46096e9 −0.857873
\(435\) −1.95185e7 −0.0113693
\(436\) 1.51179e9 0.873550
\(437\) −1.30547e9 −0.748312
\(438\) −2.22346e8 −0.126436
\(439\) −1.51778e9 −0.856216 −0.428108 0.903727i \(-0.640820\pi\)
−0.428108 + 0.903727i \(0.640820\pi\)
\(440\) −3.97435e6 −0.00222424
\(441\) −3.23026e9 −1.79351
\(442\) 0 0
\(443\) 2.56533e9 1.40194 0.700971 0.713190i \(-0.252750\pi\)
0.700971 + 0.713190i \(0.252750\pi\)
\(444\) 4.77172e8 0.258722
\(445\) 6.81892e7 0.0366822
\(446\) −2.25067e9 −1.20127
\(447\) 3.13197e8 0.165860
\(448\) −4.20653e8 −0.221030
\(449\) −2.22454e9 −1.15978 −0.579892 0.814693i \(-0.696905\pi\)
−0.579892 + 0.814693i \(0.696905\pi\)
\(450\) 1.15209e9 0.595996
\(451\) 6.84251e8 0.351235
\(452\) 6.63926e8 0.338170
\(453\) −7.17870e8 −0.362829
\(454\) 2.29725e9 1.15216
\(455\) 0 0
\(456\) 1.31026e8 0.0647113
\(457\) −1.58220e9 −0.775453 −0.387726 0.921775i \(-0.626739\pi\)
−0.387726 + 0.921775i \(0.626739\pi\)
\(458\) 1.42158e9 0.691422
\(459\) −2.09335e9 −1.01041
\(460\) 3.99726e7 0.0191474
\(461\) −1.33292e9 −0.633652 −0.316826 0.948484i \(-0.602617\pi\)
−0.316826 + 0.948484i \(0.602617\pi\)
\(462\) −2.78856e8 −0.131563
\(463\) 2.03271e9 0.951790 0.475895 0.879502i \(-0.342124\pi\)
0.475895 + 0.879502i \(0.342124\pi\)
\(464\) 6.52987e8 0.303453
\(465\) −1.39336e7 −0.00642655
\(466\) 1.10441e9 0.505567
\(467\) −3.10675e7 −0.0141155 −0.00705777 0.999975i \(-0.502247\pi\)
−0.00705777 + 0.999975i \(0.502247\pi\)
\(468\) 0 0
\(469\) 1.15414e9 0.516598
\(470\) −5.96945e6 −0.00265211
\(471\) −9.00595e8 −0.397152
\(472\) 8.67815e8 0.379866
\(473\) −1.03867e8 −0.0451300
\(474\) −8.99838e8 −0.388097
\(475\) −1.07951e9 −0.462169
\(476\) −2.88102e9 −1.22440
\(477\) −1.01209e9 −0.426979
\(478\) 5.10704e8 0.213881
\(479\) 2.95620e9 1.22902 0.614512 0.788908i \(-0.289353\pi\)
0.614512 + 0.788908i \(0.289353\pi\)
\(480\) −4.01191e6 −0.00165580
\(481\) 0 0
\(482\) 1.42251e9 0.578615
\(483\) 2.80464e9 1.13256
\(484\) −1.15904e9 −0.464664
\(485\) −4.06274e7 −0.0161705
\(486\) 1.69834e9 0.671114
\(487\) 3.14356e8 0.123330 0.0616652 0.998097i \(-0.480359\pi\)
0.0616652 + 0.998097i \(0.480359\pi\)
\(488\) 6.83973e8 0.266422
\(489\) 1.63370e9 0.631817
\(490\) −9.26772e7 −0.0355866
\(491\) 1.74300e9 0.664525 0.332262 0.943187i \(-0.392188\pi\)
0.332262 + 0.943187i \(0.392188\pi\)
\(492\) 6.90717e8 0.261470
\(493\) 4.47225e9 1.68098
\(494\) 0 0
\(495\) 1.43168e7 0.00530553
\(496\) 4.66146e8 0.171529
\(497\) −2.97211e9 −1.08597
\(498\) −9.79301e7 −0.0355315
\(499\) 3.47846e9 1.25324 0.626621 0.779324i \(-0.284437\pi\)
0.626621 + 0.779324i \(0.284437\pi\)
\(500\) 6.61263e7 0.0236581
\(501\) 1.32939e9 0.472302
\(502\) 2.05732e9 0.725837
\(503\) −2.26923e9 −0.795043 −0.397521 0.917593i \(-0.630130\pi\)
−0.397521 + 0.917593i \(0.630130\pi\)
\(504\) 1.51532e9 0.527228
\(505\) −3.87227e7 −0.0133797
\(506\) −8.86496e8 −0.304194
\(507\) 0 0
\(508\) 1.96613e9 0.665409
\(509\) −3.74316e9 −1.25813 −0.629065 0.777352i \(-0.716562\pi\)
−0.629065 + 0.777352i \(0.716562\pi\)
\(510\) −2.74772e7 −0.00917227
\(511\) 2.40945e9 0.798812
\(512\) 1.34218e8 0.0441942
\(513\) −1.03167e9 −0.337388
\(514\) −1.79925e9 −0.584414
\(515\) 1.19425e7 0.00385275
\(516\) −1.04849e8 −0.0335962
\(517\) 1.32388e8 0.0421339
\(518\) −5.17087e9 −1.63459
\(519\) 1.11126e9 0.348923
\(520\) 0 0
\(521\) −1.68654e9 −0.522475 −0.261238 0.965275i \(-0.584131\pi\)
−0.261238 + 0.965275i \(0.584131\pi\)
\(522\) −2.35226e9 −0.723833
\(523\) 4.11403e9 1.25751 0.628755 0.777604i \(-0.283565\pi\)
0.628755 + 0.777604i \(0.283565\pi\)
\(524\) 1.04307e9 0.316706
\(525\) 2.31919e9 0.699486
\(526\) 3.82416e9 1.14574
\(527\) 3.19260e9 0.950182
\(528\) 8.89745e7 0.0263055
\(529\) 5.51124e9 1.61865
\(530\) −2.90373e7 −0.00847208
\(531\) −3.12614e9 −0.906102
\(532\) −1.41986e9 −0.408842
\(533\) 0 0
\(534\) −1.52657e9 −0.433831
\(535\) −8.73271e7 −0.0246553
\(536\) −3.68250e8 −0.103292
\(537\) −2.48847e9 −0.693462
\(538\) 1.40994e9 0.390358
\(539\) 2.05536e9 0.565362
\(540\) 3.15889e7 0.00863290
\(541\) −5.21199e9 −1.41519 −0.707593 0.706620i \(-0.750219\pi\)
−0.707593 + 0.706620i \(0.750219\pi\)
\(542\) −1.50669e9 −0.406469
\(543\) −2.88500e9 −0.773298
\(544\) 9.19245e8 0.244813
\(545\) −1.56245e8 −0.0413446
\(546\) 0 0
\(547\) −5.06174e9 −1.32234 −0.661172 0.750235i \(-0.729941\pi\)
−0.661172 + 0.750235i \(0.729941\pi\)
\(548\) 2.06492e9 0.536008
\(549\) −2.46388e9 −0.635501
\(550\) −7.33056e8 −0.187874
\(551\) 2.20407e9 0.561300
\(552\) −8.94874e8 −0.226451
\(553\) 9.75110e9 2.45197
\(554\) 2.52046e8 0.0629789
\(555\) −4.93163e7 −0.0122452
\(556\) −2.41525e9 −0.595938
\(557\) 5.64001e9 1.38289 0.691444 0.722430i \(-0.256975\pi\)
0.691444 + 0.722430i \(0.256975\pi\)
\(558\) −1.67920e9 −0.409151
\(559\) 0 0
\(560\) 4.34750e7 0.0104612
\(561\) 6.09379e8 0.145719
\(562\) 2.14055e9 0.508684
\(563\) −1.03881e9 −0.245334 −0.122667 0.992448i \(-0.539145\pi\)
−0.122667 + 0.992448i \(0.539145\pi\)
\(564\) 1.33639e8 0.0313658
\(565\) −6.86176e7 −0.0160054
\(566\) −1.05023e9 −0.243459
\(567\) −4.25627e9 −0.980593
\(568\) 9.48311e8 0.217136
\(569\) 1.36295e9 0.310160 0.155080 0.987902i \(-0.450436\pi\)
0.155080 + 0.987902i \(0.450436\pi\)
\(570\) −1.35417e7 −0.00306274
\(571\) −7.59504e9 −1.70727 −0.853637 0.520868i \(-0.825608\pi\)
−0.853637 + 0.520868i \(0.825608\pi\)
\(572\) 0 0
\(573\) −4.13370e8 −0.0917906
\(574\) −7.48496e9 −1.65195
\(575\) 7.37281e9 1.61732
\(576\) −4.83494e8 −0.105417
\(577\) −9.14980e8 −0.198288 −0.0991439 0.995073i \(-0.531610\pi\)
−0.0991439 + 0.995073i \(0.531610\pi\)
\(578\) 3.01312e9 0.649036
\(579\) 4.99269e7 0.0106896
\(580\) −6.74870e7 −0.0143622
\(581\) 1.06122e9 0.224486
\(582\) 9.09534e8 0.191244
\(583\) 6.43977e8 0.134595
\(584\) −7.68782e8 −0.159720
\(585\) 0 0
\(586\) −4.02024e9 −0.825298
\(587\) −3.69625e9 −0.754272 −0.377136 0.926158i \(-0.623091\pi\)
−0.377136 + 0.926158i \(0.623091\pi\)
\(588\) 2.07478e9 0.420874
\(589\) 1.57342e9 0.317278
\(590\) −8.96898e7 −0.0179788
\(591\) 1.35146e9 0.269306
\(592\) 1.64987e9 0.326831
\(593\) 4.56755e9 0.899480 0.449740 0.893159i \(-0.351517\pi\)
0.449740 + 0.893159i \(0.351517\pi\)
\(594\) −7.00567e8 −0.137150
\(595\) 2.97757e8 0.0579498
\(596\) 1.08291e9 0.209523
\(597\) −2.04708e9 −0.393753
\(598\) 0 0
\(599\) 1.63940e9 0.311668 0.155834 0.987783i \(-0.450194\pi\)
0.155834 + 0.987783i \(0.450194\pi\)
\(600\) −7.39984e8 −0.139860
\(601\) −4.92573e9 −0.925572 −0.462786 0.886470i \(-0.653150\pi\)
−0.462786 + 0.886470i \(0.653150\pi\)
\(602\) 1.13620e9 0.212259
\(603\) 1.32655e9 0.246384
\(604\) −2.48211e9 −0.458343
\(605\) 1.19788e8 0.0219922
\(606\) 8.66894e8 0.158238
\(607\) 7.26751e9 1.31894 0.659470 0.751731i \(-0.270781\pi\)
0.659470 + 0.751731i \(0.270781\pi\)
\(608\) 4.53035e8 0.0817464
\(609\) −4.73515e9 −0.849520
\(610\) −7.06894e7 −0.0126096
\(611\) 0 0
\(612\) −3.31140e9 −0.583959
\(613\) 3.16466e9 0.554900 0.277450 0.960740i \(-0.410511\pi\)
0.277450 + 0.960740i \(0.410511\pi\)
\(614\) −3.23571e8 −0.0564131
\(615\) −7.13865e7 −0.0123752
\(616\) −9.64172e8 −0.166197
\(617\) 1.11473e10 1.91060 0.955301 0.295634i \(-0.0955309\pi\)
0.955301 + 0.295634i \(0.0955309\pi\)
\(618\) −2.67360e8 −0.0455656
\(619\) −8.69140e9 −1.47290 −0.736449 0.676493i \(-0.763499\pi\)
−0.736449 + 0.676493i \(0.763499\pi\)
\(620\) −4.81768e7 −0.00811834
\(621\) 7.04605e9 1.18066
\(622\) −4.64384e8 −0.0773767
\(623\) 1.65426e10 2.74092
\(624\) 0 0
\(625\) 6.09326e9 0.998320
\(626\) 1.49844e9 0.244135
\(627\) 3.00322e8 0.0486576
\(628\) −3.11390e9 −0.501701
\(629\) 1.12998e10 1.81048
\(630\) −1.56610e8 −0.0249534
\(631\) 3.41348e9 0.540872 0.270436 0.962738i \(-0.412832\pi\)
0.270436 + 0.962738i \(0.412832\pi\)
\(632\) −3.11128e9 −0.490263
\(633\) −1.44365e9 −0.226229
\(634\) 4.87686e8 0.0760025
\(635\) −2.03202e8 −0.0314934
\(636\) 6.50063e8 0.100197
\(637\) 0 0
\(638\) 1.49670e9 0.228172
\(639\) −3.41611e9 −0.517939
\(640\) −1.38716e7 −0.00209168
\(641\) 1.93523e9 0.290221 0.145110 0.989415i \(-0.453646\pi\)
0.145110 + 0.989415i \(0.453646\pi\)
\(642\) 1.95501e9 0.291592
\(643\) 7.98936e9 1.18515 0.592575 0.805515i \(-0.298111\pi\)
0.592575 + 0.805515i \(0.298111\pi\)
\(644\) 9.69730e9 1.43071
\(645\) 1.08363e7 0.00159009
\(646\) 3.10279e9 0.452834
\(647\) 8.47178e9 1.22973 0.614865 0.788632i \(-0.289211\pi\)
0.614865 + 0.788632i \(0.289211\pi\)
\(648\) 1.35805e9 0.196066
\(649\) 1.98910e9 0.285628
\(650\) 0 0
\(651\) −3.38028e9 −0.480196
\(652\) 5.64868e9 0.798143
\(653\) 8.72038e9 1.22557 0.612787 0.790248i \(-0.290048\pi\)
0.612787 + 0.790248i \(0.290048\pi\)
\(654\) 3.49789e9 0.488972
\(655\) −1.07803e8 −0.0149895
\(656\) 2.38822e9 0.330302
\(657\) 2.76939e9 0.380983
\(658\) −1.44818e9 −0.198167
\(659\) −4.03937e9 −0.549813 −0.274907 0.961471i \(-0.588647\pi\)
−0.274907 + 0.961471i \(0.588647\pi\)
\(660\) −9.19563e6 −0.00124502
\(661\) 3.29803e9 0.444170 0.222085 0.975027i \(-0.428714\pi\)
0.222085 + 0.975027i \(0.428714\pi\)
\(662\) −3.63575e9 −0.487069
\(663\) 0 0
\(664\) −3.38603e8 −0.0448851
\(665\) 1.46744e8 0.0193502
\(666\) −5.94333e9 −0.779597
\(667\) −1.50533e10 −1.96422
\(668\) 4.59649e9 0.596634
\(669\) −5.20748e9 −0.672413
\(670\) 3.80591e7 0.00488874
\(671\) 1.56772e9 0.200327
\(672\) −9.73284e8 −0.123722
\(673\) 5.27449e9 0.667003 0.333502 0.942750i \(-0.391770\pi\)
0.333502 + 0.942750i \(0.391770\pi\)
\(674\) 1.64196e9 0.206564
\(675\) 5.82648e9 0.729194
\(676\) 0 0
\(677\) 1.02661e10 1.27158 0.635791 0.771861i \(-0.280674\pi\)
0.635791 + 0.771861i \(0.280674\pi\)
\(678\) 1.53616e9 0.189292
\(679\) −9.85617e9 −1.20827
\(680\) −9.50051e7 −0.0115869
\(681\) 5.31525e9 0.644925
\(682\) 1.06845e9 0.128976
\(683\) 3.81750e9 0.458465 0.229233 0.973372i \(-0.426378\pi\)
0.229233 + 0.973372i \(0.426378\pi\)
\(684\) −1.63197e9 −0.194992
\(685\) −2.13412e8 −0.0253689
\(686\) −1.19113e10 −1.40872
\(687\) 3.28918e9 0.387025
\(688\) −3.62526e8 −0.0424404
\(689\) 0 0
\(690\) 9.24863e7 0.0107178
\(691\) −1.41493e10 −1.63140 −0.815700 0.578475i \(-0.803648\pi\)
−0.815700 + 0.578475i \(0.803648\pi\)
\(692\) 3.84229e9 0.440776
\(693\) 3.47325e9 0.396432
\(694\) 2.39431e9 0.271909
\(695\) 2.49619e8 0.0282054
\(696\) 1.51084e9 0.169859
\(697\) 1.63567e10 1.82971
\(698\) 8.24782e8 0.0918006
\(699\) 2.55532e9 0.282992
\(700\) 8.01883e9 0.883625
\(701\) −2.63084e9 −0.288457 −0.144228 0.989544i \(-0.546070\pi\)
−0.144228 + 0.989544i \(0.546070\pi\)
\(702\) 0 0
\(703\) 5.56892e9 0.604543
\(704\) 3.07638e8 0.0332304
\(705\) −1.38118e7 −0.00148453
\(706\) 3.03385e9 0.324472
\(707\) −9.39409e9 −0.999740
\(708\) 2.00790e9 0.212631
\(709\) −1.48321e10 −1.56293 −0.781466 0.623947i \(-0.785528\pi\)
−0.781466 + 0.623947i \(0.785528\pi\)
\(710\) −9.80092e7 −0.0102769
\(711\) 1.12078e10 1.16944
\(712\) −5.27825e9 −0.548037
\(713\) −1.07461e10 −1.11029
\(714\) −6.66594e9 −0.685358
\(715\) 0 0
\(716\) −8.60413e9 −0.876015
\(717\) 1.18164e9 0.119720
\(718\) 1.03363e10 1.04215
\(719\) 4.09811e9 0.411180 0.205590 0.978638i \(-0.434089\pi\)
0.205590 + 0.978638i \(0.434089\pi\)
\(720\) 4.99697e7 0.00498933
\(721\) 2.89725e9 0.287880
\(722\) −5.62181e9 −0.555899
\(723\) 3.29132e9 0.323881
\(724\) −9.97518e9 −0.976868
\(725\) −1.24478e10 −1.21313
\(726\) −2.68172e9 −0.260097
\(727\) −1.07923e10 −1.04171 −0.520853 0.853646i \(-0.674386\pi\)
−0.520853 + 0.853646i \(0.674386\pi\)
\(728\) 0 0
\(729\) −1.87136e9 −0.178901
\(730\) 7.94546e7 0.00755943
\(731\) −2.48291e9 −0.235099
\(732\) 1.58254e9 0.149130
\(733\) 4.31755e9 0.404924 0.202462 0.979290i \(-0.435106\pi\)
0.202462 + 0.979290i \(0.435106\pi\)
\(734\) −2.57331e9 −0.240191
\(735\) −2.14431e8 −0.0199197
\(736\) −3.09411e9 −0.286065
\(737\) −8.44060e8 −0.0776671
\(738\) −8.60311e9 −0.787877
\(739\) 1.59219e10 1.45124 0.725619 0.688097i \(-0.241554\pi\)
0.725619 + 0.688097i \(0.241554\pi\)
\(740\) −1.70516e8 −0.0154687
\(741\) 0 0
\(742\) −7.04441e9 −0.633040
\(743\) −7.46206e9 −0.667418 −0.333709 0.942676i \(-0.608300\pi\)
−0.333709 + 0.942676i \(0.608300\pi\)
\(744\) 1.07854e9 0.0960136
\(745\) −1.11920e8 −0.00991657
\(746\) −4.76309e9 −0.420052
\(747\) 1.21975e9 0.107065
\(748\) 2.10699e9 0.184080
\(749\) −2.11855e10 −1.84226
\(750\) 1.52999e8 0.0132427
\(751\) 7.78292e9 0.670507 0.335253 0.942128i \(-0.391178\pi\)
0.335253 + 0.942128i \(0.391178\pi\)
\(752\) 4.62071e8 0.0396229
\(753\) 4.76011e9 0.406289
\(754\) 0 0
\(755\) 2.56529e8 0.0216931
\(756\) 7.66344e9 0.645056
\(757\) −1.36187e10 −1.14104 −0.570518 0.821285i \(-0.693257\pi\)
−0.570518 + 0.821285i \(0.693257\pi\)
\(758\) 1.47963e10 1.23399
\(759\) −2.05113e9 −0.170273
\(760\) −4.68217e7 −0.00386901
\(761\) 7.93048e9 0.652309 0.326154 0.945317i \(-0.394247\pi\)
0.326154 + 0.945317i \(0.394247\pi\)
\(762\) 4.54912e9 0.372464
\(763\) −3.79049e10 −3.08929
\(764\) −1.42927e9 −0.115954
\(765\) 3.42238e8 0.0276384
\(766\) −1.55208e10 −1.24771
\(767\) 0 0
\(768\) 3.10546e8 0.0247378
\(769\) 1.80037e10 1.42764 0.713820 0.700329i \(-0.246964\pi\)
0.713820 + 0.700329i \(0.246964\pi\)
\(770\) 9.96484e7 0.00786598
\(771\) −4.16300e9 −0.327127
\(772\) 1.72627e8 0.0135036
\(773\) −1.79933e10 −1.40114 −0.700571 0.713583i \(-0.747071\pi\)
−0.700571 + 0.713583i \(0.747071\pi\)
\(774\) 1.30593e9 0.101234
\(775\) −8.88606e9 −0.685730
\(776\) 3.14480e9 0.241589
\(777\) −1.19641e10 −0.914967
\(778\) −1.30527e10 −0.993740
\(779\) 8.06114e9 0.610963
\(780\) 0 0
\(781\) 2.17361e9 0.163269
\(782\) −2.11913e10 −1.58465
\(783\) −1.18961e10 −0.885600
\(784\) 7.17377e9 0.531669
\(785\) 3.21825e8 0.0237452
\(786\) 2.41341e9 0.177277
\(787\) −4.61318e9 −0.337356 −0.168678 0.985671i \(-0.553950\pi\)
−0.168678 + 0.985671i \(0.553950\pi\)
\(788\) 4.67279e9 0.340200
\(789\) 8.84813e9 0.641331
\(790\) 3.21554e8 0.0232038
\(791\) −1.66465e10 −1.19593
\(792\) −1.10821e9 −0.0792653
\(793\) 0 0
\(794\) −1.16910e10 −0.828857
\(795\) −6.71848e7 −0.00474227
\(796\) −7.07798e9 −0.497409
\(797\) −2.80281e9 −0.196106 −0.0980528 0.995181i \(-0.531261\pi\)
−0.0980528 + 0.995181i \(0.531261\pi\)
\(798\) −3.28520e9 −0.228850
\(799\) 3.16468e9 0.219491
\(800\) −2.55857e9 −0.176678
\(801\) 1.90139e10 1.30724
\(802\) 1.72765e9 0.118262
\(803\) −1.76211e9 −0.120096
\(804\) −8.52037e8 −0.0578179
\(805\) −1.00223e9 −0.0677144
\(806\) 0 0
\(807\) 3.26224e9 0.218504
\(808\) 2.99737e9 0.199894
\(809\) 8.36628e9 0.555537 0.277768 0.960648i \(-0.410405\pi\)
0.277768 + 0.960648i \(0.410405\pi\)
\(810\) −1.40356e8 −0.00927968
\(811\) −4.54358e9 −0.299106 −0.149553 0.988754i \(-0.547783\pi\)
−0.149553 + 0.988754i \(0.547783\pi\)
\(812\) −1.63723e10 −1.07316
\(813\) −3.48611e9 −0.227522
\(814\) 3.78163e9 0.245750
\(815\) −5.83798e8 −0.0377756
\(816\) 2.12690e9 0.137035
\(817\) −1.22366e9 −0.0785025
\(818\) 1.68027e10 1.07335
\(819\) 0 0
\(820\) −2.46826e8 −0.0156330
\(821\) 1.50748e10 0.950717 0.475358 0.879792i \(-0.342318\pi\)
0.475358 + 0.879792i \(0.342318\pi\)
\(822\) 4.77770e9 0.300032
\(823\) −1.67438e10 −1.04702 −0.523508 0.852021i \(-0.675377\pi\)
−0.523508 + 0.852021i \(0.675377\pi\)
\(824\) −9.24424e8 −0.0575607
\(825\) −1.69610e9 −0.105163
\(826\) −2.17586e10 −1.34339
\(827\) 1.05833e10 0.650656 0.325328 0.945601i \(-0.394525\pi\)
0.325328 + 0.945601i \(0.394525\pi\)
\(828\) 1.11460e10 0.682356
\(829\) 2.53716e10 1.54670 0.773352 0.633976i \(-0.218578\pi\)
0.773352 + 0.633976i \(0.218578\pi\)
\(830\) 3.49950e7 0.00212438
\(831\) 5.83169e8 0.0352526
\(832\) 0 0
\(833\) 4.91325e10 2.94518
\(834\) −5.58828e9 −0.333578
\(835\) −4.75053e8 −0.0282383
\(836\) 1.03839e9 0.0614667
\(837\) −8.49223e9 −0.500591
\(838\) 3.46692e9 0.203512
\(839\) −8.37014e9 −0.489290 −0.244645 0.969613i \(-0.578671\pi\)
−0.244645 + 0.969613i \(0.578671\pi\)
\(840\) 1.00590e8 0.00585569
\(841\) 8.16504e9 0.473339
\(842\) −2.08621e10 −1.20439
\(843\) 4.95268e9 0.284737
\(844\) −4.99156e9 −0.285784
\(845\) 0 0
\(846\) −1.66452e9 −0.0945133
\(847\) 2.90604e10 1.64327
\(848\) 2.24766e9 0.126574
\(849\) −2.42996e9 −0.136277
\(850\) −1.75234e10 −0.978705
\(851\) −3.80343e10 −2.11554
\(852\) 2.19415e9 0.121542
\(853\) −8.05268e9 −0.444241 −0.222121 0.975019i \(-0.571298\pi\)
−0.222121 + 0.975019i \(0.571298\pi\)
\(854\) −1.71492e10 −0.942195
\(855\) 1.68666e8 0.00922883
\(856\) 6.75964e9 0.368354
\(857\) 2.21962e10 1.20461 0.602304 0.798267i \(-0.294249\pi\)
0.602304 + 0.798267i \(0.294249\pi\)
\(858\) 0 0
\(859\) −4.25915e8 −0.0229270 −0.0114635 0.999934i \(-0.503649\pi\)
−0.0114635 + 0.999934i \(0.503649\pi\)
\(860\) 3.74675e7 0.00200868
\(861\) −1.73183e10 −0.924685
\(862\) −5.45854e9 −0.290269
\(863\) −1.84502e10 −0.977156 −0.488578 0.872520i \(-0.662484\pi\)
−0.488578 + 0.872520i \(0.662484\pi\)
\(864\) −2.44517e9 −0.128977
\(865\) −3.97105e8 −0.0208617
\(866\) 1.99674e10 1.04474
\(867\) 6.97159e9 0.363300
\(868\) −1.16876e10 −0.606608
\(869\) −7.13131e9 −0.368638
\(870\) −1.56148e8 −0.00803930
\(871\) 0 0
\(872\) 1.20943e10 0.617693
\(873\) −1.13286e10 −0.576268
\(874\) −1.04438e10 −0.529137
\(875\) −1.65798e9 −0.0836662
\(876\) −1.77877e9 −0.0894035
\(877\) −1.81523e10 −0.908725 −0.454363 0.890817i \(-0.650133\pi\)
−0.454363 + 0.890817i \(0.650133\pi\)
\(878\) −1.21423e10 −0.605436
\(879\) −9.30182e9 −0.461962
\(880\) −3.17948e7 −0.00157277
\(881\) 2.80509e10 1.38207 0.691037 0.722819i \(-0.257154\pi\)
0.691037 + 0.722819i \(0.257154\pi\)
\(882\) −2.58421e10 −1.26820
\(883\) 2.12689e9 0.103964 0.0519819 0.998648i \(-0.483446\pi\)
0.0519819 + 0.998648i \(0.483446\pi\)
\(884\) 0 0
\(885\) −2.07519e8 −0.0100637
\(886\) 2.05226e10 0.991323
\(887\) 2.61618e10 1.25874 0.629368 0.777107i \(-0.283314\pi\)
0.629368 + 0.777107i \(0.283314\pi\)
\(888\) 3.81737e9 0.182944
\(889\) −4.92965e10 −2.35321
\(890\) 5.45514e8 0.0259382
\(891\) 3.11276e9 0.147426
\(892\) −1.80054e10 −0.849425
\(893\) 1.55966e9 0.0732909
\(894\) 2.50558e9 0.117281
\(895\) 8.89248e8 0.0414612
\(896\) −3.36523e9 −0.156292
\(897\) 0 0
\(898\) −1.77963e10 −0.820091
\(899\) 1.81429e10 0.832814
\(900\) 9.21674e9 0.421433
\(901\) 1.53940e10 0.701156
\(902\) 5.47400e9 0.248360
\(903\) 2.62887e9 0.118812
\(904\) 5.31141e9 0.239122
\(905\) 1.03095e9 0.0462345
\(906\) −5.74296e9 −0.256559
\(907\) 1.57121e10 0.699213 0.349607 0.936897i \(-0.386315\pi\)
0.349607 + 0.936897i \(0.386315\pi\)
\(908\) 1.83780e10 0.814700
\(909\) −1.07974e10 −0.476812
\(910\) 0 0
\(911\) −3.17054e10 −1.38937 −0.694687 0.719312i \(-0.744457\pi\)
−0.694687 + 0.719312i \(0.744457\pi\)
\(912\) 1.04821e9 0.0457578
\(913\) −7.76106e8 −0.0337500
\(914\) −1.26576e10 −0.548328
\(915\) −1.63557e8 −0.00705823
\(916\) 1.13727e10 0.488909
\(917\) −2.61529e10 −1.12002
\(918\) −1.67468e10 −0.714466
\(919\) −7.15392e9 −0.304047 −0.152023 0.988377i \(-0.548579\pi\)
−0.152023 + 0.988377i \(0.548579\pi\)
\(920\) 3.19781e8 0.0135393
\(921\) −7.48660e8 −0.0315774
\(922\) −1.06634e10 −0.448059
\(923\) 0 0
\(924\) −2.23085e9 −0.0930290
\(925\) −3.14511e10 −1.30659
\(926\) 1.62617e10 0.673017
\(927\) 3.33006e9 0.137301
\(928\) 5.22389e9 0.214574
\(929\) 3.59995e10 1.47313 0.736566 0.676365i \(-0.236446\pi\)
0.736566 + 0.676365i \(0.236446\pi\)
\(930\) −1.11469e8 −0.00454426
\(931\) 2.42141e10 0.983433
\(932\) 8.83526e9 0.357490
\(933\) −1.07446e9 −0.0433118
\(934\) −2.48540e8 −0.00998119
\(935\) −2.17760e8 −0.00871238
\(936\) 0 0
\(937\) −1.38764e10 −0.551047 −0.275523 0.961294i \(-0.588851\pi\)
−0.275523 + 0.961294i \(0.588851\pi\)
\(938\) 9.23310e9 0.365290
\(939\) 3.46701e9 0.136655
\(940\) −4.77556e7 −0.00187532
\(941\) −1.24319e9 −0.0486379 −0.0243190 0.999704i \(-0.507742\pi\)
−0.0243190 + 0.999704i \(0.507742\pi\)
\(942\) −7.20476e9 −0.280829
\(943\) −5.50556e10 −2.13801
\(944\) 6.94252e9 0.268606
\(945\) −7.92026e8 −0.0305301
\(946\) −8.30940e8 −0.0319118
\(947\) −1.08695e10 −0.415896 −0.207948 0.978140i \(-0.566679\pi\)
−0.207948 + 0.978140i \(0.566679\pi\)
\(948\) −7.19870e9 −0.274426
\(949\) 0 0
\(950\) −8.63611e9 −0.326803
\(951\) 1.12838e9 0.0425426
\(952\) −2.30481e10 −0.865778
\(953\) 4.97595e9 0.186230 0.0931152 0.995655i \(-0.470318\pi\)
0.0931152 + 0.995655i \(0.470318\pi\)
\(954\) −8.09675e9 −0.301920
\(955\) 1.47717e8 0.00548804
\(956\) 4.08563e9 0.151237
\(957\) 3.46298e9 0.127720
\(958\) 2.36496e10 0.869051
\(959\) −5.17736e10 −1.89558
\(960\) −3.20953e7 −0.00117082
\(961\) −1.45610e10 −0.529247
\(962\) 0 0
\(963\) −2.43503e10 −0.878642
\(964\) 1.13801e10 0.409143
\(965\) −1.78412e7 −0.000639116 0
\(966\) 2.24371e10 0.800841
\(967\) 1.95659e10 0.695838 0.347919 0.937525i \(-0.386888\pi\)
0.347919 + 0.937525i \(0.386888\pi\)
\(968\) −9.27230e9 −0.328567
\(969\) 7.17907e9 0.253475
\(970\) −3.25019e8 −0.0114343
\(971\) −6.28877e9 −0.220444 −0.110222 0.993907i \(-0.535156\pi\)
−0.110222 + 0.993907i \(0.535156\pi\)
\(972\) 1.35867e10 0.474550
\(973\) 6.05574e10 2.10752
\(974\) 2.51485e9 0.0872078
\(975\) 0 0
\(976\) 5.47178e9 0.188389
\(977\) −1.75153e9 −0.0600878 −0.0300439 0.999549i \(-0.509565\pi\)
−0.0300439 + 0.999549i \(0.509565\pi\)
\(978\) 1.30696e10 0.446762
\(979\) −1.20982e10 −0.412079
\(980\) −7.41417e8 −0.0251635
\(981\) −4.35674e10 −1.47340
\(982\) 1.39440e10 0.469890
\(983\) 3.03137e10 1.01789 0.508946 0.860799i \(-0.330035\pi\)
0.508946 + 0.860799i \(0.330035\pi\)
\(984\) 5.52574e9 0.184887
\(985\) −4.82939e8 −0.0161015
\(986\) 3.57780e10 1.18863
\(987\) −3.35072e9 −0.110925
\(988\) 0 0
\(989\) 8.35730e9 0.274713
\(990\) 1.14535e8 0.00375157
\(991\) 4.08606e10 1.33367 0.666833 0.745207i \(-0.267649\pi\)
0.666833 + 0.745207i \(0.267649\pi\)
\(992\) 3.72917e9 0.121289
\(993\) −8.41219e9 −0.272638
\(994\) −2.37769e10 −0.767897
\(995\) 7.31517e8 0.0235420
\(996\) −7.83441e8 −0.0251246
\(997\) 5.95647e10 1.90351 0.951757 0.306853i \(-0.0992759\pi\)
0.951757 + 0.306853i \(0.0992759\pi\)
\(998\) 2.78277e10 0.886176
\(999\) −3.00572e10 −0.953826
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.8.a.l.1.3 5
13.5 odd 4 26.8.b.a.25.3 10
13.8 odd 4 26.8.b.a.25.8 yes 10
13.12 even 2 338.8.a.k.1.3 5
39.5 even 4 234.8.b.c.181.8 10
39.8 even 4 234.8.b.c.181.3 10
52.31 even 4 208.8.f.c.129.6 10
52.47 even 4 208.8.f.c.129.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.b.a.25.3 10 13.5 odd 4
26.8.b.a.25.8 yes 10 13.8 odd 4
208.8.f.c.129.5 10 52.47 even 4
208.8.f.c.129.6 10 52.31 even 4
234.8.b.c.181.3 10 39.8 even 4
234.8.b.c.181.8 10 39.5 even 4
338.8.a.k.1.3 5 13.12 even 2
338.8.a.l.1.3 5 1.1 even 1 trivial