Properties

Label 234.8.b.c.181.3
Level $234$
Weight $8$
Character 234.181
Analytic conductor $73.098$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,8,Mod(181,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.181"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 234.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.0980959633\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 17770x^{8} + 98320641x^{6} + 176057788072x^{4} + 109845194658832x^{2} + 14762086704451584 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{19}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.3
Root \(13.5100i\) of defining polynomial
Character \(\chi\) \(=\) 234.181
Dual form 234.8.b.c.181.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{2} -64.0000 q^{4} +6.61448i q^{5} +1604.67i q^{7} +512.000i q^{8} +52.9158 q^{10} +1173.55i q^{11} +(-3780.46 + 6961.08i) q^{13} +12837.3 q^{14} +4096.00 q^{16} +28053.1 q^{17} +13825.5i q^{19} -423.327i q^{20} +9388.37 q^{22} -94424.9 q^{23} +78081.2 q^{25} +(55688.6 + 30243.7i) q^{26} -102699. i q^{28} -159421. q^{29} +113805. i q^{31} -32768.0i q^{32} -224425. i q^{34} -10614.0 q^{35} -402800. i q^{37} +110604. q^{38} -3386.61 q^{40} -583062. i q^{41} +88507.4 q^{43} -75107.0i q^{44} +755399. i q^{46} +112810. i q^{47} -1.75141e6 q^{49} -624650. i q^{50} +(241949. - 445509. i) q^{52} -548744. q^{53} -7762.40 q^{55} -821589. q^{56} +1.27536e6i q^{58} +1.69495e6i q^{59} +1.33588e6 q^{61} +910442. q^{62} -262144. q^{64} +(-46043.9 - 25005.8i) q^{65} -719239. i q^{67} -1.79540e6 q^{68} +84912.2i q^{70} -1.85217e6i q^{71} +1.50153e6i q^{73} -3.22240e6 q^{74} -884833. i q^{76} -1.88315e6 q^{77} -6.07672e6 q^{79} +27092.9i q^{80} -4.66450e6 q^{82} +661334. i q^{83} +185557. i q^{85} -708059. i q^{86} -600856. q^{88} -1.03091e7i q^{89} +(-1.11702e7 - 6.06637e6i) q^{91} +6.04319e6 q^{92} +902482. q^{94} -91448.6 q^{95} +6.14220e6i q^{97} +1.40113e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 640 q^{4} - 1136 q^{10} + 3432 q^{13} - 3792 q^{14} + 40960 q^{16} + 6918 q^{17} + 17280 q^{22} - 94164 q^{23} - 330788 q^{25} - 118896 q^{26} + 131304 q^{29} - 873450 q^{35} - 602976 q^{38} + 72704 q^{40}+ \cdots - 16547484 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) 0 0
\(4\) −64.0000 −0.500000
\(5\) 6.61448i 0.0236647i 0.999930 + 0.0118323i \(0.00376644\pi\)
−0.999930 + 0.0118323i \(0.996234\pi\)
\(6\) 0 0
\(7\) 1604.67i 1.76824i 0.467260 + 0.884120i \(0.345241\pi\)
−0.467260 + 0.884120i \(0.654759\pi\)
\(8\) 512.000i 0.353553i
\(9\) 0 0
\(10\) 52.9158 0.0167335
\(11\) 1173.55i 0.265843i 0.991127 + 0.132922i \(0.0424359\pi\)
−0.991127 + 0.132922i \(0.957564\pi\)
\(12\) 0 0
\(13\) −3780.46 + 6961.08i −0.477247 + 0.878769i
\(14\) 12837.3 1.25033
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 28053.1 1.38487 0.692437 0.721478i \(-0.256537\pi\)
0.692437 + 0.721478i \(0.256537\pi\)
\(18\) 0 0
\(19\) 13825.5i 0.462428i 0.972903 + 0.231214i \(0.0742697\pi\)
−0.972903 + 0.231214i \(0.925730\pi\)
\(20\) 423.327i 0.0118323i
\(21\) 0 0
\(22\) 9388.37 0.187980
\(23\) −94424.9 −1.61823 −0.809113 0.587653i \(-0.800052\pi\)
−0.809113 + 0.587653i \(0.800052\pi\)
\(24\) 0 0
\(25\) 78081.2 0.999440
\(26\) 55688.6 + 30243.7i 0.621384 + 0.337464i
\(27\) 0 0
\(28\) 102699.i 0.884120i
\(29\) −159421. −1.21381 −0.606906 0.794774i \(-0.707590\pi\)
−0.606906 + 0.794774i \(0.707590\pi\)
\(30\) 0 0
\(31\) 113805.i 0.686114i 0.939315 + 0.343057i \(0.111462\pi\)
−0.939315 + 0.343057i \(0.888538\pi\)
\(32\) 32768.0i 0.176777i
\(33\) 0 0
\(34\) 224425.i 0.979254i
\(35\) −10614.0 −0.0418448
\(36\) 0 0
\(37\) 402800.i 1.30732i −0.756787 0.653662i \(-0.773232\pi\)
0.756787 0.653662i \(-0.226768\pi\)
\(38\) 110604. 0.326986
\(39\) 0 0
\(40\) −3386.61 −0.00836673
\(41\) 583062.i 1.32121i −0.750734 0.660604i \(-0.770300\pi\)
0.750734 0.660604i \(-0.229700\pi\)
\(42\) 0 0
\(43\) 88507.4 0.169762 0.0848809 0.996391i \(-0.472949\pi\)
0.0848809 + 0.996391i \(0.472949\pi\)
\(44\) 75107.0i 0.132922i
\(45\) 0 0
\(46\) 755399.i 1.14426i
\(47\) 112810.i 0.158491i 0.996855 + 0.0792457i \(0.0252512\pi\)
−0.996855 + 0.0792457i \(0.974749\pi\)
\(48\) 0 0
\(49\) −1.75141e6 −2.12667
\(50\) 624650.i 0.706711i
\(51\) 0 0
\(52\) 241949. 445509.i 0.238623 0.439385i
\(53\) −548744. −0.506296 −0.253148 0.967428i \(-0.581466\pi\)
−0.253148 + 0.967428i \(0.581466\pi\)
\(54\) 0 0
\(55\) −7762.40 −0.00629110
\(56\) −821589. −0.625167
\(57\) 0 0
\(58\) 1.27536e6i 0.858294i
\(59\) 1.69495e6i 1.07442i 0.843448 + 0.537211i \(0.180522\pi\)
−0.843448 + 0.537211i \(0.819478\pi\)
\(60\) 0 0
\(61\) 1.33588e6 0.753554 0.376777 0.926304i \(-0.377032\pi\)
0.376777 + 0.926304i \(0.377032\pi\)
\(62\) 910442. 0.485156
\(63\) 0 0
\(64\) −262144. −0.125000
\(65\) −46043.9 25005.8i −0.0207958 0.0112939i
\(66\) 0 0
\(67\) 719239.i 0.292154i −0.989273 0.146077i \(-0.953335\pi\)
0.989273 0.146077i \(-0.0466647\pi\)
\(68\) −1.79540e6 −0.692437
\(69\) 0 0
\(70\) 84912.2i 0.0295888i
\(71\) 1.85217e6i 0.614153i −0.951685 0.307077i \(-0.900649\pi\)
0.951685 0.307077i \(-0.0993508\pi\)
\(72\) 0 0
\(73\) 1.50153e6i 0.451756i 0.974156 + 0.225878i \(0.0725250\pi\)
−0.974156 + 0.225878i \(0.927475\pi\)
\(74\) −3.22240e6 −0.924417
\(75\) 0 0
\(76\) 884833.i 0.231214i
\(77\) −1.88315e6 −0.470075
\(78\) 0 0
\(79\) −6.07672e6 −1.38667 −0.693337 0.720614i \(-0.743860\pi\)
−0.693337 + 0.720614i \(0.743860\pi\)
\(80\) 27092.9i 0.00591617i
\(81\) 0 0
\(82\) −4.66450e6 −0.934235
\(83\) 661334.i 0.126954i 0.997983 + 0.0634771i \(0.0202190\pi\)
−0.997983 + 0.0634771i \(0.979781\pi\)
\(84\) 0 0
\(85\) 185557.i 0.0327726i
\(86\) 708059.i 0.120040i
\(87\) 0 0
\(88\) −600856. −0.0939898
\(89\) 1.03091e7i 1.55008i −0.631910 0.775041i \(-0.717729\pi\)
0.631910 0.775041i \(-0.282271\pi\)
\(90\) 0 0
\(91\) −1.11702e7 6.06637e6i −1.55388 0.843887i
\(92\) 6.04319e6 0.809113
\(93\) 0 0
\(94\) 902482. 0.112070
\(95\) −91448.6 −0.0109432
\(96\) 0 0
\(97\) 6.14220e6i 0.683318i 0.939824 + 0.341659i \(0.110989\pi\)
−0.939824 + 0.341659i \(0.889011\pi\)
\(98\) 1.40113e7i 1.50379i
\(99\) 0 0
\(100\) −4.99720e6 −0.499720
\(101\) 5.85424e6 0.565387 0.282693 0.959210i \(-0.408772\pi\)
0.282693 + 0.959210i \(0.408772\pi\)
\(102\) 0 0
\(103\) 1.80551e6 0.162806 0.0814031 0.996681i \(-0.474060\pi\)
0.0814031 + 0.996681i \(0.474060\pi\)
\(104\) −3.56407e6 1.93559e6i −0.310692 0.168732i
\(105\) 0 0
\(106\) 4.38996e6i 0.358005i
\(107\) −1.32024e7 −1.04186 −0.520931 0.853599i \(-0.674415\pi\)
−0.520931 + 0.853599i \(0.674415\pi\)
\(108\) 0 0
\(109\) 2.36217e7i 1.74710i 0.486734 + 0.873550i \(0.338188\pi\)
−0.486734 + 0.873550i \(0.661812\pi\)
\(110\) 62099.2i 0.00444848i
\(111\) 0 0
\(112\) 6.57271e6i 0.442060i
\(113\) −1.03738e7 −0.676340 −0.338170 0.941085i \(-0.609808\pi\)
−0.338170 + 0.941085i \(0.609808\pi\)
\(114\) 0 0
\(115\) 624571.i 0.0382948i
\(116\) 1.02029e7 0.606906
\(117\) 0 0
\(118\) 1.35596e7 0.759732
\(119\) 4.50159e7i 2.44879i
\(120\) 0 0
\(121\) 1.81100e7 0.929327
\(122\) 1.06871e7i 0.532843i
\(123\) 0 0
\(124\) 7.28354e6i 0.343057i
\(125\) 1.03322e6i 0.0473161i
\(126\) 0 0
\(127\) −3.07208e7 −1.33082 −0.665409 0.746479i \(-0.731743\pi\)
−0.665409 + 0.746479i \(0.731743\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) 0 0
\(130\) −200046. + 368351.i −0.00798598 + 0.0147048i
\(131\) −1.62980e7 −0.633411 −0.316706 0.948524i \(-0.602577\pi\)
−0.316706 + 0.948524i \(0.602577\pi\)
\(132\) 0 0
\(133\) −2.21853e7 −0.817683
\(134\) −5.75391e6 −0.206584
\(135\) 0 0
\(136\) 1.43632e7i 0.489627i
\(137\) 3.22644e7i 1.07202i 0.844213 + 0.536008i \(0.180068\pi\)
−0.844213 + 0.536008i \(0.819932\pi\)
\(138\) 0 0
\(139\) −3.77383e7 −1.19188 −0.595938 0.803030i \(-0.703220\pi\)
−0.595938 + 0.803030i \(0.703220\pi\)
\(140\) 679298. 0.0209224
\(141\) 0 0
\(142\) −1.48174e7 −0.434272
\(143\) −8.16915e6 4.43654e6i −0.233615 0.126873i
\(144\) 0 0
\(145\) 1.05448e6i 0.0287245i
\(146\) 1.20122e7 0.319439
\(147\) 0 0
\(148\) 2.57792e7i 0.653662i
\(149\) 1.69205e7i 0.419045i −0.977804 0.209523i \(-0.932809\pi\)
0.977804 0.209523i \(-0.0671910\pi\)
\(150\) 0 0
\(151\) 3.87829e7i 0.916687i 0.888775 + 0.458343i \(0.151557\pi\)
−0.888775 + 0.458343i \(0.848443\pi\)
\(152\) −7.07867e6 −0.163493
\(153\) 0 0
\(154\) 1.50652e7i 0.332393i
\(155\) −752763. −0.0162367
\(156\) 0 0
\(157\) −4.86546e7 −1.00340 −0.501701 0.865041i \(-0.667292\pi\)
−0.501701 + 0.865041i \(0.667292\pi\)
\(158\) 4.86137e7i 0.980526i
\(159\) 0 0
\(160\) 216743. 0.00418336
\(161\) 1.51520e8i 2.86141i
\(162\) 0 0
\(163\) 8.82607e7i 1.59629i −0.602468 0.798143i \(-0.705816\pi\)
0.602468 0.798143i \(-0.294184\pi\)
\(164\) 3.73160e7i 0.660604i
\(165\) 0 0
\(166\) 5.29067e6 0.0897702
\(167\) 7.18201e7i 1.19327i 0.802513 + 0.596634i \(0.203496\pi\)
−0.802513 + 0.596634i \(0.796504\pi\)
\(168\) 0 0
\(169\) −3.41648e7 5.26322e7i −0.544471 0.838779i
\(170\) 1.48446e6 0.0231737
\(171\) 0 0
\(172\) −5.66447e6 −0.0848809
\(173\) 6.00357e7 0.881553 0.440776 0.897617i \(-0.354703\pi\)
0.440776 + 0.897617i \(0.354703\pi\)
\(174\) 0 0
\(175\) 1.25294e8i 1.76725i
\(176\) 4.80685e6i 0.0664609i
\(177\) 0 0
\(178\) −8.24726e7 −1.09607
\(179\) −1.34440e8 −1.75203 −0.876015 0.482284i \(-0.839807\pi\)
−0.876015 + 0.482284i \(0.839807\pi\)
\(180\) 0 0
\(181\) 1.55862e8 1.95374 0.976868 0.213843i \(-0.0685980\pi\)
0.976868 + 0.213843i \(0.0685980\pi\)
\(182\) −4.85310e7 + 8.93616e7i −0.596718 + 1.09876i
\(183\) 0 0
\(184\) 4.83455e7i 0.572129i
\(185\) 2.66431e6 0.0309374
\(186\) 0 0
\(187\) 3.29217e7i 0.368160i
\(188\) 7.21985e6i 0.0792457i
\(189\) 0 0
\(190\) 731589.i 0.00773801i
\(191\) 2.23323e7 0.231909 0.115954 0.993255i \(-0.463007\pi\)
0.115954 + 0.993255i \(0.463007\pi\)
\(192\) 0 0
\(193\) 2.69730e6i 0.0270072i −0.999909 0.0135036i \(-0.995702\pi\)
0.999909 0.0135036i \(-0.00429845\pi\)
\(194\) 4.91376e7 0.483179
\(195\) 0 0
\(196\) 1.12090e8 1.06334
\(197\) 7.30124e7i 0.680401i −0.940353 0.340200i \(-0.889505\pi\)
0.940353 0.340200i \(-0.110495\pi\)
\(198\) 0 0
\(199\) 1.10593e8 0.994817 0.497409 0.867516i \(-0.334285\pi\)
0.497409 + 0.867516i \(0.334285\pi\)
\(200\) 3.99776e7i 0.353355i
\(201\) 0 0
\(202\) 4.68339e7i 0.399789i
\(203\) 2.55817e8i 2.14631i
\(204\) 0 0
\(205\) 3.85665e6 0.0312660
\(206\) 1.44441e7i 0.115121i
\(207\) 0 0
\(208\) −1.54848e7 + 2.85126e7i −0.119312 + 0.219692i
\(209\) −1.62249e7 −0.122933
\(210\) 0 0
\(211\) −7.79932e7 −0.571568 −0.285784 0.958294i \(-0.592254\pi\)
−0.285784 + 0.958294i \(0.592254\pi\)
\(212\) 3.51196e7 0.253148
\(213\) 0 0
\(214\) 1.05619e8i 0.736708i
\(215\) 585430.i 0.00401736i
\(216\) 0 0
\(217\) −1.82619e8 −1.21322
\(218\) 1.88973e8 1.23539
\(219\) 0 0
\(220\) 496793. 0.00314555
\(221\) −1.06054e8 + 1.95280e8i −0.660926 + 1.21698i
\(222\) 0 0
\(223\) 2.81334e8i 1.69885i −0.527709 0.849425i \(-0.676949\pi\)
0.527709 0.849425i \(-0.323051\pi\)
\(224\) 5.25817e7 0.312584
\(225\) 0 0
\(226\) 8.29908e7i 0.478245i
\(227\) 2.87156e8i 1.62940i −0.579882 0.814700i \(-0.696901\pi\)
0.579882 0.814700i \(-0.303099\pi\)
\(228\) 0 0
\(229\) 1.77698e8i 0.977819i −0.872335 0.488909i \(-0.837395\pi\)
0.872335 0.488909i \(-0.162605\pi\)
\(230\) −4.99657e6 −0.0270785
\(231\) 0 0
\(232\) 8.16233e7i 0.429147i
\(233\) 1.38051e8 0.714979 0.357490 0.933917i \(-0.383633\pi\)
0.357490 + 0.933917i \(0.383633\pi\)
\(234\) 0 0
\(235\) −746181. −0.00375065
\(236\) 1.08477e8i 0.537211i
\(237\) 0 0
\(238\) 3.60127e8 1.73156
\(239\) 6.38380e7i 0.302473i −0.988498 0.151237i \(-0.951674\pi\)
0.988498 0.151237i \(-0.0483255\pi\)
\(240\) 0 0
\(241\) 1.77813e8i 0.818285i −0.912470 0.409143i \(-0.865828\pi\)
0.912470 0.409143i \(-0.134172\pi\)
\(242\) 1.44880e8i 0.657134i
\(243\) 0 0
\(244\) −8.54966e7 −0.376777
\(245\) 1.15846e7i 0.0503271i
\(246\) 0 0
\(247\) −9.62406e7 5.22668e7i −0.406367 0.220692i
\(248\) −5.82683e7 −0.242578
\(249\) 0 0
\(250\) 8.26578e6 0.0334575
\(251\) 2.57165e8 1.02649 0.513244 0.858243i \(-0.328444\pi\)
0.513244 + 0.858243i \(0.328444\pi\)
\(252\) 0 0
\(253\) 1.10812e8i 0.430195i
\(254\) 2.45766e8i 0.941031i
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) −2.24906e8 −0.826486 −0.413243 0.910621i \(-0.635604\pi\)
−0.413243 + 0.910621i \(0.635604\pi\)
\(258\) 0 0
\(259\) 6.46359e8 2.31166
\(260\) 2.94681e6 + 1.60037e6i 0.0103979 + 0.00564694i
\(261\) 0 0
\(262\) 1.30384e8i 0.447890i
\(263\) −4.78020e8 −1.62032 −0.810161 0.586208i \(-0.800620\pi\)
−0.810161 + 0.586208i \(0.800620\pi\)
\(264\) 0 0
\(265\) 3.62966e6i 0.0119813i
\(266\) 1.77483e8i 0.578189i
\(267\) 0 0
\(268\) 4.60313e7i 0.146077i
\(269\) −1.76243e8 −0.552049 −0.276025 0.961151i \(-0.589017\pi\)
−0.276025 + 0.961151i \(0.589017\pi\)
\(270\) 0 0
\(271\) 1.88337e8i 0.574834i 0.957806 + 0.287417i \(0.0927966\pi\)
−0.957806 + 0.287417i \(0.907203\pi\)
\(272\) 1.14906e8 0.346219
\(273\) 0 0
\(274\) 2.58115e8 0.758030
\(275\) 9.16320e7i 0.265695i
\(276\) 0 0
\(277\) −3.15057e7 −0.0890656 −0.0445328 0.999008i \(-0.514180\pi\)
−0.0445328 + 0.999008i \(0.514180\pi\)
\(278\) 3.01907e8i 0.842784i
\(279\) 0 0
\(280\) 5.43438e6i 0.0147944i
\(281\) 2.67569e8i 0.719388i 0.933070 + 0.359694i \(0.117119\pi\)
−0.933070 + 0.359694i \(0.882881\pi\)
\(282\) 0 0
\(283\) 1.31279e8 0.344303 0.172152 0.985070i \(-0.444928\pi\)
0.172152 + 0.985070i \(0.444928\pi\)
\(284\) 1.18539e8i 0.307077i
\(285\) 0 0
\(286\) −3.54924e7 + 6.53532e7i −0.0897126 + 0.165191i
\(287\) 9.35620e8 2.33621
\(288\) 0 0
\(289\) 3.76640e8 0.917876
\(290\) −8.43587e6 −0.0203113
\(291\) 0 0
\(292\) 9.60978e7i 0.225878i
\(293\) 5.02530e8i 1.16715i −0.812060 0.583574i \(-0.801654\pi\)
0.812060 0.583574i \(-0.198346\pi\)
\(294\) 0 0
\(295\) −1.12112e7 −0.0254259
\(296\) 2.06233e8 0.462209
\(297\) 0 0
\(298\) −1.35364e8 −0.296310
\(299\) 3.56969e8 6.57299e8i 0.772293 1.42205i
\(300\) 0 0
\(301\) 1.42025e8i 0.300180i
\(302\) 3.10263e8 0.648196
\(303\) 0 0
\(304\) 5.66293e7i 0.115607i
\(305\) 8.83618e6i 0.0178326i
\(306\) 0 0
\(307\) 4.04464e7i 0.0797802i 0.999204 + 0.0398901i \(0.0127008\pi\)
−0.999204 + 0.0398901i \(0.987299\pi\)
\(308\) 1.20522e8 0.235038
\(309\) 0 0
\(310\) 6.02210e6i 0.0114811i
\(311\) −5.80479e7 −0.109427 −0.0547136 0.998502i \(-0.517425\pi\)
−0.0547136 + 0.998502i \(0.517425\pi\)
\(312\) 0 0
\(313\) 1.87305e8 0.345259 0.172629 0.984987i \(-0.444774\pi\)
0.172629 + 0.984987i \(0.444774\pi\)
\(314\) 3.89237e8i 0.709513i
\(315\) 0 0
\(316\) 3.88910e8 0.693337
\(317\) 6.09607e7i 0.107484i −0.998555 0.0537419i \(-0.982885\pi\)
0.998555 0.0537419i \(-0.0171148\pi\)
\(318\) 0 0
\(319\) 1.87087e8i 0.322684i
\(320\) 1.73395e6i 0.00295808i
\(321\) 0 0
\(322\) −1.21216e9 −2.02332
\(323\) 3.87849e8i 0.640404i
\(324\) 0 0
\(325\) −2.95183e8 + 5.43530e8i −0.476979 + 0.878277i
\(326\) −7.06085e8 −1.12874
\(327\) 0 0
\(328\) 2.98528e8 0.467118
\(329\) −1.81023e8 −0.280251
\(330\) 0 0
\(331\) 4.54468e8i 0.688820i −0.938819 0.344410i \(-0.888079\pi\)
0.938819 0.344410i \(-0.111921\pi\)
\(332\) 4.23254e7i 0.0634771i
\(333\) 0 0
\(334\) 5.74561e8 0.843769
\(335\) 4.75739e6 0.00691372
\(336\) 0 0
\(337\) −2.05246e8 −0.292125 −0.146063 0.989275i \(-0.546660\pi\)
−0.146063 + 0.989275i \(0.546660\pi\)
\(338\) −4.21057e8 + 2.73318e8i −0.593107 + 0.384999i
\(339\) 0 0
\(340\) 1.18756e7i 0.0163863i
\(341\) −1.33556e8 −0.182399
\(342\) 0 0
\(343\) 1.48891e9i 1.99223i
\(344\) 4.53158e7i 0.0600198i
\(345\) 0 0
\(346\) 4.80286e8i 0.623352i
\(347\) −2.99289e8 −0.384537 −0.192268 0.981342i \(-0.561584\pi\)
−0.192268 + 0.981342i \(0.561584\pi\)
\(348\) 0 0
\(349\) 1.03098e8i 0.129826i −0.997891 0.0649128i \(-0.979323\pi\)
0.997891 0.0649128i \(-0.0206769\pi\)
\(350\) 1.00235e9 1.24963
\(351\) 0 0
\(352\) 3.84548e7 0.0469949
\(353\) 3.79231e8i 0.458873i −0.973324 0.229436i \(-0.926312\pi\)
0.973324 0.229436i \(-0.0736883\pi\)
\(354\) 0 0
\(355\) 1.22511e7 0.0145337
\(356\) 6.59781e8i 0.775041i
\(357\) 0 0
\(358\) 1.07552e9i 1.23887i
\(359\) 1.29204e9i 1.47382i 0.675988 + 0.736912i \(0.263717\pi\)
−0.675988 + 0.736912i \(0.736283\pi\)
\(360\) 0 0
\(361\) 7.02727e8 0.786161
\(362\) 1.24690e9i 1.38150i
\(363\) 0 0
\(364\) 7.14893e8 + 3.88248e8i 0.776938 + 0.421943i
\(365\) −9.93183e6 −0.0106907
\(366\) 0 0
\(367\) −3.21664e8 −0.339681 −0.169841 0.985472i \(-0.554325\pi\)
−0.169841 + 0.985472i \(0.554325\pi\)
\(368\) −3.86764e8 −0.404556
\(369\) 0 0
\(370\) 2.13145e7i 0.0218760i
\(371\) 8.80551e8i 0.895253i
\(372\) 0 0
\(373\) −5.95386e8 −0.594043 −0.297021 0.954871i \(-0.595993\pi\)
−0.297021 + 0.954871i \(0.595993\pi\)
\(374\) 2.63373e8 0.260328
\(375\) 0 0
\(376\) −5.77588e7 −0.0560352
\(377\) 6.02683e8 1.10974e9i 0.579287 1.06666i
\(378\) 0 0
\(379\) 1.84954e9i 1.74512i 0.488503 + 0.872562i \(0.337543\pi\)
−0.488503 + 0.872562i \(0.662457\pi\)
\(380\) 5.85271e6 0.00547160
\(381\) 0 0
\(382\) 1.78659e8i 0.163984i
\(383\) 1.94010e9i 1.76453i 0.470757 + 0.882263i \(0.343981\pi\)
−0.470757 + 0.882263i \(0.656019\pi\)
\(384\) 0 0
\(385\) 1.24561e7i 0.0111242i
\(386\) −2.15784e7 −0.0190969
\(387\) 0 0
\(388\) 3.93101e8i 0.341659i
\(389\) −1.63159e9 −1.40536 −0.702680 0.711506i \(-0.748014\pi\)
−0.702680 + 0.711506i \(0.748014\pi\)
\(390\) 0 0
\(391\) −2.64891e9 −2.24104
\(392\) 8.96721e8i 0.751893i
\(393\) 0 0
\(394\) −5.84099e8 −0.481116
\(395\) 4.01943e7i 0.0328152i
\(396\) 0 0
\(397\) 1.46137e9i 1.17218i 0.810246 + 0.586090i \(0.199334\pi\)
−0.810246 + 0.586090i \(0.800666\pi\)
\(398\) 8.84747e8i 0.703442i
\(399\) 0 0
\(400\) 3.19821e8 0.249860
\(401\) 2.15957e8i 0.167248i 0.996497 + 0.0836240i \(0.0266495\pi\)
−0.996497 + 0.0836240i \(0.973351\pi\)
\(402\) 0 0
\(403\) −7.92208e8 4.30236e8i −0.602936 0.327446i
\(404\) −3.74671e8 −0.282693
\(405\) 0 0
\(406\) −2.04653e9 −1.51767
\(407\) 4.72704e8 0.347543
\(408\) 0 0
\(409\) 2.10034e9i 1.51795i 0.651120 + 0.758975i \(0.274300\pi\)
−0.651120 + 0.758975i \(0.725700\pi\)
\(410\) 3.08532e7i 0.0221084i
\(411\) 0 0
\(412\) −1.15553e8 −0.0814031
\(413\) −2.71983e9 −1.89984
\(414\) 0 0
\(415\) −4.37438e6 −0.00300433
\(416\) 2.28101e8 + 1.23878e8i 0.155346 + 0.0843661i
\(417\) 0 0
\(418\) 1.29799e8i 0.0869270i
\(419\) −4.33365e8 −0.287809 −0.143905 0.989592i \(-0.545966\pi\)
−0.143905 + 0.989592i \(0.545966\pi\)
\(420\) 0 0
\(421\) 2.60776e9i 1.70326i −0.524145 0.851629i \(-0.675615\pi\)
0.524145 0.851629i \(-0.324385\pi\)
\(422\) 6.23946e8i 0.404160i
\(423\) 0 0
\(424\) 2.80957e8i 0.179003i
\(425\) 2.19042e9 1.38410
\(426\) 0 0
\(427\) 2.14365e9i 1.33246i
\(428\) 8.44954e8 0.520931
\(429\) 0 0
\(430\) 4.68344e6 0.00284070
\(431\) 6.82317e8i 0.410503i 0.978709 + 0.205251i \(0.0658012\pi\)
−0.978709 + 0.205251i \(0.934199\pi\)
\(432\) 0 0
\(433\) −2.49592e9 −1.47749 −0.738743 0.673987i \(-0.764580\pi\)
−0.738743 + 0.673987i \(0.764580\pi\)
\(434\) 1.46096e9i 0.857873i
\(435\) 0 0
\(436\) 1.51179e9i 0.873550i
\(437\) 1.30547e9i 0.748312i
\(438\) 0 0
\(439\) 1.51778e9 0.856216 0.428108 0.903727i \(-0.359180\pi\)
0.428108 + 0.903727i \(0.359180\pi\)
\(440\) 3.97435e6i 0.00222424i
\(441\) 0 0
\(442\) 1.56224e9 + 8.48430e8i 0.860538 + 0.467345i
\(443\) −2.56533e9 −1.40194 −0.700971 0.713190i \(-0.747250\pi\)
−0.700971 + 0.713190i \(0.747250\pi\)
\(444\) 0 0
\(445\) 6.81892e7 0.0366822
\(446\) −2.25067e9 −1.20127
\(447\) 0 0
\(448\) 4.20653e8i 0.221030i
\(449\) 2.22454e9i 1.15978i −0.814693 0.579892i \(-0.803095\pi\)
0.814693 0.579892i \(-0.196905\pi\)
\(450\) 0 0
\(451\) 6.84251e8 0.351235
\(452\) 6.63926e8 0.338170
\(453\) 0 0
\(454\) −2.29725e9 −1.15216
\(455\) 4.01259e7 7.38851e7i 0.0199703 0.0367720i
\(456\) 0 0
\(457\) 1.58220e9i 0.775453i −0.921775 0.387726i \(-0.873261\pi\)
0.921775 0.387726i \(-0.126739\pi\)
\(458\) −1.42158e9 −0.691422
\(459\) 0 0
\(460\) 3.99726e7i 0.0191474i
\(461\) 1.33292e9i 0.633652i 0.948484 + 0.316826i \(0.102617\pi\)
−0.948484 + 0.316826i \(0.897383\pi\)
\(462\) 0 0
\(463\) 2.03271e9i 0.951790i −0.879502 0.475895i \(-0.842124\pi\)
0.879502 0.475895i \(-0.157876\pi\)
\(464\) −6.52987e8 −0.303453
\(465\) 0 0
\(466\) 1.10441e9i 0.505567i
\(467\) −3.10675e7 −0.0141155 −0.00705777 0.999975i \(-0.502247\pi\)
−0.00705777 + 0.999975i \(0.502247\pi\)
\(468\) 0 0
\(469\) 1.15414e9 0.516598
\(470\) 5.96945e6i 0.00265211i
\(471\) 0 0
\(472\) −8.67815e8 −0.379866
\(473\) 1.03867e8i 0.0451300i
\(474\) 0 0
\(475\) 1.07951e9i 0.462169i
\(476\) 2.88102e9i 1.22440i
\(477\) 0 0
\(478\) −5.10704e8 −0.213881
\(479\) 2.95620e9i 1.22902i 0.788908 + 0.614512i \(0.210647\pi\)
−0.788908 + 0.614512i \(0.789353\pi\)
\(480\) 0 0
\(481\) 2.80392e9 + 1.52277e9i 1.14884 + 0.623916i
\(482\) −1.42251e9 −0.578615
\(483\) 0 0
\(484\) −1.15904e9 −0.464664
\(485\) −4.06274e7 −0.0161705
\(486\) 0 0
\(487\) 3.14356e8i 0.123330i 0.998097 + 0.0616652i \(0.0196411\pi\)
−0.998097 + 0.0616652i \(0.980359\pi\)
\(488\) 6.83973e8i 0.266422i
\(489\) 0 0
\(490\) −9.26772e7 −0.0355866
\(491\) 1.74300e9 0.664525 0.332262 0.943187i \(-0.392188\pi\)
0.332262 + 0.943187i \(0.392188\pi\)
\(492\) 0 0
\(493\) −4.47225e9 −1.68098
\(494\) −4.18134e8 + 7.69925e8i −0.156053 + 0.287345i
\(495\) 0 0
\(496\) 4.66146e8i 0.171529i
\(497\) 2.97211e9 1.08597
\(498\) 0 0
\(499\) 3.47846e9i 1.25324i 0.779324 + 0.626621i \(0.215563\pi\)
−0.779324 + 0.626621i \(0.784437\pi\)
\(500\) 6.61263e7i 0.0236581i
\(501\) 0 0
\(502\) 2.05732e9i 0.725837i
\(503\) 2.26923e9 0.795043 0.397521 0.917593i \(-0.369870\pi\)
0.397521 + 0.917593i \(0.369870\pi\)
\(504\) 0 0
\(505\) 3.87227e7i 0.0133797i
\(506\) −8.86496e8 −0.304194
\(507\) 0 0
\(508\) 1.96613e9 0.665409
\(509\) 3.74316e9i 1.25813i 0.777352 + 0.629065i \(0.216562\pi\)
−0.777352 + 0.629065i \(0.783438\pi\)
\(510\) 0 0
\(511\) −2.40945e9 −0.798812
\(512\) 1.34218e8i 0.0441942i
\(513\) 0 0
\(514\) 1.79925e9i 0.584414i
\(515\) 1.19425e7i 0.00385275i
\(516\) 0 0
\(517\) −1.32388e8 −0.0421339
\(518\) 5.17087e9i 1.63459i
\(519\) 0 0
\(520\) 1.28030e7 2.35745e7i 0.00399299 0.00735242i
\(521\) 1.68654e9 0.522475 0.261238 0.965275i \(-0.415869\pi\)
0.261238 + 0.965275i \(0.415869\pi\)
\(522\) 0 0
\(523\) 4.11403e9 1.25751 0.628755 0.777604i \(-0.283565\pi\)
0.628755 + 0.777604i \(0.283565\pi\)
\(524\) 1.04307e9 0.316706
\(525\) 0 0
\(526\) 3.82416e9i 1.14574i
\(527\) 3.19260e9i 0.950182i
\(528\) 0 0
\(529\) 5.51124e9 1.61865
\(530\) −2.90373e7 −0.00847208
\(531\) 0 0
\(532\) 1.41986e9 0.408842
\(533\) 4.05874e9 + 2.20424e9i 1.16104 + 0.630542i
\(534\) 0 0
\(535\) 8.73271e7i 0.0246553i
\(536\) 3.68250e8 0.103292
\(537\) 0 0
\(538\) 1.40994e9i 0.390358i
\(539\) 2.05536e9i 0.565362i
\(540\) 0 0
\(541\) 5.21199e9i 1.41519i 0.706620 + 0.707593i \(0.250219\pi\)
−0.706620 + 0.707593i \(0.749781\pi\)
\(542\) 1.50669e9 0.406469
\(543\) 0 0
\(544\) 9.19245e8i 0.244813i
\(545\) −1.56245e8 −0.0413446
\(546\) 0 0
\(547\) −5.06174e9 −1.32234 −0.661172 0.750235i \(-0.729941\pi\)
−0.661172 + 0.750235i \(0.729941\pi\)
\(548\) 2.06492e9i 0.536008i
\(549\) 0 0
\(550\) 7.33056e8 0.187874
\(551\) 2.20407e9i 0.561300i
\(552\) 0 0
\(553\) 9.75110e9i 2.45197i
\(554\) 2.52046e8i 0.0629789i
\(555\) 0 0
\(556\) 2.41525e9 0.595938
\(557\) 5.64001e9i 1.38289i 0.722430 + 0.691444i \(0.243025\pi\)
−0.722430 + 0.691444i \(0.756975\pi\)
\(558\) 0 0
\(559\) −3.34598e8 + 6.16107e8i −0.0810182 + 0.149181i
\(560\) −4.34750e7 −0.0104612
\(561\) 0 0
\(562\) 2.14055e9 0.508684
\(563\) −1.03881e9 −0.245334 −0.122667 0.992448i \(-0.539145\pi\)
−0.122667 + 0.992448i \(0.539145\pi\)
\(564\) 0 0
\(565\) 6.86176e7i 0.0160054i
\(566\) 1.05023e9i 0.243459i
\(567\) 0 0
\(568\) 9.48311e8 0.217136
\(569\) 1.36295e9 0.310160 0.155080 0.987902i \(-0.450436\pi\)
0.155080 + 0.987902i \(0.450436\pi\)
\(570\) 0 0
\(571\) 7.59504e9 1.70727 0.853637 0.520868i \(-0.174392\pi\)
0.853637 + 0.520868i \(0.174392\pi\)
\(572\) 5.22826e8 + 2.83939e8i 0.116808 + 0.0634364i
\(573\) 0 0
\(574\) 7.48496e9i 1.65195i
\(575\) −7.37281e9 −1.61732
\(576\) 0 0
\(577\) 9.14980e8i 0.198288i −0.995073 0.0991439i \(-0.968390\pi\)
0.995073 0.0991439i \(-0.0316104\pi\)
\(578\) 3.01312e9i 0.649036i
\(579\) 0 0
\(580\) 6.74870e7i 0.0143622i
\(581\) −1.06122e9 −0.224486
\(582\) 0 0
\(583\) 6.43977e8i 0.134595i
\(584\) −7.68782e8 −0.159720
\(585\) 0 0
\(586\) −4.02024e9 −0.825298
\(587\) 3.69625e9i 0.754272i 0.926158 + 0.377136i \(0.123091\pi\)
−0.926158 + 0.377136i \(0.876909\pi\)
\(588\) 0 0
\(589\) −1.57342e9 −0.317278
\(590\) 8.96898e7i 0.0179788i
\(591\) 0 0
\(592\) 1.64987e9i 0.326831i
\(593\) 4.56755e9i 0.899480i 0.893159 + 0.449740i \(0.148483\pi\)
−0.893159 + 0.449740i \(0.851517\pi\)
\(594\) 0 0
\(595\) −2.97757e8 −0.0579498
\(596\) 1.08291e9i 0.209523i
\(597\) 0 0
\(598\) −5.25839e9 2.85576e9i −1.00554 0.546093i
\(599\) −1.63940e9 −0.311668 −0.155834 0.987783i \(-0.549806\pi\)
−0.155834 + 0.987783i \(0.549806\pi\)
\(600\) 0 0
\(601\) −4.92573e9 −0.925572 −0.462786 0.886470i \(-0.653150\pi\)
−0.462786 + 0.886470i \(0.653150\pi\)
\(602\) 1.13620e9 0.212259
\(603\) 0 0
\(604\) 2.48211e9i 0.458343i
\(605\) 1.19788e8i 0.0219922i
\(606\) 0 0
\(607\) 7.26751e9 1.31894 0.659470 0.751731i \(-0.270781\pi\)
0.659470 + 0.751731i \(0.270781\pi\)
\(608\) 4.53035e8 0.0817464
\(609\) 0 0
\(610\) 7.06894e7 0.0126096
\(611\) −7.85281e8 4.26474e8i −0.139277 0.0756395i
\(612\) 0 0
\(613\) 3.16466e9i 0.554900i 0.960740 + 0.277450i \(0.0894893\pi\)
−0.960740 + 0.277450i \(0.910511\pi\)
\(614\) 3.23571e8 0.0564131
\(615\) 0 0
\(616\) 9.64172e8i 0.166197i
\(617\) 1.11473e10i 1.91060i −0.295634 0.955301i \(-0.595531\pi\)
0.295634 0.955301i \(-0.404469\pi\)
\(618\) 0 0
\(619\) 8.69140e9i 1.47290i 0.676493 + 0.736449i \(0.263499\pi\)
−0.676493 + 0.736449i \(0.736501\pi\)
\(620\) 4.81768e7 0.00811834
\(621\) 0 0
\(622\) 4.64384e8i 0.0773767i
\(623\) 1.65426e10 2.74092
\(624\) 0 0
\(625\) 6.09326e9 0.998320
\(626\) 1.49844e9i 0.244135i
\(627\) 0 0
\(628\) 3.11390e9 0.501701
\(629\) 1.12998e10i 1.81048i
\(630\) 0 0
\(631\) 3.41348e9i 0.540872i −0.962738 0.270436i \(-0.912832\pi\)
0.962738 0.270436i \(-0.0871679\pi\)
\(632\) 3.11128e9i 0.490263i
\(633\) 0 0
\(634\) −4.87686e8 −0.0760025
\(635\) 2.03202e8i 0.0314934i
\(636\) 0 0
\(637\) 6.62112e9 1.21917e10i 1.01495 1.86886i
\(638\) −1.49670e9 −0.228172
\(639\) 0 0
\(640\) −1.38716e7 −0.00209168
\(641\) 1.93523e9 0.290221 0.145110 0.989415i \(-0.453646\pi\)
0.145110 + 0.989415i \(0.453646\pi\)
\(642\) 0 0
\(643\) 7.98936e9i 1.18515i 0.805515 + 0.592575i \(0.201889\pi\)
−0.805515 + 0.592575i \(0.798111\pi\)
\(644\) 9.69730e9i 1.43071i
\(645\) 0 0
\(646\) 3.10279e9 0.452834
\(647\) 8.47178e9 1.22973 0.614865 0.788632i \(-0.289211\pi\)
0.614865 + 0.788632i \(0.289211\pi\)
\(648\) 0 0
\(649\) −1.98910e9 −0.285628
\(650\) 4.34824e9 + 2.36146e9i 0.621036 + 0.337275i
\(651\) 0 0
\(652\) 5.64868e9i 0.798143i
\(653\) −8.72038e9 −1.22557 −0.612787 0.790248i \(-0.709952\pi\)
−0.612787 + 0.790248i \(0.709952\pi\)
\(654\) 0 0
\(655\) 1.07803e8i 0.0149895i
\(656\) 2.38822e9i 0.330302i
\(657\) 0 0
\(658\) 1.44818e9i 0.198167i
\(659\) 4.03937e9 0.549813 0.274907 0.961471i \(-0.411353\pi\)
0.274907 + 0.961471i \(0.411353\pi\)
\(660\) 0 0
\(661\) 3.29803e9i 0.444170i −0.975027 0.222085i \(-0.928714\pi\)
0.975027 0.222085i \(-0.0712862\pi\)
\(662\) −3.63575e9 −0.487069
\(663\) 0 0
\(664\) −3.38603e8 −0.0448851
\(665\) 1.46744e8i 0.0193502i
\(666\) 0 0
\(667\) 1.50533e10 1.96422
\(668\) 4.59649e9i 0.596634i
\(669\) 0 0
\(670\) 3.80591e7i 0.00488874i
\(671\) 1.56772e9i 0.200327i
\(672\) 0 0
\(673\) −5.27449e9 −0.667003 −0.333502 0.942750i \(-0.608230\pi\)
−0.333502 + 0.942750i \(0.608230\pi\)
\(674\) 1.64196e9i 0.206564i
\(675\) 0 0
\(676\) 2.18655e9 + 3.36846e9i 0.272236 + 0.419390i
\(677\) −1.02661e10 −1.27158 −0.635791 0.771861i \(-0.719326\pi\)
−0.635791 + 0.771861i \(0.719326\pi\)
\(678\) 0 0
\(679\) −9.85617e9 −1.20827
\(680\) −9.50051e7 −0.0115869
\(681\) 0 0
\(682\) 1.06845e9i 0.128976i
\(683\) 3.81750e9i 0.458465i 0.973372 + 0.229233i \(0.0736216\pi\)
−0.973372 + 0.229233i \(0.926378\pi\)
\(684\) 0 0
\(685\) −2.13412e8 −0.0253689
\(686\) −1.19113e10 −1.40872
\(687\) 0 0
\(688\) 3.62526e8 0.0424404
\(689\) 2.07451e9 3.81985e9i 0.241628 0.444918i
\(690\) 0 0
\(691\) 1.41493e10i 1.63140i −0.578475 0.815700i \(-0.696352\pi\)
0.578475 0.815700i \(-0.303648\pi\)
\(692\) −3.84229e9 −0.440776
\(693\) 0 0
\(694\) 2.39431e9i 0.271909i
\(695\) 2.49619e8i 0.0282054i
\(696\) 0 0
\(697\) 1.63567e10i 1.82971i
\(698\) −8.24782e8 −0.0918006
\(699\) 0 0
\(700\) 8.01883e9i 0.883625i
\(701\) −2.63084e9 −0.288457 −0.144228 0.989544i \(-0.546070\pi\)
−0.144228 + 0.989544i \(0.546070\pi\)
\(702\) 0 0
\(703\) 5.56892e9 0.604543
\(704\) 3.07638e8i 0.0332304i
\(705\) 0 0
\(706\) −3.03385e9 −0.324472
\(707\) 9.39409e9i 0.999740i
\(708\) 0 0
\(709\) 1.48321e10i 1.56293i 0.623947 + 0.781466i \(0.285528\pi\)
−0.623947 + 0.781466i \(0.714472\pi\)
\(710\) 9.80092e7i 0.0102769i
\(711\) 0 0
\(712\) 5.27825e9 0.548037
\(713\) 1.07461e10i 1.11029i
\(714\) 0 0
\(715\) 2.93454e7 5.40347e7i 0.00300241 0.00552843i
\(716\) 8.60413e9 0.876015
\(717\) 0 0
\(718\) 1.03363e10 1.04215
\(719\) 4.09811e9 0.411180 0.205590 0.978638i \(-0.434089\pi\)
0.205590 + 0.978638i \(0.434089\pi\)
\(720\) 0 0
\(721\) 2.89725e9i 0.287880i
\(722\) 5.62181e9i 0.555899i
\(723\) 0 0
\(724\) −9.97518e9 −0.976868
\(725\) −1.24478e10 −1.21313
\(726\) 0 0
\(727\) 1.07923e10 1.04171 0.520853 0.853646i \(-0.325614\pi\)
0.520853 + 0.853646i \(0.325614\pi\)
\(728\) 3.10598e9 5.71914e9i 0.298359 0.549378i
\(729\) 0 0
\(730\) 7.94546e7i 0.00755943i
\(731\) 2.48291e9 0.235099
\(732\) 0 0
\(733\) 4.31755e9i 0.404924i 0.979290 + 0.202462i \(0.0648942\pi\)
−0.979290 + 0.202462i \(0.935106\pi\)
\(734\) 2.57331e9i 0.240191i
\(735\) 0 0
\(736\) 3.09411e9i 0.286065i
\(737\) 8.44060e8 0.0776671
\(738\) 0 0
\(739\) 1.59219e10i 1.45124i −0.688097 0.725619i \(-0.741554\pi\)
0.688097 0.725619i \(-0.258446\pi\)
\(740\) −1.70516e8 −0.0154687
\(741\) 0 0
\(742\) −7.04441e9 −0.633040
\(743\) 7.46206e9i 0.667418i 0.942676 + 0.333709i \(0.108300\pi\)
−0.942676 + 0.333709i \(0.891700\pi\)
\(744\) 0 0
\(745\) 1.11920e8 0.00991657
\(746\) 4.76309e9i 0.420052i
\(747\) 0 0
\(748\) 2.10699e9i 0.184080i
\(749\) 2.11855e10i 1.84226i
\(750\) 0 0
\(751\) −7.78292e9 −0.670507 −0.335253 0.942128i \(-0.608822\pi\)
−0.335253 + 0.942128i \(0.608822\pi\)
\(752\) 4.62071e8i 0.0396229i
\(753\) 0 0
\(754\) −8.87792e9 4.82146e9i −0.754243 0.409618i
\(755\) −2.56529e8 −0.0216931
\(756\) 0 0
\(757\) −1.36187e10 −1.14104 −0.570518 0.821285i \(-0.693257\pi\)
−0.570518 + 0.821285i \(0.693257\pi\)
\(758\) 1.47963e10 1.23399
\(759\) 0 0
\(760\) 4.68217e7i 0.00386901i
\(761\) 7.93048e9i 0.652309i 0.945317 + 0.326154i \(0.105753\pi\)
−0.945317 + 0.326154i \(0.894247\pi\)
\(762\) 0 0
\(763\) −3.79049e10 −3.08929
\(764\) −1.42927e9 −0.115954
\(765\) 0 0
\(766\) 1.55208e10 1.24771
\(767\) −1.17987e10 6.40769e9i −0.944170 0.512765i
\(768\) 0 0
\(769\) 1.80037e10i 1.42764i 0.700329 + 0.713820i \(0.253036\pi\)
−0.700329 + 0.713820i \(0.746964\pi\)
\(770\) −9.96484e7 −0.00786598
\(771\) 0 0
\(772\) 1.72627e8i 0.0135036i
\(773\) 1.79933e10i 1.40114i 0.713583 + 0.700571i \(0.247071\pi\)
−0.713583 + 0.700571i \(0.752929\pi\)
\(774\) 0 0
\(775\) 8.88606e9i 0.685730i
\(776\) −3.14480e9 −0.241589
\(777\) 0 0
\(778\) 1.30527e10i 0.993740i
\(779\) 8.06114e9 0.610963
\(780\) 0 0
\(781\) 2.17361e9 0.163269
\(782\) 2.11913e10i 1.58465i
\(783\) 0 0
\(784\) −7.17377e9 −0.531669
\(785\) 3.21825e8i 0.0237452i
\(786\) 0 0
\(787\) 4.61318e9i 0.337356i 0.985671 + 0.168678i \(0.0539498\pi\)
−0.985671 + 0.168678i \(0.946050\pi\)
\(788\) 4.67279e9i 0.340200i
\(789\) 0 0
\(790\) −3.21554e8 −0.0232038
\(791\) 1.66465e10i 1.19593i
\(792\) 0 0
\(793\) −5.05026e9 + 9.29920e9i −0.359631 + 0.662200i
\(794\) 1.16910e10 0.828857
\(795\) 0 0
\(796\) −7.07798e9 −0.497409
\(797\) −2.80281e9 −0.196106 −0.0980528 0.995181i \(-0.531261\pi\)
−0.0980528 + 0.995181i \(0.531261\pi\)
\(798\) 0 0
\(799\) 3.16468e9i 0.219491i
\(800\) 2.55857e9i 0.176678i
\(801\) 0 0
\(802\) 1.72765e9 0.118262
\(803\) −1.76211e9 −0.120096
\(804\) 0 0
\(805\) 1.00223e9 0.0677144
\(806\) −3.44189e9 + 6.33766e9i −0.231539 + 0.426340i
\(807\) 0 0
\(808\) 2.99737e9i 0.199894i
\(809\) −8.36628e9 −0.555537 −0.277768 0.960648i \(-0.589595\pi\)
−0.277768 + 0.960648i \(0.589595\pi\)
\(810\) 0 0
\(811\) 4.54358e9i 0.299106i −0.988754 0.149553i \(-0.952217\pi\)
0.988754 0.149553i \(-0.0477835\pi\)
\(812\) 1.63723e10i 1.07316i
\(813\) 0 0
\(814\) 3.78163e9i 0.245750i
\(815\) 5.83798e8 0.0377756
\(816\) 0 0
\(817\) 1.22366e9i 0.0785025i
\(818\) 1.68027e10 1.07335
\(819\) 0 0
\(820\) −2.46826e8 −0.0156330
\(821\) 1.50748e10i 0.950717i −0.879792 0.475358i \(-0.842318\pi\)
0.879792 0.475358i \(-0.157682\pi\)
\(822\) 0 0
\(823\) 1.67438e10 1.04702 0.523508 0.852021i \(-0.324623\pi\)
0.523508 + 0.852021i \(0.324623\pi\)
\(824\) 9.24424e8i 0.0575607i
\(825\) 0 0
\(826\) 2.17586e10i 1.34339i
\(827\) 1.05833e10i 0.650656i 0.945601 + 0.325328i \(0.105475\pi\)
−0.945601 + 0.325328i \(0.894525\pi\)
\(828\) 0 0
\(829\) −2.53716e10 −1.54670 −0.773352 0.633976i \(-0.781422\pi\)
−0.773352 + 0.633976i \(0.781422\pi\)
\(830\) 3.49950e7i 0.00212438i
\(831\) 0 0
\(832\) 9.91025e8 1.82481e9i 0.0596558 0.109846i
\(833\) −4.91325e10 −2.94518
\(834\) 0 0
\(835\) −4.75053e8 −0.0282383
\(836\) 1.03839e9 0.0614667
\(837\) 0 0
\(838\) 3.46692e9i 0.203512i
\(839\) 8.37014e9i 0.489290i −0.969613 0.244645i \(-0.921329\pi\)
0.969613 0.244645i \(-0.0786714\pi\)
\(840\) 0 0
\(841\) 8.16504e9 0.473339
\(842\) −2.08621e10 −1.20439
\(843\) 0 0
\(844\) 4.99156e9 0.285784
\(845\) 3.48134e8 2.25982e8i 0.0198494 0.0128847i
\(846\) 0 0
\(847\) 2.90604e10i 1.64327i
\(848\) −2.24766e9 −0.126574
\(849\) 0 0
\(850\) 1.75234e10i 0.978705i
\(851\) 3.80343e10i 2.11554i
\(852\) 0 0
\(853\) 8.05268e9i 0.444241i 0.975019 + 0.222121i \(0.0712979\pi\)
−0.975019 + 0.222121i \(0.928702\pi\)
\(854\) 1.71492e10 0.942195
\(855\) 0 0
\(856\) 6.75964e9i 0.368354i
\(857\) 2.21962e10 1.20461 0.602304 0.798267i \(-0.294249\pi\)
0.602304 + 0.798267i \(0.294249\pi\)
\(858\) 0 0
\(859\) −4.25915e8 −0.0229270 −0.0114635 0.999934i \(-0.503649\pi\)
−0.0114635 + 0.999934i \(0.503649\pi\)
\(860\) 3.74675e7i 0.00200868i
\(861\) 0 0
\(862\) 5.45854e9 0.290269
\(863\) 1.84502e10i 0.977156i 0.872520 + 0.488578i \(0.162484\pi\)
−0.872520 + 0.488578i \(0.837516\pi\)
\(864\) 0 0
\(865\) 3.97105e8i 0.0208617i
\(866\) 1.99674e10i 1.04474i
\(867\) 0 0
\(868\) 1.16876e10 0.606608
\(869\) 7.13131e9i 0.368638i
\(870\) 0 0
\(871\) 5.00668e9 + 2.71905e9i 0.256736 + 0.139429i
\(872\) −1.20943e10 −0.617693
\(873\) 0 0
\(874\) −1.04438e10 −0.529137
\(875\) −1.65798e9 −0.0836662
\(876\) 0 0
\(877\) 1.81523e10i 0.908725i −0.890817 0.454363i \(-0.849867\pi\)
0.890817 0.454363i \(-0.150133\pi\)
\(878\) 1.21423e10i 0.605436i
\(879\) 0 0
\(880\) −3.17948e7 −0.00157277
\(881\) 2.80509e10 1.38207 0.691037 0.722819i \(-0.257154\pi\)
0.691037 + 0.722819i \(0.257154\pi\)
\(882\) 0 0
\(883\) −2.12689e9 −0.103964 −0.0519819 0.998648i \(-0.516554\pi\)
−0.0519819 + 0.998648i \(0.516554\pi\)
\(884\) 6.78744e9 1.24979e10i 0.330463 0.608492i
\(885\) 0 0
\(886\) 2.05226e10i 0.991323i
\(887\) −2.61618e10 −1.25874 −0.629368 0.777107i \(-0.716686\pi\)
−0.629368 + 0.777107i \(0.716686\pi\)
\(888\) 0 0
\(889\) 4.92965e10i 2.35321i
\(890\) 5.45514e8i 0.0259382i
\(891\) 0 0
\(892\) 1.80054e10i 0.849425i
\(893\) −1.55966e9 −0.0732909
\(894\) 0 0
\(895\) 8.89248e8i 0.0414612i
\(896\) −3.36523e9 −0.156292
\(897\) 0 0
\(898\) −1.77963e10 −0.820091
\(899\) 1.81429e10i 0.832814i
\(900\) 0 0
\(901\) −1.53940e10 −0.701156
\(902\) 5.47400e9i 0.248360i
\(903\) 0 0
\(904\) 5.31141e9i 0.239122i
\(905\) 1.03095e9i 0.0462345i
\(906\) 0 0
\(907\) −1.57121e10 −0.699213 −0.349607 0.936897i \(-0.613685\pi\)
−0.349607 + 0.936897i \(0.613685\pi\)
\(908\) 1.83780e10i 0.814700i
\(909\) 0 0
\(910\) −5.91081e8 3.21007e8i −0.0260017 0.0141211i
\(911\) 3.17054e10 1.38937 0.694687 0.719312i \(-0.255543\pi\)
0.694687 + 0.719312i \(0.255543\pi\)
\(912\) 0 0
\(913\) −7.76106e8 −0.0337500
\(914\) −1.26576e10 −0.548328
\(915\) 0 0
\(916\) 1.13727e10i 0.488909i
\(917\) 2.61529e10i 1.12002i
\(918\) 0 0
\(919\) −7.15392e9 −0.304047 −0.152023 0.988377i \(-0.548579\pi\)
−0.152023 + 0.988377i \(0.548579\pi\)
\(920\) 3.19781e8 0.0135393
\(921\) 0 0
\(922\) 1.06634e10 0.448059
\(923\) 1.28931e10 + 7.00206e9i 0.539699 + 0.293103i
\(924\) 0 0
\(925\) 3.14511e10i 1.30659i
\(926\) −1.62617e10 −0.673017
\(927\) 0 0
\(928\) 5.22389e9i 0.214574i
\(929\) 3.59995e10i 1.47313i −0.676365 0.736566i \(-0.736446\pi\)
0.676365 0.736566i \(-0.263554\pi\)
\(930\) 0 0
\(931\) 2.42141e10i 0.983433i
\(932\) −8.83526e9 −0.357490
\(933\) 0 0
\(934\) 2.48540e8i 0.00998119i
\(935\) −2.17760e8 −0.00871238
\(936\) 0 0
\(937\) −1.38764e10 −0.551047 −0.275523 0.961294i \(-0.588851\pi\)
−0.275523 + 0.961294i \(0.588851\pi\)
\(938\) 9.23310e9i 0.365290i
\(939\) 0 0
\(940\) 4.77556e7 0.00187532
\(941\) 1.24319e9i 0.0486379i 0.999704 + 0.0243190i \(0.00774173\pi\)
−0.999704 + 0.0243190i \(0.992258\pi\)
\(942\) 0 0
\(943\) 5.50556e10i 2.13801i
\(944\) 6.94252e9i 0.268606i
\(945\) 0 0
\(946\) 8.30940e8 0.0319118
\(947\) 1.08695e10i 0.415896i −0.978140 0.207948i \(-0.933321\pi\)
0.978140 0.207948i \(-0.0666785\pi\)
\(948\) 0 0
\(949\) −1.04523e10 5.67647e9i −0.396989 0.215599i
\(950\) 8.63611e9 0.326803
\(951\) 0 0
\(952\) −2.30481e10 −0.865778
\(953\) 4.97595e9 0.186230 0.0931152 0.995655i \(-0.470318\pi\)
0.0931152 + 0.995655i \(0.470318\pi\)
\(954\) 0 0
\(955\) 1.47717e8i 0.00548804i
\(956\) 4.08563e9i 0.151237i
\(957\) 0 0
\(958\) 2.36496e10 0.869051
\(959\) −5.17736e10 −1.89558
\(960\) 0 0
\(961\) 1.45610e10 0.529247
\(962\) 1.21821e10 2.24314e10i 0.441175 0.812350i
\(963\) 0 0
\(964\) 1.13801e10i 0.409143i
\(965\) 1.78412e7 0.000639116
\(966\) 0 0
\(967\) 1.95659e10i 0.695838i 0.937525 + 0.347919i \(0.113112\pi\)
−0.937525 + 0.347919i \(0.886888\pi\)
\(968\) 9.27230e9i 0.328567i
\(969\) 0 0
\(970\) 3.25019e8i 0.0114343i
\(971\) 6.28877e9 0.220444 0.110222 0.993907i \(-0.464844\pi\)
0.110222 + 0.993907i \(0.464844\pi\)
\(972\) 0 0
\(973\) 6.05574e10i 2.10752i
\(974\) 2.51485e9 0.0872078
\(975\) 0 0
\(976\) 5.47178e9 0.188389
\(977\) 1.75153e9i 0.0600878i 0.999549 + 0.0300439i \(0.00956470\pi\)
−0.999549 + 0.0300439i \(0.990435\pi\)
\(978\) 0 0
\(979\) 1.20982e10 0.412079
\(980\) 7.41417e8i 0.0251635i
\(981\) 0 0
\(982\) 1.39440e10i 0.469890i
\(983\) 3.03137e10i 1.01789i 0.860799 + 0.508946i \(0.169965\pi\)
−0.860799 + 0.508946i \(0.830035\pi\)
\(984\) 0 0
\(985\) 4.82939e8 0.0161015
\(986\) 3.57780e10i 1.18863i
\(987\) 0 0
\(988\) 6.15940e9 + 3.34508e9i 0.203184 + 0.110346i
\(989\) −8.35730e9 −0.274713
\(990\) 0 0
\(991\) 4.08606e10 1.33367 0.666833 0.745207i \(-0.267649\pi\)
0.666833 + 0.745207i \(0.267649\pi\)
\(992\) 3.72917e9 0.121289
\(993\) 0 0
\(994\) 2.37769e10i 0.767897i
\(995\) 7.31517e8i 0.0235420i
\(996\) 0 0
\(997\) 5.95647e10 1.90351 0.951757 0.306853i \(-0.0992759\pi\)
0.951757 + 0.306853i \(0.0992759\pi\)
\(998\) 2.78277e10 0.886176
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.8.b.c.181.3 10
3.2 odd 2 26.8.b.a.25.8 yes 10
12.11 even 2 208.8.f.c.129.5 10
13.12 even 2 inner 234.8.b.c.181.8 10
39.5 even 4 338.8.a.l.1.3 5
39.8 even 4 338.8.a.k.1.3 5
39.38 odd 2 26.8.b.a.25.3 10
156.155 even 2 208.8.f.c.129.6 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.b.a.25.3 10 39.38 odd 2
26.8.b.a.25.8 yes 10 3.2 odd 2
208.8.f.c.129.5 10 12.11 even 2
208.8.f.c.129.6 10 156.155 even 2
234.8.b.c.181.3 10 1.1 even 1 trivial
234.8.b.c.181.8 10 13.12 even 2 inner
338.8.a.k.1.3 5 39.8 even 4
338.8.a.l.1.3 5 39.5 even 4