Properties

Label 338.4.c.h.315.2
Level $338$
Weight $4$
Character 338.315
Analytic conductor $19.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(191,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.191"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,3,-8,38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 55x^{2} + 54x + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 315.2
Root \(3.93273 + 6.81169i\) of defining polynomial
Character \(\chi\) \(=\) 338.315
Dual form 338.4.c.h.191.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(4.43273 + 7.67771i) q^{3} +(-2.00000 + 3.46410i) q^{4} +16.8655 q^{5} +(8.86546 - 15.3554i) q^{6} +(-5.43273 + 9.40976i) q^{7} +8.00000 q^{8} +(-25.7982 + 44.6838i) q^{9} +(-16.8655 - 29.2118i) q^{10} +(17.5964 + 30.4778i) q^{11} -35.4618 q^{12} +21.7309 q^{14} +(74.7600 + 129.488i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(-15.1636 + 26.2642i) q^{17} +103.193 q^{18} +(14.1928 - 24.5826i) q^{19} +(-33.7309 + 58.4237i) q^{20} -96.3273 q^{21} +(35.1928 - 60.9556i) q^{22} +(12.3273 + 21.3515i) q^{23} +(35.4618 + 61.4217i) q^{24} +159.444 q^{25} -218.058 q^{27} +(-21.7309 - 37.6391i) q^{28} +(-145.058 - 251.248i) q^{29} +(149.520 - 258.976i) q^{30} +219.731 q^{31} +(-16.0000 + 27.7128i) q^{32} +(-156.000 + 270.200i) q^{33} +60.6546 q^{34} +(-91.6255 + 158.700i) q^{35} +(-103.193 - 178.735i) q^{36} +(-59.3564 - 102.808i) q^{37} -56.7710 q^{38} +134.924 q^{40} +(-41.8474 - 72.4818i) q^{41} +(96.3273 + 166.844i) q^{42} +(-146.818 + 254.297i) q^{43} -140.771 q^{44} +(-435.098 + 753.612i) q^{45} +(24.6546 - 42.7030i) q^{46} -166.211 q^{47} +(70.9237 - 122.843i) q^{48} +(112.471 + 194.805i) q^{49} +(-159.444 - 276.165i) q^{50} -268.865 q^{51} -76.3855 q^{53} +(218.058 + 377.688i) q^{54} +(296.771 + 514.023i) q^{55} +(-43.4618 + 75.2781i) q^{56} +251.651 q^{57} +(-290.116 + 502.496i) q^{58} +(-92.3454 + 159.947i) q^{59} -598.080 q^{60} +(-98.9056 + 171.309i) q^{61} +(-219.731 - 380.585i) q^{62} +(-280.309 - 485.510i) q^{63} +64.0000 q^{64} +624.000 q^{66} +(-160.636 - 278.231i) q^{67} +(-60.6546 - 105.057i) q^{68} +(-109.287 + 189.291i) q^{69} +366.502 q^{70} +(184.473 - 319.516i) q^{71} +(-206.386 + 357.470i) q^{72} +843.273 q^{73} +(-118.713 + 205.617i) q^{74} +(706.771 + 1224.16i) q^{75} +(56.7710 + 98.3303i) q^{76} -382.386 q^{77} +184.044 q^{79} +(-134.924 - 233.695i) q^{80} +(-270.042 - 467.727i) q^{81} +(-83.6947 + 144.964i) q^{82} +1274.16 q^{83} +(192.655 - 333.688i) q^{84} +(-255.742 + 442.958i) q^{85} +587.273 q^{86} +(1286.01 - 2227.43i) q^{87} +(140.771 + 243.823i) q^{88} +(683.717 + 1184.23i) q^{89} +1740.39 q^{90} -98.6184 q^{92} +(974.008 + 1687.03i) q^{93} +(166.211 + 287.886i) q^{94} +(239.367 - 414.597i) q^{95} -283.695 q^{96} +(345.120 - 597.766i) q^{97} +(224.942 - 389.611i) q^{98} -1815.82 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 3 q^{3} - 8 q^{4} + 38 q^{5} + 6 q^{6} - 7 q^{7} + 32 q^{8} - 59 q^{9} - 38 q^{10} - 18 q^{11} - 24 q^{12} + 28 q^{14} + 137 q^{15} - 32 q^{16} + 13 q^{17} + 236 q^{18} - 120 q^{19} - 76 q^{20}+ \cdots - 2844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) 4.43273 + 7.67771i 0.853079 + 1.47758i 0.878416 + 0.477898i \(0.158601\pi\)
−0.0253362 + 0.999679i \(0.508066\pi\)
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) 16.8655 1.50849 0.754246 0.656592i \(-0.228002\pi\)
0.754246 + 0.656592i \(0.228002\pi\)
\(6\) 8.86546 15.3554i 0.603218 1.04480i
\(7\) −5.43273 + 9.40976i −0.293340 + 0.508080i −0.974597 0.223964i \(-0.928100\pi\)
0.681257 + 0.732044i \(0.261433\pi\)
\(8\) 8.00000 0.353553
\(9\) −25.7982 + 44.6838i −0.955489 + 1.65495i
\(10\) −16.8655 29.2118i −0.533333 0.923759i
\(11\) 17.5964 + 30.4778i 0.482319 + 0.835401i 0.999794 0.0202974i \(-0.00646131\pi\)
−0.517475 + 0.855698i \(0.673128\pi\)
\(12\) −35.4618 −0.853079
\(13\) 0 0
\(14\) 21.7309 0.414845
\(15\) 74.7600 + 129.488i 1.28686 + 2.22891i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −15.1636 + 26.2642i −0.216337 + 0.374706i −0.953685 0.300806i \(-0.902744\pi\)
0.737348 + 0.675513i \(0.236078\pi\)
\(18\) 103.193 1.35126
\(19\) 14.1928 24.5826i 0.171371 0.296823i −0.767529 0.641015i \(-0.778514\pi\)
0.938899 + 0.344192i \(0.111847\pi\)
\(20\) −33.7309 + 58.4237i −0.377123 + 0.653196i
\(21\) −96.3273 −1.00097
\(22\) 35.1928 60.9556i 0.341051 0.590718i
\(23\) 12.3273 + 21.3515i 0.111757 + 0.193569i 0.916479 0.400083i \(-0.131019\pi\)
−0.804722 + 0.593652i \(0.797685\pi\)
\(24\) 35.4618 + 61.4217i 0.301609 + 0.522402i
\(25\) 159.444 1.27555
\(26\) 0 0
\(27\) −218.058 −1.55427
\(28\) −21.7309 37.6391i −0.146670 0.254040i
\(29\) −145.058 251.248i −0.928849 1.60881i −0.785250 0.619179i \(-0.787466\pi\)
−0.143599 0.989636i \(-0.545868\pi\)
\(30\) 149.520 258.976i 0.909950 1.57608i
\(31\) 219.731 1.27306 0.636530 0.771252i \(-0.280369\pi\)
0.636530 + 0.771252i \(0.280369\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) −156.000 + 270.200i −0.822913 + 1.42533i
\(34\) 60.6546 0.305946
\(35\) −91.6255 + 158.700i −0.442501 + 0.766434i
\(36\) −103.193 178.735i −0.477744 0.827477i
\(37\) −59.3564 102.808i −0.263733 0.456800i 0.703498 0.710698i \(-0.251621\pi\)
−0.967231 + 0.253898i \(0.918287\pi\)
\(38\) −56.7710 −0.242355
\(39\) 0 0
\(40\) 134.924 0.533333
\(41\) −41.8474 72.4818i −0.159401 0.276091i 0.775252 0.631653i \(-0.217623\pi\)
−0.934653 + 0.355561i \(0.884290\pi\)
\(42\) 96.3273 + 166.844i 0.353896 + 0.612966i
\(43\) −146.818 + 254.297i −0.520688 + 0.901858i 0.479023 + 0.877802i \(0.340991\pi\)
−0.999711 + 0.0240552i \(0.992342\pi\)
\(44\) −140.771 −0.482319
\(45\) −435.098 + 753.612i −1.44135 + 2.49649i
\(46\) 24.6546 42.7030i 0.0790244 0.136874i
\(47\) −166.211 −0.515837 −0.257919 0.966167i \(-0.583037\pi\)
−0.257919 + 0.966167i \(0.583037\pi\)
\(48\) 70.9237 122.843i 0.213270 0.369394i
\(49\) 112.471 + 194.805i 0.327903 + 0.567945i
\(50\) −159.444 276.165i −0.450975 0.781112i
\(51\) −268.865 −0.738210
\(52\) 0 0
\(53\) −76.3855 −0.197969 −0.0989845 0.995089i \(-0.531559\pi\)
−0.0989845 + 0.995089i \(0.531559\pi\)
\(54\) 218.058 + 377.688i 0.549518 + 0.951793i
\(55\) 296.771 + 514.023i 0.727575 + 1.26020i
\(56\) −43.4618 + 75.2781i −0.103711 + 0.179633i
\(57\) 251.651 0.584771
\(58\) −290.116 + 502.496i −0.656796 + 1.13760i
\(59\) −92.3454 + 159.947i −0.203769 + 0.352938i −0.949740 0.313041i \(-0.898652\pi\)
0.745971 + 0.665978i \(0.231986\pi\)
\(60\) −598.080 −1.28686
\(61\) −98.9056 + 171.309i −0.207599 + 0.359573i −0.950958 0.309321i \(-0.899898\pi\)
0.743358 + 0.668893i \(0.233232\pi\)
\(62\) −219.731 380.585i −0.450094 0.779586i
\(63\) −280.309 485.510i −0.560566 0.970928i
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 624.000 1.16377
\(67\) −160.636 278.231i −0.292909 0.507332i 0.681588 0.731736i \(-0.261290\pi\)
−0.974496 + 0.224404i \(0.927956\pi\)
\(68\) −60.6546 105.057i −0.108168 0.187353i
\(69\) −109.287 + 189.291i −0.190676 + 0.330260i
\(70\) 366.502 0.625791
\(71\) 184.473 319.516i 0.308351 0.534079i −0.669651 0.742676i \(-0.733556\pi\)
0.978002 + 0.208597i \(0.0668896\pi\)
\(72\) −206.386 + 357.470i −0.337816 + 0.585115i
\(73\) 843.273 1.35202 0.676011 0.736891i \(-0.263707\pi\)
0.676011 + 0.736891i \(0.263707\pi\)
\(74\) −118.713 + 205.617i −0.186488 + 0.323006i
\(75\) 706.771 + 1224.16i 1.08815 + 1.88472i
\(76\) 56.7710 + 98.3303i 0.0856853 + 0.148411i
\(77\) −382.386 −0.565933
\(78\) 0 0
\(79\) 184.044 0.262109 0.131054 0.991375i \(-0.458164\pi\)
0.131054 + 0.991375i \(0.458164\pi\)
\(80\) −134.924 233.695i −0.188562 0.326598i
\(81\) −270.042 467.727i −0.370428 0.641600i
\(82\) −83.6947 + 144.964i −0.112714 + 0.195226i
\(83\) 1274.16 1.68503 0.842514 0.538675i \(-0.181075\pi\)
0.842514 + 0.538675i \(0.181075\pi\)
\(84\) 192.655 333.688i 0.250242 0.433432i
\(85\) −255.742 + 442.958i −0.326342 + 0.565242i
\(86\) 587.273 0.736364
\(87\) 1286.01 2227.43i 1.58476 2.74489i
\(88\) 140.771 + 243.823i 0.170525 + 0.295359i
\(89\) 683.717 + 1184.23i 0.814313 + 1.41043i 0.909820 + 0.415002i \(0.136219\pi\)
−0.0955077 + 0.995429i \(0.530447\pi\)
\(90\) 1740.39 2.03837
\(91\) 0 0
\(92\) −98.6184 −0.111757
\(93\) 974.008 + 1687.03i 1.08602 + 1.88104i
\(94\) 166.211 + 287.886i 0.182376 + 0.315884i
\(95\) 239.367 414.597i 0.258511 0.447755i
\(96\) −283.695 −0.301609
\(97\) 345.120 597.766i 0.361254 0.625711i −0.626913 0.779089i \(-0.715682\pi\)
0.988168 + 0.153378i \(0.0490153\pi\)
\(98\) 224.942 389.611i 0.231863 0.401598i
\(99\) −1815.82 −1.84340
\(100\) −318.887 + 552.329i −0.318887 + 0.552329i
\(101\) −697.604 1208.29i −0.687269 1.19039i −0.972718 0.231992i \(-0.925476\pi\)
0.285448 0.958394i \(-0.407857\pi\)
\(102\) 268.865 + 465.689i 0.260997 + 0.452059i
\(103\) −1416.28 −1.35485 −0.677427 0.735590i \(-0.736905\pi\)
−0.677427 + 0.735590i \(0.736905\pi\)
\(104\) 0 0
\(105\) −1624.60 −1.50995
\(106\) 76.3855 + 132.304i 0.0699926 + 0.121231i
\(107\) −225.534 390.637i −0.203768 0.352937i 0.745971 0.665978i \(-0.231986\pi\)
−0.949740 + 0.313041i \(0.898652\pi\)
\(108\) 436.116 755.376i 0.388568 0.673019i
\(109\) −1386.13 −1.21805 −0.609024 0.793152i \(-0.708439\pi\)
−0.609024 + 0.793152i \(0.708439\pi\)
\(110\) 593.542 1028.05i 0.514473 0.891093i
\(111\) 526.222 911.443i 0.449971 0.779372i
\(112\) 173.847 0.146670
\(113\) −764.389 + 1323.96i −0.636351 + 1.10219i 0.349876 + 0.936796i \(0.386224\pi\)
−0.986227 + 0.165397i \(0.947110\pi\)
\(114\) −251.651 435.872i −0.206748 0.358098i
\(115\) 207.906 + 360.103i 0.168585 + 0.291998i
\(116\) 1160.47 0.928849
\(117\) 0 0
\(118\) 369.382 0.288172
\(119\) −164.760 285.373i −0.126920 0.219833i
\(120\) 598.080 + 1035.91i 0.454975 + 0.788040i
\(121\) 46.2348 80.0811i 0.0347369 0.0601661i
\(122\) 395.622 0.293590
\(123\) 370.996 642.584i 0.271964 0.471056i
\(124\) −439.462 + 761.170i −0.318265 + 0.551251i
\(125\) 580.909 0.415665
\(126\) −560.618 + 971.020i −0.396380 + 0.686550i
\(127\) 723.833 + 1253.72i 0.505747 + 0.875979i 0.999978 + 0.00664827i \(0.00211622\pi\)
−0.494231 + 0.869330i \(0.664550\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) −2603.22 −1.77675
\(130\) 0 0
\(131\) 631.877 0.421430 0.210715 0.977548i \(-0.432421\pi\)
0.210715 + 0.977548i \(0.432421\pi\)
\(132\) −624.000 1080.80i −0.411456 0.712663i
\(133\) 154.211 + 267.101i 0.100540 + 0.174140i
\(134\) −321.273 + 556.461i −0.207118 + 0.358738i
\(135\) −3677.65 −2.34461
\(136\) −121.309 + 210.114i −0.0764866 + 0.132479i
\(137\) 273.709 474.078i 0.170690 0.295644i −0.767971 0.640484i \(-0.778734\pi\)
0.938661 + 0.344841i \(0.112067\pi\)
\(138\) 437.149 0.269656
\(139\) 338.535 586.360i 0.206577 0.357801i −0.744057 0.668116i \(-0.767101\pi\)
0.950634 + 0.310315i \(0.100434\pi\)
\(140\) −366.502 634.800i −0.221250 0.383217i
\(141\) −736.768 1276.12i −0.440050 0.762189i
\(142\) −737.891 −0.436074
\(143\) 0 0
\(144\) 825.542 0.477744
\(145\) −2446.47 4237.42i −1.40116 2.42688i
\(146\) −843.273 1460.59i −0.478012 0.827941i
\(147\) −997.106 + 1727.04i −0.559455 + 0.969005i
\(148\) 474.851 0.263733
\(149\) 142.167 246.240i 0.0781662 0.135388i −0.824293 0.566164i \(-0.808427\pi\)
0.902459 + 0.430776i \(0.141760\pi\)
\(150\) 1413.54 2448.33i 0.769435 1.33270i
\(151\) 2708.68 1.45980 0.729899 0.683555i \(-0.239567\pi\)
0.729899 + 0.683555i \(0.239567\pi\)
\(152\) 113.542 196.661i 0.0605887 0.104943i
\(153\) −782.389 1355.14i −0.413415 0.716055i
\(154\) 382.386 + 662.311i 0.200088 + 0.346562i
\(155\) 3705.86 1.92040
\(156\) 0 0
\(157\) −883.775 −0.449254 −0.224627 0.974445i \(-0.572116\pi\)
−0.224627 + 0.974445i \(0.572116\pi\)
\(158\) −184.044 318.774i −0.0926693 0.160508i
\(159\) −338.596 586.466i −0.168883 0.292514i
\(160\) −269.847 + 467.389i −0.133333 + 0.230940i
\(161\) −267.884 −0.131132
\(162\) −540.084 + 935.453i −0.261932 + 0.453680i
\(163\) 1670.39 2893.20i 0.802669 1.39026i −0.115185 0.993344i \(-0.536746\pi\)
0.917854 0.396919i \(-0.129921\pi\)
\(164\) 334.779 0.159401
\(165\) −2631.01 + 4557.05i −1.24136 + 2.15009i
\(166\) −1274.16 2206.91i −0.595747 1.03186i
\(167\) −908.259 1573.15i −0.420857 0.728946i 0.575166 0.818037i \(-0.304937\pi\)
−0.996024 + 0.0890903i \(0.971604\pi\)
\(168\) −770.618 −0.353896
\(169\) 0 0
\(170\) 1022.97 0.461518
\(171\) 732.295 + 1268.37i 0.327485 + 0.567221i
\(172\) −587.273 1017.19i −0.260344 0.450929i
\(173\) 492.120 852.377i 0.216273 0.374596i −0.737393 0.675464i \(-0.763943\pi\)
0.953666 + 0.300869i \(0.0972766\pi\)
\(174\) −5144.03 −2.24120
\(175\) −866.215 + 1500.33i −0.374170 + 0.648081i
\(176\) 281.542 487.645i 0.120580 0.208850i
\(177\) −1637.37 −0.695323
\(178\) 1367.43 2368.46i 0.575806 0.997325i
\(179\) 1888.66 + 3271.25i 0.788631 + 1.36595i 0.926805 + 0.375542i \(0.122543\pi\)
−0.138174 + 0.990408i \(0.544123\pi\)
\(180\) −1740.39 3014.45i −0.720674 1.24824i
\(181\) 2329.80 0.956754 0.478377 0.878154i \(-0.341225\pi\)
0.478377 + 0.878154i \(0.341225\pi\)
\(182\) 0 0
\(183\) −1753.69 −0.708395
\(184\) 98.6184 + 170.812i 0.0395122 + 0.0684371i
\(185\) −1001.07 1733.91i −0.397840 0.689079i
\(186\) 1948.02 3374.06i 0.767932 1.33010i
\(187\) −1067.30 −0.417373
\(188\) 332.422 575.771i 0.128959 0.223364i
\(189\) 1184.65 2051.88i 0.455930 0.789693i
\(190\) −957.470 −0.365590
\(191\) 2305.96 3994.05i 0.873579 1.51308i 0.0153112 0.999883i \(-0.495126\pi\)
0.858268 0.513201i \(-0.171541\pi\)
\(192\) 283.695 + 491.374i 0.106635 + 0.184697i
\(193\) −476.400 825.148i −0.177679 0.307749i 0.763406 0.645919i \(-0.223525\pi\)
−0.941085 + 0.338170i \(0.890192\pi\)
\(194\) −1380.48 −0.510891
\(195\) 0 0
\(196\) −899.767 −0.327903
\(197\) −1025.27 1775.82i −0.370799 0.642243i 0.618889 0.785478i \(-0.287583\pi\)
−0.989689 + 0.143235i \(0.954250\pi\)
\(198\) 1815.82 + 3145.09i 0.651741 + 1.12885i
\(199\) 1292.65 2238.94i 0.460472 0.797560i −0.538513 0.842617i \(-0.681014\pi\)
0.998984 + 0.0450571i \(0.0143470\pi\)
\(200\) 1275.55 0.450975
\(201\) 1424.12 2466.64i 0.499748 0.865590i
\(202\) −1395.21 + 2416.57i −0.485973 + 0.841730i
\(203\) 3152.25 1.08987
\(204\) 537.731 931.377i 0.184552 0.319654i
\(205\) −705.775 1222.44i −0.240456 0.416482i
\(206\) 1416.28 + 2453.06i 0.479013 + 0.829675i
\(207\) −1272.09 −0.427132
\(208\) 0 0
\(209\) 998.965 0.330621
\(210\) 1624.60 + 2813.90i 0.533849 + 0.924654i
\(211\) 878.113 + 1520.94i 0.286501 + 0.496235i 0.972972 0.230922i \(-0.0741743\pi\)
−0.686471 + 0.727157i \(0.740841\pi\)
\(212\) 152.771 264.607i 0.0494923 0.0857231i
\(213\) 3270.87 1.05219
\(214\) −451.068 + 781.274i −0.144086 + 0.249564i
\(215\) −2476.16 + 4288.83i −0.785454 + 1.36045i
\(216\) −1744.47 −0.549518
\(217\) −1193.74 + 2067.62i −0.373439 + 0.646815i
\(218\) 1386.13 + 2400.85i 0.430645 + 0.745899i
\(219\) 3738.00 + 6474.41i 1.15338 + 1.99772i
\(220\) −2374.17 −0.727575
\(221\) 0 0
\(222\) −2104.89 −0.636355
\(223\) −1019.06 1765.07i −0.306015 0.530034i 0.671472 0.741030i \(-0.265663\pi\)
−0.977487 + 0.210996i \(0.932329\pi\)
\(224\) −173.847 301.112i −0.0518556 0.0898166i
\(225\) −4113.36 + 7124.55i −1.21877 + 2.11098i
\(226\) 3057.56 0.899937
\(227\) 2345.93 4063.26i 0.685923 1.18805i −0.287223 0.957864i \(-0.592732\pi\)
0.973146 0.230190i \(-0.0739347\pi\)
\(228\) −503.301 + 871.744i −0.146193 + 0.253213i
\(229\) 576.154 0.166259 0.0831296 0.996539i \(-0.473508\pi\)
0.0831296 + 0.996539i \(0.473508\pi\)
\(230\) 415.811 720.206i 0.119208 0.206474i
\(231\) −1695.01 2935.85i −0.482786 0.836210i
\(232\) −1160.47 2009.99i −0.328398 0.568802i
\(233\) 724.319 0.203656 0.101828 0.994802i \(-0.467531\pi\)
0.101828 + 0.994802i \(0.467531\pi\)
\(234\) 0 0
\(235\) −2803.22 −0.778137
\(236\) −369.382 639.788i −0.101884 0.176469i
\(237\) 815.818 + 1413.04i 0.223599 + 0.387285i
\(238\) −329.520 + 570.745i −0.0897463 + 0.155445i
\(239\) 3137.80 0.849237 0.424619 0.905372i \(-0.360408\pi\)
0.424619 + 0.905372i \(0.360408\pi\)
\(240\) 1196.16 2071.81i 0.321716 0.557228i
\(241\) 881.869 1527.44i 0.235710 0.408262i −0.723769 0.690043i \(-0.757592\pi\)
0.959479 + 0.281781i \(0.0909250\pi\)
\(242\) −184.939 −0.0491254
\(243\) −549.739 + 952.175i −0.145127 + 0.251367i
\(244\) −395.622 685.238i −0.103800 0.179786i
\(245\) 1896.87 + 3285.48i 0.494640 + 0.856742i
\(246\) −1483.98 −0.384615
\(247\) 0 0
\(248\) 1757.85 0.450094
\(249\) 5648.01 + 9782.64i 1.43746 + 2.48976i
\(250\) −580.909 1006.16i −0.146960 0.254542i
\(251\) 823.004 1425.48i 0.206962 0.358469i −0.743794 0.668409i \(-0.766976\pi\)
0.950756 + 0.309940i \(0.100309\pi\)
\(252\) 2242.47 0.560566
\(253\) −433.832 + 751.419i −0.107805 + 0.186724i
\(254\) 1447.67 2507.43i 0.357617 0.619410i
\(255\) −4534.54 −1.11358
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 3207.86 + 5556.18i 0.778603 + 1.34858i 0.932747 + 0.360532i \(0.117405\pi\)
−0.154144 + 0.988048i \(0.549262\pi\)
\(258\) 2603.22 + 4508.91i 0.628177 + 1.08803i
\(259\) 1289.87 0.309454
\(260\) 0 0
\(261\) 14969.0 3.55002
\(262\) −631.877 1094.44i −0.148998 0.258072i
\(263\) 1830.24 + 3170.07i 0.429116 + 0.743251i 0.996795 0.0799995i \(-0.0254919\pi\)
−0.567679 + 0.823250i \(0.692159\pi\)
\(264\) −1248.00 + 2161.60i −0.290944 + 0.503929i
\(265\) −1288.28 −0.298635
\(266\) 308.422 534.202i 0.0710923 0.123135i
\(267\) −6061.46 + 10498.8i −1.38935 + 2.40642i
\(268\) 1285.09 0.292909
\(269\) 2822.65 4888.98i 0.639777 1.10813i −0.345704 0.938344i \(-0.612360\pi\)
0.985481 0.169783i \(-0.0543068\pi\)
\(270\) 3677.65 + 6369.88i 0.828944 + 1.43577i
\(271\) −3335.93 5778.01i −0.747762 1.29516i −0.948893 0.315598i \(-0.897795\pi\)
0.201131 0.979564i \(-0.435538\pi\)
\(272\) 485.237 0.108168
\(273\) 0 0
\(274\) −1094.84 −0.241392
\(275\) 2805.63 + 4859.50i 0.615222 + 1.06560i
\(276\) −437.149 757.164i −0.0953379 0.165130i
\(277\) 1452.70 2516.14i 0.315105 0.545778i −0.664355 0.747417i \(-0.731294\pi\)
0.979460 + 0.201640i \(0.0646270\pi\)
\(278\) −1354.14 −0.292144
\(279\) −5668.66 + 9818.41i −1.21639 + 2.10686i
\(280\) −733.004 + 1269.60i −0.156448 + 0.270975i
\(281\) −8009.76 −1.70044 −0.850218 0.526431i \(-0.823530\pi\)
−0.850218 + 0.526431i \(0.823530\pi\)
\(282\) −1473.54 + 2552.24i −0.311162 + 0.538949i
\(283\) −1853.86 3210.97i −0.389400 0.674461i 0.602969 0.797765i \(-0.293984\pi\)
−0.992369 + 0.123304i \(0.960651\pi\)
\(284\) 737.891 + 1278.07i 0.154175 + 0.267040i
\(285\) 4244.20 0.882123
\(286\) 0 0
\(287\) 909.382 0.187035
\(288\) −825.542 1429.88i −0.168908 0.292557i
\(289\) 1996.63 + 3458.26i 0.406397 + 0.703900i
\(290\) −4892.95 + 8474.83i −0.990772 + 1.71607i
\(291\) 6119.30 1.23271
\(292\) −1686.55 + 2921.18i −0.338006 + 0.585443i
\(293\) −836.999 + 1449.73i −0.166887 + 0.289058i −0.937324 0.348459i \(-0.886705\pi\)
0.770437 + 0.637517i \(0.220038\pi\)
\(294\) 3988.42 0.791189
\(295\) −1557.45 + 2697.58i −0.307383 + 0.532404i
\(296\) −474.851 822.467i −0.0932438 0.161503i
\(297\) −3837.04 6645.94i −0.749654 1.29844i
\(298\) −568.667 −0.110544
\(299\) 0 0
\(300\) −5654.17 −1.08815
\(301\) −1595.25 2763.05i −0.305477 0.529102i
\(302\) −2708.68 4691.58i −0.516117 0.893941i
\(303\) 6184.58 10712.0i 1.17259 2.03099i
\(304\) −454.168 −0.0856853
\(305\) −1668.09 + 2889.21i −0.313162 + 0.542413i
\(306\) −1564.78 + 2710.28i −0.292328 + 0.506327i
\(307\) −299.935 −0.0557597 −0.0278798 0.999611i \(-0.508876\pi\)
−0.0278798 + 0.999611i \(0.508876\pi\)
\(308\) 764.771 1324.62i 0.141483 0.245056i
\(309\) −6277.97 10873.8i −1.15580 2.00190i
\(310\) −3705.86 6418.74i −0.678964 1.17600i
\(311\) −890.140 −0.162300 −0.0811498 0.996702i \(-0.525859\pi\)
−0.0811498 + 0.996702i \(0.525859\pi\)
\(312\) 0 0
\(313\) −1154.20 −0.208432 −0.104216 0.994555i \(-0.533233\pi\)
−0.104216 + 0.994555i \(0.533233\pi\)
\(314\) 883.775 + 1530.74i 0.158835 + 0.275111i
\(315\) −4727.54 8188.35i −0.845609 1.46464i
\(316\) −368.088 + 637.547i −0.0655271 + 0.113496i
\(317\) 2708.86 0.479951 0.239976 0.970779i \(-0.422861\pi\)
0.239976 + 0.970779i \(0.422861\pi\)
\(318\) −677.193 + 1172.93i −0.119419 + 0.206839i
\(319\) 5105.00 8842.12i 0.896003 1.55192i
\(320\) 1079.39 0.188562
\(321\) 1999.46 3463.17i 0.347661 0.602167i
\(322\) 267.884 + 463.988i 0.0463620 + 0.0803014i
\(323\) 430.428 + 745.523i 0.0741475 + 0.128427i
\(324\) 2160.34 0.370428
\(325\) 0 0
\(326\) −6681.56 −1.13514
\(327\) −6144.34 10642.3i −1.03909 1.79976i
\(328\) −334.779 579.854i −0.0563569 0.0976131i
\(329\) 902.979 1564.01i 0.151316 0.262086i
\(330\) 10524.0 1.75554
\(331\) −4093.56 + 7090.26i −0.679766 + 1.17739i 0.295285 + 0.955409i \(0.404585\pi\)
−0.975051 + 0.221980i \(0.928748\pi\)
\(332\) −2548.32 + 4413.82i −0.421257 + 0.729638i
\(333\) 6125.15 1.00798
\(334\) −1816.52 + 3146.30i −0.297591 + 0.515443i
\(335\) −2709.21 4692.49i −0.441850 0.765307i
\(336\) 770.618 + 1334.75i 0.125121 + 0.216716i
\(337\) −8770.94 −1.41776 −0.708878 0.705331i \(-0.750798\pi\)
−0.708878 + 0.705331i \(0.750798\pi\)
\(338\) 0 0
\(339\) −13553.3 −2.17143
\(340\) −1022.97 1771.83i −0.163171 0.282621i
\(341\) 3866.47 + 6696.92i 0.614021 + 1.06351i
\(342\) 1464.59 2536.74i 0.231567 0.401086i
\(343\) −6170.95 −0.971428
\(344\) −1174.55 + 2034.37i −0.184091 + 0.318855i
\(345\) −1843.18 + 3192.48i −0.287633 + 0.498195i
\(346\) −1968.48 −0.305856
\(347\) 2139.48 3705.69i 0.330989 0.573290i −0.651717 0.758462i \(-0.725951\pi\)
0.982706 + 0.185172i \(0.0592843\pi\)
\(348\) 5144.03 + 8909.72i 0.792382 + 1.37245i
\(349\) −3090.73 5353.30i −0.474049 0.821076i 0.525510 0.850788i \(-0.323875\pi\)
−0.999559 + 0.0297111i \(0.990541\pi\)
\(350\) 3464.86 0.529156
\(351\) 0 0
\(352\) −1126.17 −0.170525
\(353\) 2735.80 + 4738.55i 0.412499 + 0.714469i 0.995162 0.0982443i \(-0.0313226\pi\)
−0.582663 + 0.812714i \(0.697989\pi\)
\(354\) 1637.37 + 2836.01i 0.245834 + 0.425797i
\(355\) 3111.22 5388.79i 0.465145 0.805654i
\(356\) −5469.73 −0.814313
\(357\) 1460.67 2529.96i 0.216546 0.375069i
\(358\) 3777.32 6542.51i 0.557647 0.965872i
\(359\) 6398.77 0.940709 0.470354 0.882478i \(-0.344126\pi\)
0.470354 + 0.882478i \(0.344126\pi\)
\(360\) −3480.79 + 6028.90i −0.509593 + 0.882641i
\(361\) 3026.63 + 5242.28i 0.441264 + 0.764292i
\(362\) −2329.80 4035.33i −0.338264 0.585890i
\(363\) 819.786 0.118533
\(364\) 0 0
\(365\) 14222.2 2.03952
\(366\) 1753.69 + 3037.47i 0.250455 + 0.433802i
\(367\) −4818.10 8345.19i −0.685293 1.18696i −0.973345 0.229348i \(-0.926341\pi\)
0.288052 0.957615i \(-0.406993\pi\)
\(368\) 197.237 341.624i 0.0279393 0.0483924i
\(369\) 4318.34 0.609225
\(370\) −2002.15 + 3467.82i −0.281315 + 0.487252i
\(371\) 414.982 718.770i 0.0580722 0.100584i
\(372\) −7792.06 −1.08602
\(373\) −4403.94 + 7627.84i −0.611333 + 1.05886i 0.379683 + 0.925117i \(0.376033\pi\)
−0.991016 + 0.133743i \(0.957300\pi\)
\(374\) 1067.30 + 1848.62i 0.147564 + 0.255588i
\(375\) 2575.01 + 4460.06i 0.354595 + 0.614177i
\(376\) −1329.69 −0.182376
\(377\) 0 0
\(378\) −4738.61 −0.644782
\(379\) 4339.48 + 7516.19i 0.588137 + 1.01868i 0.994476 + 0.104961i \(0.0334718\pi\)
−0.406339 + 0.913722i \(0.633195\pi\)
\(380\) 957.470 + 1658.39i 0.129256 + 0.223877i
\(381\) −6417.11 + 11114.8i −0.862884 + 1.49456i
\(382\) −9223.86 −1.23543
\(383\) 1356.15 2348.92i 0.180930 0.313380i −0.761268 0.648438i \(-0.775423\pi\)
0.942197 + 0.335058i \(0.108756\pi\)
\(384\) 567.389 982.747i 0.0754023 0.130601i
\(385\) −6449.11 −0.853706
\(386\) −952.799 + 1650.30i −0.125638 + 0.217611i
\(387\) −7575.29 13120.8i −0.995022 1.72343i
\(388\) 1380.48 + 2391.06i 0.180627 + 0.312855i
\(389\) −290.941 −0.0379211 −0.0189605 0.999820i \(-0.506036\pi\)
−0.0189605 + 0.999820i \(0.506036\pi\)
\(390\) 0 0
\(391\) −747.707 −0.0967089
\(392\) 899.767 + 1558.44i 0.115931 + 0.200799i
\(393\) 2800.94 + 4851.37i 0.359513 + 0.622696i
\(394\) −2050.54 + 3551.64i −0.262195 + 0.454134i
\(395\) 3103.99 0.395389
\(396\) 3631.64 6290.18i 0.460850 0.798216i
\(397\) −7057.01 + 12223.1i −0.892144 + 1.54524i −0.0548436 + 0.998495i \(0.517466\pi\)
−0.837300 + 0.546743i \(0.815867\pi\)
\(398\) −5170.62 −0.651205
\(399\) −1367.15 + 2367.97i −0.171537 + 0.297110i
\(400\) −1275.55 2209.32i −0.159444 0.276165i
\(401\) 5671.01 + 9822.47i 0.706226 + 1.22322i 0.966247 + 0.257616i \(0.0829369\pi\)
−0.260022 + 0.965603i \(0.583730\pi\)
\(402\) −5696.47 −0.706751
\(403\) 0 0
\(404\) 5580.83 0.687269
\(405\) −4554.38 7888.42i −0.558788 0.967849i
\(406\) −3152.25 5459.85i −0.385329 0.667409i
\(407\) 2088.92 3618.11i 0.254407 0.440646i
\(408\) −2150.92 −0.260997
\(409\) −2343.47 + 4059.01i −0.283318 + 0.490721i −0.972200 0.234152i \(-0.924769\pi\)
0.688882 + 0.724874i \(0.258102\pi\)
\(410\) −1411.55 + 2444.88i −0.170028 + 0.294497i
\(411\) 4853.11 0.582448
\(412\) 2832.55 4906.13i 0.338713 0.586669i
\(413\) −1003.38 1737.90i −0.119547 0.207061i
\(414\) 1272.09 + 2203.32i 0.151014 + 0.261564i
\(415\) 21489.3 2.54185
\(416\) 0 0
\(417\) 6002.54 0.704905
\(418\) −998.965 1730.26i −0.116892 0.202463i
\(419\) −5944.84 10296.8i −0.693137 1.20055i −0.970805 0.239871i \(-0.922895\pi\)
0.277668 0.960677i \(-0.410438\pi\)
\(420\) 3249.21 5627.79i 0.377488 0.653829i
\(421\) −4755.64 −0.550536 −0.275268 0.961367i \(-0.588767\pi\)
−0.275268 + 0.961367i \(0.588767\pi\)
\(422\) 1756.23 3041.87i 0.202587 0.350891i
\(423\) 4287.94 7426.93i 0.492876 0.853687i
\(424\) −611.084 −0.0699926
\(425\) −2417.75 + 4187.66i −0.275948 + 0.477957i
\(426\) −3270.87 5665.32i −0.372005 0.644332i
\(427\) −1074.65 1861.36i −0.121794 0.210954i
\(428\) 1804.27 0.203768
\(429\) 0 0
\(430\) 9904.63 1.11080
\(431\) 2189.06 + 3791.57i 0.244649 + 0.423744i 0.962033 0.272934i \(-0.0879941\pi\)
−0.717384 + 0.696678i \(0.754661\pi\)
\(432\) 1744.47 + 3021.50i 0.194284 + 0.336510i
\(433\) −7788.16 + 13489.5i −0.864377 + 1.49715i 0.00328725 + 0.999995i \(0.498954\pi\)
−0.867664 + 0.497150i \(0.834380\pi\)
\(434\) 4774.96 0.528123
\(435\) 21689.1 37566.6i 2.39061 4.14065i
\(436\) 2772.26 4801.70i 0.304512 0.527430i
\(437\) 699.834 0.0766077
\(438\) 7476.00 12948.8i 0.815564 1.41260i
\(439\) 6737.38 + 11669.5i 0.732477 + 1.26869i 0.955822 + 0.293948i \(0.0949692\pi\)
−0.223345 + 0.974740i \(0.571698\pi\)
\(440\) 2374.17 + 4112.18i 0.257236 + 0.445547i
\(441\) −11606.2 −1.25323
\(442\) 0 0
\(443\) −24.4564 −0.00262294 −0.00131147 0.999999i \(-0.500417\pi\)
−0.00131147 + 0.999999i \(0.500417\pi\)
\(444\) 2104.89 + 3645.77i 0.224985 + 0.389686i
\(445\) 11531.2 + 19972.6i 1.22838 + 2.12762i
\(446\) −2038.12 + 3530.13i −0.216385 + 0.374791i
\(447\) 2520.75 0.266728
\(448\) −347.695 + 602.225i −0.0366675 + 0.0635099i
\(449\) 6818.36 11809.7i 0.716655 1.24128i −0.245662 0.969356i \(-0.579005\pi\)
0.962318 0.271928i \(-0.0876613\pi\)
\(450\) 16453.4 1.72361
\(451\) 1472.72 2550.83i 0.153765 0.266328i
\(452\) −3057.56 5295.85i −0.318176 0.551096i
\(453\) 12006.9 + 20796.5i 1.24532 + 2.15696i
\(454\) −9383.70 −0.970042
\(455\) 0 0
\(456\) 2013.21 0.206748
\(457\) −6690.26 11587.9i −0.684808 1.18612i −0.973497 0.228699i \(-0.926553\pi\)
0.288689 0.957423i \(-0.406781\pi\)
\(458\) −576.154 997.928i −0.0587815 0.101812i
\(459\) 3306.56 5727.13i 0.336246 0.582395i
\(460\) −1663.24 −0.168585
\(461\) 3391.27 5873.86i 0.342619 0.593434i −0.642299 0.766454i \(-0.722019\pi\)
0.984918 + 0.173020i \(0.0553526\pi\)
\(462\) −3390.02 + 5871.69i −0.341381 + 0.591290i
\(463\) −10966.2 −1.10074 −0.550368 0.834922i \(-0.685512\pi\)
−0.550368 + 0.834922i \(0.685512\pi\)
\(464\) −2320.93 + 4019.97i −0.232212 + 0.402204i
\(465\) 16427.1 + 28452.6i 1.63825 + 2.83754i
\(466\) −724.319 1254.56i −0.0720031 0.124713i
\(467\) −609.640 −0.0604085 −0.0302043 0.999544i \(-0.509616\pi\)
−0.0302043 + 0.999544i \(0.509616\pi\)
\(468\) 0 0
\(469\) 3490.78 0.343687
\(470\) 2803.22 + 4855.32i 0.275113 + 0.476509i
\(471\) −3917.54 6785.37i −0.383250 0.663808i
\(472\) −738.763 + 1279.58i −0.0720431 + 0.124782i
\(473\) −10333.9 −1.00455
\(474\) 1631.64 2826.07i 0.158109 0.273852i
\(475\) 2262.95 3919.54i 0.218592 0.378612i
\(476\) 1318.08 0.126920
\(477\) 1970.61 3413.19i 0.189157 0.327630i
\(478\) −3137.80 5434.84i −0.300251 0.520050i
\(479\) −4202.64 7279.19i −0.400884 0.694352i 0.592949 0.805240i \(-0.297964\pi\)
−0.993833 + 0.110888i \(0.964630\pi\)
\(480\) −4784.64 −0.454975
\(481\) 0 0
\(482\) −3527.48 −0.333345
\(483\) −1187.46 2056.73i −0.111866 0.193757i
\(484\) 184.939 + 320.324i 0.0173685 + 0.0300831i
\(485\) 5820.61 10081.6i 0.544949 0.943880i
\(486\) 2198.96 0.205240
\(487\) −8080.22 + 13995.4i −0.751848 + 1.30224i 0.195079 + 0.980788i \(0.437504\pi\)
−0.946926 + 0.321451i \(0.895830\pi\)
\(488\) −791.245 + 1370.48i −0.0733975 + 0.127128i
\(489\) 29617.5 2.73896
\(490\) 3793.75 6570.96i 0.349763 0.605808i
\(491\) −3213.48 5565.91i −0.295361 0.511581i 0.679708 0.733483i \(-0.262107\pi\)
−0.975069 + 0.221903i \(0.928773\pi\)
\(492\) 1483.98 + 2570.34i 0.135982 + 0.235528i
\(493\) 8798.45 0.803777
\(494\) 0 0
\(495\) −30624.6 −2.78076
\(496\) −1757.85 3044.68i −0.159132 0.275625i
\(497\) 2004.38 + 3471.69i 0.180903 + 0.313333i
\(498\) 11296.0 19565.3i 1.01644 1.76052i
\(499\) −15240.3 −1.36724 −0.683618 0.729840i \(-0.739595\pi\)
−0.683618 + 0.729840i \(0.739595\pi\)
\(500\) −1161.82 + 2012.33i −0.103916 + 0.179988i
\(501\) 8052.13 13946.7i 0.718049 1.24370i
\(502\) −3292.02 −0.292689
\(503\) −5202.00 + 9010.14i −0.461125 + 0.798692i −0.999017 0.0443215i \(-0.985887\pi\)
0.537892 + 0.843014i \(0.319221\pi\)
\(504\) −2242.47 3884.08i −0.198190 0.343275i
\(505\) −11765.4 20378.3i −1.03674 1.79569i
\(506\) 1735.33 0.152460
\(507\) 0 0
\(508\) −5790.67 −0.505747
\(509\) 7311.67 + 12664.2i 0.636707 + 1.10281i 0.986151 + 0.165852i \(0.0530373\pi\)
−0.349443 + 0.936957i \(0.613629\pi\)
\(510\) 4534.54 + 7854.05i 0.393711 + 0.681928i
\(511\) −4581.27 + 7935.00i −0.396602 + 0.686935i
\(512\) 512.000 0.0441942
\(513\) −3094.85 + 5360.43i −0.266356 + 0.461343i
\(514\) 6415.73 11112.4i 0.550556 0.953590i
\(515\) −23886.2 −2.04379
\(516\) 5206.45 9017.83i 0.444188 0.769356i
\(517\) −2924.71 5065.75i −0.248798 0.430931i
\(518\) −1289.87 2234.12i −0.109409 0.189501i
\(519\) 8725.75 0.737992
\(520\) 0 0
\(521\) −19937.9 −1.67657 −0.838285 0.545232i \(-0.816442\pi\)
−0.838285 + 0.545232i \(0.816442\pi\)
\(522\) −14969.0 25927.0i −1.25512 2.17393i
\(523\) −2163.50 3747.29i −0.180886 0.313303i 0.761297 0.648404i \(-0.224563\pi\)
−0.942182 + 0.335101i \(0.891230\pi\)
\(524\) −1263.75 + 2188.89i −0.105358 + 0.182485i
\(525\) −15358.8 −1.27679
\(526\) 3660.48 6340.14i 0.303431 0.525557i
\(527\) −3331.92 + 5771.06i −0.275410 + 0.477023i
\(528\) 4992.00 0.411456
\(529\) 5779.58 10010.5i 0.475021 0.822760i
\(530\) 1288.28 + 2231.36i 0.105583 + 0.182876i
\(531\) −4764.69 8252.68i −0.389397 0.674456i
\(532\) −1233.69 −0.100540
\(533\) 0 0
\(534\) 24245.9 1.96483
\(535\) −3803.74 6588.27i −0.307383 0.532403i
\(536\) −1285.09 2225.84i −0.103559 0.179369i
\(537\) −16743.8 + 29001.2i −1.34553 + 2.33053i
\(538\) −11290.6 −0.904782
\(539\) −3958.16 + 6855.74i −0.316308 + 0.547862i
\(540\) 7355.30 12739.8i 0.586152 1.01524i
\(541\) −2602.93 −0.206855 −0.103428 0.994637i \(-0.532981\pi\)
−0.103428 + 0.994637i \(0.532981\pi\)
\(542\) −6671.87 + 11556.0i −0.528748 + 0.915818i
\(543\) 10327.4 + 17887.5i 0.816187 + 1.41368i
\(544\) −485.237 840.455i −0.0382433 0.0662393i
\(545\) −23377.7 −1.83742
\(546\) 0 0
\(547\) 11225.3 0.877441 0.438720 0.898624i \(-0.355432\pi\)
0.438720 + 0.898624i \(0.355432\pi\)
\(548\) 1094.84 + 1896.31i 0.0853450 + 0.147822i
\(549\) −5103.17 8838.95i −0.396718 0.687135i
\(550\) 5611.27 9719.00i 0.435028 0.753490i
\(551\) −8235.11 −0.636710
\(552\) −874.297 + 1514.33i −0.0674141 + 0.116765i
\(553\) −999.862 + 1731.81i −0.0768869 + 0.133172i
\(554\) −5810.78 −0.445626
\(555\) 8874.97 15371.9i 0.678778 1.17568i
\(556\) 1354.14 + 2345.44i 0.103288 + 0.178901i
\(557\) −4124.42 7143.70i −0.313747 0.543426i 0.665423 0.746466i \(-0.268251\pi\)
−0.979170 + 0.203040i \(0.934918\pi\)
\(558\) 22674.6 1.72024
\(559\) 0 0
\(560\) 2932.02 0.221250
\(561\) −4731.06 8194.43i −0.356053 0.616701i
\(562\) 8009.76 + 13873.3i 0.601195 + 1.04130i
\(563\) 846.532 1466.24i 0.0633696 0.109759i −0.832600 0.553875i \(-0.813149\pi\)
0.895970 + 0.444115i \(0.146482\pi\)
\(564\) 5894.14 0.440050
\(565\) −12891.8 + 22329.2i −0.959931 + 1.66265i
\(566\) −3707.71 + 6421.94i −0.275348 + 0.476916i
\(567\) 5868.26 0.434645
\(568\) 1475.78 2556.13i 0.109018 0.188825i
\(569\) −4125.77 7146.05i −0.303974 0.526499i 0.673058 0.739590i \(-0.264980\pi\)
−0.977032 + 0.213091i \(0.931647\pi\)
\(570\) −4244.20 7351.18i −0.311877 0.540188i
\(571\) −23153.2 −1.69691 −0.848453 0.529271i \(-0.822466\pi\)
−0.848453 + 0.529271i \(0.822466\pi\)
\(572\) 0 0
\(573\) 40886.9 2.98093
\(574\) −909.382 1575.10i −0.0661269 0.114535i
\(575\) 1965.51 + 3404.36i 0.142552 + 0.246908i
\(576\) −1651.08 + 2859.76i −0.119436 + 0.206869i
\(577\) 2058.46 0.148518 0.0742590 0.997239i \(-0.476341\pi\)
0.0742590 + 0.997239i \(0.476341\pi\)
\(578\) 3993.25 6916.52i 0.287366 0.497732i
\(579\) 4223.50 7315.32i 0.303148 0.525068i
\(580\) 19571.8 1.40116
\(581\) −6922.17 + 11989.5i −0.494286 + 0.856128i
\(582\) −6119.30 10598.9i −0.435830 0.754880i
\(583\) −1344.11 2328.06i −0.0954842 0.165383i
\(584\) 6746.18 0.478012
\(585\) 0 0
\(586\) 3348.00 0.236014
\(587\) −6430.86 11138.6i −0.452180 0.783200i 0.546341 0.837563i \(-0.316020\pi\)
−0.998521 + 0.0543635i \(0.982687\pi\)
\(588\) −3988.42 6908.15i −0.279728 0.484503i
\(589\) 3118.59 5401.55i 0.218165 0.377873i
\(590\) 6229.79 0.434706
\(591\) 9089.49 15743.5i 0.632642 1.09577i
\(592\) −949.703 + 1644.93i −0.0659333 + 0.114200i
\(593\) 18098.4 1.25331 0.626653 0.779298i \(-0.284424\pi\)
0.626653 + 0.779298i \(0.284424\pi\)
\(594\) −7674.07 + 13291.9i −0.530086 + 0.918135i
\(595\) −2778.75 4812.94i −0.191458 0.331616i
\(596\) 568.667 + 984.961i 0.0390831 + 0.0676939i
\(597\) 22920.0 1.57128
\(598\) 0 0
\(599\) −15338.0 −1.04623 −0.523115 0.852262i \(-0.675230\pi\)
−0.523115 + 0.852262i \(0.675230\pi\)
\(600\) 5654.17 + 9793.31i 0.384717 + 0.666350i
\(601\) −11144.7 19303.2i −0.756409 1.31014i −0.944671 0.328020i \(-0.893619\pi\)
0.188262 0.982119i \(-0.439715\pi\)
\(602\) −3190.50 + 5526.10i −0.216005 + 0.374131i
\(603\) 16576.5 1.11948
\(604\) −5417.37 + 9383.16i −0.364950 + 0.632111i
\(605\) 779.772 1350.60i 0.0524004 0.0907601i
\(606\) −24738.3 −1.65829
\(607\) −3595.90 + 6228.29i −0.240450 + 0.416472i −0.960843 0.277095i \(-0.910628\pi\)
0.720392 + 0.693567i \(0.243962\pi\)
\(608\) 454.168 + 786.643i 0.0302943 + 0.0524713i
\(609\) 13973.1 + 24202.1i 0.929749 + 1.61037i
\(610\) 6672.35 0.442878
\(611\) 0 0
\(612\) 6259.12 0.413415
\(613\) −398.529 690.272i −0.0262584 0.0454810i 0.852598 0.522568i \(-0.175026\pi\)
−0.878856 + 0.477087i \(0.841693\pi\)
\(614\) 299.935 + 519.503i 0.0197140 + 0.0341457i
\(615\) 6257.02 10837.5i 0.410256 0.710584i
\(616\) −3059.08 −0.200088
\(617\) 10454.1 18107.1i 0.682120 1.18147i −0.292213 0.956353i \(-0.594391\pi\)
0.974333 0.225113i \(-0.0722752\pi\)
\(618\) −12555.9 + 21747.5i −0.817272 + 1.41556i
\(619\) 12309.9 0.799315 0.399658 0.916665i \(-0.369129\pi\)
0.399658 + 0.916665i \(0.369129\pi\)
\(620\) −7411.73 + 12837.5i −0.480100 + 0.831558i
\(621\) −2688.07 4655.87i −0.173701 0.300859i
\(622\) 890.140 + 1541.77i 0.0573816 + 0.0993879i
\(623\) −14857.8 −0.955481
\(624\) 0 0
\(625\) −10133.2 −0.648522
\(626\) 1154.20 + 1999.13i 0.0736918 + 0.127638i
\(627\) 4428.14 + 7669.77i 0.282046 + 0.488518i
\(628\) 1767.55 3061.49i 0.112314 0.194533i
\(629\) 3600.24 0.228221
\(630\) −9455.09 + 16376.7i −0.597936 + 1.03566i
\(631\) 5166.33 8948.35i 0.325940 0.564545i −0.655762 0.754968i \(-0.727652\pi\)
0.981702 + 0.190422i \(0.0609858\pi\)
\(632\) 1472.35 0.0926693
\(633\) −7784.88 + 13483.8i −0.488817 + 0.846656i
\(634\) −2708.86 4691.88i −0.169688 0.293909i
\(635\) 12207.8 + 21144.5i 0.762915 + 1.32141i
\(636\) 2708.77 0.168883
\(637\) 0 0
\(638\) −20420.0 −1.26714
\(639\) 9518.13 + 16485.9i 0.589251 + 1.02061i
\(640\) −1079.39 1869.56i −0.0666666 0.115470i
\(641\) −338.433 + 586.184i −0.0208539 + 0.0361199i −0.876264 0.481831i \(-0.839972\pi\)
0.855410 + 0.517951i \(0.173305\pi\)
\(642\) −7997.86 −0.491667
\(643\) −13156.3 + 22787.4i −0.806897 + 1.39759i 0.108105 + 0.994139i \(0.465522\pi\)
−0.915003 + 0.403448i \(0.867812\pi\)
\(644\) 535.767 927.976i 0.0327829 0.0567816i
\(645\) −43904.5 −2.68022
\(646\) 860.856 1491.05i 0.0524302 0.0908118i
\(647\) −84.9379 147.117i −0.00516113 0.00893934i 0.863433 0.504463i \(-0.168310\pi\)
−0.868594 + 0.495524i \(0.834976\pi\)
\(648\) −2160.34 3741.81i −0.130966 0.226840i
\(649\) −6499.78 −0.393126
\(650\) 0 0
\(651\) −21166.1 −1.27429
\(652\) 6681.56 + 11572.8i 0.401334 + 0.695131i
\(653\) 7213.30 + 12493.8i 0.432279 + 0.748729i 0.997069 0.0765053i \(-0.0243762\pi\)
−0.564790 + 0.825235i \(0.691043\pi\)
\(654\) −12288.7 + 21284.6i −0.734749 + 1.27262i
\(655\) 10656.9 0.635724
\(656\) −669.558 + 1159.71i −0.0398504 + 0.0690229i
\(657\) −21754.9 + 37680.6i −1.29184 + 2.23754i
\(658\) −3611.91 −0.213993
\(659\) 12605.9 21834.1i 0.745155 1.29065i −0.204968 0.978769i \(-0.565709\pi\)
0.950122 0.311877i \(-0.100958\pi\)
\(660\) −10524.0 18228.2i −0.620679 1.07505i
\(661\) −11419.5 19779.2i −0.671963 1.16387i −0.977347 0.211644i \(-0.932118\pi\)
0.305384 0.952229i \(-0.401215\pi\)
\(662\) 16374.2 0.961334
\(663\) 0 0
\(664\) 10193.3 0.595747
\(665\) 2600.84 + 4504.78i 0.151663 + 0.262689i
\(666\) −6125.15 10609.1i −0.356374 0.617257i
\(667\) 3576.35 6194.42i 0.207612 0.359594i
\(668\) 7266.07 0.420857
\(669\) 9034.45 15648.1i 0.522111 0.904322i
\(670\) −5418.42 + 9384.97i −0.312435 + 0.541154i
\(671\) −6961.52 −0.400516
\(672\) 1541.24 2669.50i 0.0884740 0.153241i
\(673\) 8354.10 + 14469.7i 0.478495 + 0.828777i 0.999696 0.0246566i \(-0.00784924\pi\)
−0.521201 + 0.853434i \(0.674516\pi\)
\(674\) 8770.94 + 15191.7i 0.501252 + 0.868195i
\(675\) −34768.0 −1.98255
\(676\) 0 0
\(677\) −15842.6 −0.899378 −0.449689 0.893185i \(-0.648465\pi\)
−0.449689 + 0.893185i \(0.648465\pi\)
\(678\) 13553.3 + 23475.1i 0.767717 + 1.32973i
\(679\) 3749.89 + 6495.00i 0.211941 + 0.367092i
\(680\) −2045.94 + 3543.66i −0.115379 + 0.199843i
\(681\) 41595.4 2.34059
\(682\) 7732.94 13393.8i 0.434178 0.752019i
\(683\) −8233.63 + 14261.1i −0.461275 + 0.798952i −0.999025 0.0441525i \(-0.985941\pi\)
0.537750 + 0.843105i \(0.319275\pi\)
\(684\) −5858.36 −0.327485
\(685\) 4616.23 7995.54i 0.257485 0.445976i
\(686\) 6170.95 + 10688.4i 0.343452 + 0.594876i
\(687\) 2553.94 + 4423.55i 0.141832 + 0.245661i
\(688\) 4698.18 0.260344
\(689\) 0 0
\(690\) 7372.71 0.406775
\(691\) 8265.50 + 14316.3i 0.455043 + 0.788157i 0.998691 0.0511562i \(-0.0162906\pi\)
−0.543648 + 0.839313i \(0.682957\pi\)
\(692\) 1968.48 + 3409.51i 0.108136 + 0.187298i
\(693\) 9864.85 17086.4i 0.540743 0.936594i
\(694\) −8557.92 −0.468089
\(695\) 5709.55 9889.23i 0.311619 0.539741i
\(696\) 10288.1 17819.4i 0.560299 0.970466i
\(697\) 2538.23 0.137938
\(698\) −6181.46 + 10706.6i −0.335203 + 0.580589i
\(699\) 3210.71 + 5561.12i 0.173734 + 0.300917i
\(700\) −3464.86 6001.31i −0.187085 0.324040i
\(701\) −11032.2 −0.594409 −0.297205 0.954814i \(-0.596054\pi\)
−0.297205 + 0.954814i \(0.596054\pi\)
\(702\) 0 0
\(703\) −3369.72 −0.180785
\(704\) 1126.17 + 1950.58i 0.0602899 + 0.104425i
\(705\) −12425.9 21522.3i −0.663812 1.14976i
\(706\) 5471.61 9477.11i 0.291681 0.505206i
\(707\) 15159.6 0.806414
\(708\) 3274.74 5672.01i 0.173831 0.301084i
\(709\) −10489.6 + 18168.5i −0.555633 + 0.962385i 0.442220 + 0.896906i \(0.354191\pi\)
−0.997854 + 0.0654790i \(0.979142\pi\)
\(710\) −12444.9 −0.657814
\(711\) −4748.00 + 8223.78i −0.250442 + 0.433778i
\(712\) 5469.73 + 9473.86i 0.287903 + 0.498663i
\(713\) 2708.69 + 4691.59i 0.142274 + 0.246425i
\(714\) −5842.69 −0.306243
\(715\) 0 0
\(716\) −15109.3 −0.788631
\(717\) 13909.0 + 24091.2i 0.724467 + 1.25481i
\(718\) −6398.77 11083.0i −0.332591 0.576064i
\(719\) 8849.89 15328.5i 0.459034 0.795070i −0.539876 0.841744i \(-0.681529\pi\)
0.998910 + 0.0466744i \(0.0148623\pi\)
\(720\) 13923.1 0.720674
\(721\) 7694.25 13326.8i 0.397433 0.688373i
\(722\) 6053.26 10484.6i 0.312021 0.540436i
\(723\) 15636.4 0.804319
\(724\) −4659.60 + 8070.66i −0.239189 + 0.414287i
\(725\) −23128.6 40060.0i −1.18479 2.05212i
\(726\) −819.786 1419.91i −0.0419079 0.0725866i
\(727\) 33899.2 1.72937 0.864686 0.502313i \(-0.167518\pi\)
0.864686 + 0.502313i \(0.167518\pi\)
\(728\) 0 0
\(729\) −24329.6 −1.23607
\(730\) −14222.2 24633.6i −0.721078 1.24894i
\(731\) −4452.60 7712.13i −0.225288 0.390210i
\(732\) 3507.37 6074.95i 0.177099 0.306744i
\(733\) 29937.3 1.50854 0.754270 0.656564i \(-0.227991\pi\)
0.754270 + 0.656564i \(0.227991\pi\)
\(734\) −9636.19 + 16690.4i −0.484575 + 0.839309i
\(735\) −16816.7 + 29127.3i −0.843934 + 1.46174i
\(736\) −788.947 −0.0395122
\(737\) 5653.24 9791.70i 0.282551 0.489392i
\(738\) −4318.34 7479.59i −0.215394 0.373073i
\(739\) 8297.60 + 14371.9i 0.413034 + 0.715396i 0.995220 0.0976599i \(-0.0311357\pi\)
−0.582186 + 0.813056i \(0.697802\pi\)
\(740\) 8008.59 0.397840
\(741\) 0 0
\(742\) −1659.93 −0.0821265
\(743\) 2464.54 + 4268.70i 0.121689 + 0.210772i 0.920434 0.390898i \(-0.127836\pi\)
−0.798745 + 0.601670i \(0.794502\pi\)
\(744\) 7792.06 + 13496.2i 0.383966 + 0.665049i
\(745\) 2397.71 4152.95i 0.117913 0.204231i
\(746\) 17615.8 0.864556
\(747\) −32871.0 + 56934.3i −1.61002 + 2.78864i
\(748\) 2134.60 3697.24i 0.104343 0.180728i
\(749\) 4901.07 0.239094
\(750\) 5150.03 8920.11i 0.250737 0.434289i
\(751\) 5343.83 + 9255.78i 0.259653 + 0.449732i 0.966149 0.257985i \(-0.0830586\pi\)
−0.706496 + 0.707717i \(0.749725\pi\)
\(752\) 1329.69 + 2303.09i 0.0644796 + 0.111682i
\(753\) 14592.6 0.706221
\(754\) 0 0
\(755\) 45683.2 2.20210
\(756\) 4738.61 + 8207.51i 0.227965 + 0.394847i
\(757\) −14454.6 25036.1i −0.694004 1.20205i −0.970515 0.241040i \(-0.922512\pi\)
0.276511 0.961011i \(-0.410822\pi\)
\(758\) 8678.95 15032.4i 0.415876 0.720318i
\(759\) −7692.23 −0.367866
\(760\) 1914.94 3316.77i 0.0913976 0.158305i
\(761\) 12699.9 21996.8i 0.604954 1.04781i −0.387105 0.922036i \(-0.626525\pi\)
0.992059 0.125775i \(-0.0401416\pi\)
\(762\) 25668.5 1.22030
\(763\) 7530.47 13043.2i 0.357302 0.618865i
\(764\) 9223.86 + 15976.2i 0.436790 + 0.756542i
\(765\) −13195.4 22855.0i −0.623633 1.08016i
\(766\) −5424.61 −0.255873
\(767\) 0 0
\(768\) −2269.56 −0.106635
\(769\) −11870.1 20559.7i −0.556630 0.964111i −0.997775 0.0666752i \(-0.978761\pi\)
0.441145 0.897436i \(-0.354572\pi\)
\(770\) 6449.11 + 11170.2i 0.301831 + 0.522786i
\(771\) −28439.2 + 49258.1i −1.32842 + 2.30089i
\(772\) 3811.20 0.177679
\(773\) −18.6421 + 32.2891i −0.000867413 + 0.00150240i −0.866459 0.499249i \(-0.833609\pi\)
0.865591 + 0.500751i \(0.166943\pi\)
\(774\) −15150.6 + 26241.6i −0.703587 + 1.21865i
\(775\) 35034.7 1.62385
\(776\) 2760.96 4782.13i 0.127723 0.221222i
\(777\) 5717.64 + 9903.25i 0.263989 + 0.457242i
\(778\) 290.941 + 503.925i 0.0134071 + 0.0232218i
\(779\) −2375.72 −0.109267
\(780\) 0 0
\(781\) 12984.2 0.594893
\(782\) 747.707 + 1295.07i 0.0341918 + 0.0592219i
\(783\) 31631.1 + 54786.7i 1.44368 + 2.50053i
\(784\) 1799.53 3116.88i 0.0819759 0.141986i
\(785\) −14905.3 −0.677697
\(786\) 5601.88 9702.74i 0.254214 0.440312i
\(787\) 3486.17 6038.22i 0.157902 0.273493i −0.776210 0.630474i \(-0.782860\pi\)
0.934112 + 0.356981i \(0.116194\pi\)
\(788\) 8202.16 0.370799
\(789\) −16225.9 + 28104.1i −0.732140 + 1.26810i
\(790\) −3103.99 5376.26i −0.139791 0.242125i
\(791\) −8305.44 14385.4i −0.373334 0.646634i
\(792\) −14526.6 −0.651741
\(793\) 0 0
\(794\) 28228.0 1.26168
\(795\) −5710.58 9891.02i −0.254759 0.441256i
\(796\) 5170.62 + 8955.77i 0.230236 + 0.398780i
\(797\) −6844.86 + 11855.6i −0.304212 + 0.526911i −0.977086 0.212846i \(-0.931727\pi\)
0.672873 + 0.739758i \(0.265060\pi\)
\(798\) 5468.60 0.242589
\(799\) 2520.36 4365.40i 0.111595 0.193287i
\(800\) −2551.10 + 4418.63i −0.112744 + 0.195278i
\(801\) −70554.6 −3.11227
\(802\) 11342.0 19644.9i 0.499377 0.864946i
\(803\) 14838.6 + 25701.1i 0.652106 + 1.12948i
\(804\) 5696.47 + 9866.57i 0.249874 + 0.432795i
\(805\) −4517.98 −0.197811
\(806\) 0 0
\(807\) 50048.2 2.18312
\(808\) −5580.83 9666.29i −0.242986 0.420865i
\(809\) 3549.44 + 6147.81i 0.154254 + 0.267176i 0.932787 0.360427i \(-0.117369\pi\)
−0.778533 + 0.627604i \(0.784036\pi\)
\(810\) −9108.77 + 15776.8i −0.395123 + 0.684373i
\(811\) −24631.2 −1.06649 −0.533243 0.845962i \(-0.679027\pi\)
−0.533243 + 0.845962i \(0.679027\pi\)
\(812\) −6304.50 + 10919.7i −0.272469 + 0.471929i
\(813\) 29574.6 51224.7i 1.27580 2.20975i
\(814\) −8355.66 −0.359786
\(815\) 28171.9 48795.1i 1.21082 2.09720i
\(816\) 2150.92 + 3725.51i 0.0922762 + 0.159827i
\(817\) 4167.51 + 7218.34i 0.178461 + 0.309104i
\(818\) 9373.87 0.400672
\(819\) 0 0
\(820\) 5646.20 0.240456
\(821\) 1145.05 + 1983.28i 0.0486753 + 0.0843081i 0.889337 0.457253i \(-0.151167\pi\)
−0.840661 + 0.541561i \(0.817833\pi\)
\(822\) −4853.11 8405.83i −0.205927 0.356675i
\(823\) −18242.5 + 31596.9i −0.772651 + 1.33827i 0.163454 + 0.986551i \(0.447736\pi\)
−0.936105 + 0.351720i \(0.885597\pi\)
\(824\) −11330.2 −0.479013
\(825\) −24873.2 + 43081.7i −1.04967 + 1.81807i
\(826\) −2006.75 + 3475.79i −0.0845324 + 0.146414i
\(827\) −3929.01 −0.165206 −0.0826028 0.996583i \(-0.526323\pi\)
−0.0826028 + 0.996583i \(0.526323\pi\)
\(828\) 2544.18 4406.64i 0.106783 0.184953i
\(829\) −8700.85 15070.3i −0.364527 0.631380i 0.624173 0.781286i \(-0.285436\pi\)
−0.988700 + 0.149906i \(0.952103\pi\)
\(830\) −21489.3 37220.6i −0.898680 1.55656i
\(831\) 25757.6 1.07524
\(832\) 0 0
\(833\) −6821.88 −0.283750
\(834\) −6002.54 10396.7i −0.249222 0.431665i
\(835\) −15318.2 26531.9i −0.634860 1.09961i
\(836\) −1997.93 + 3460.52i −0.0826553 + 0.143163i
\(837\) −47914.1 −1.97868
\(838\) −11889.7 + 20593.5i −0.490122 + 0.848915i
\(839\) −19983.0 + 34611.5i −0.822276 + 1.42422i 0.0817082 + 0.996656i \(0.473962\pi\)
−0.903984 + 0.427567i \(0.859371\pi\)
\(840\) −12996.8 −0.533849
\(841\) −29889.3 + 51769.7i −1.22552 + 2.12267i
\(842\) 4755.64 + 8237.01i 0.194644 + 0.337133i
\(843\) −35505.1 61496.7i −1.45061 2.51252i
\(844\) −7024.91 −0.286501
\(845\) 0 0
\(846\) −17151.8 −0.697033
\(847\) 502.363 + 870.118i 0.0203794 + 0.0352982i
\(848\) 611.084 + 1058.43i 0.0247461 + 0.0428615i
\(849\) 16435.3 28466.7i 0.664378 1.15074i
\(850\) 9671.00 0.390250
\(851\) 1463.41 2534.70i 0.0589483 0.102101i
\(852\) −6541.75 + 11330.6i −0.263048 + 0.455612i
\(853\) −7753.33 −0.311218 −0.155609 0.987819i \(-0.549734\pi\)
−0.155609 + 0.987819i \(0.549734\pi\)
\(854\) −2149.31 + 3722.71i −0.0861216 + 0.149167i
\(855\) 12350.5 + 21391.7i 0.494009 + 0.855649i
\(856\) −1804.27 3125.09i −0.0720430 0.124782i
\(857\) −34346.7 −1.36903 −0.684515 0.728998i \(-0.739986\pi\)
−0.684515 + 0.728998i \(0.739986\pi\)
\(858\) 0 0
\(859\) −23048.5 −0.915489 −0.457744 0.889084i \(-0.651342\pi\)
−0.457744 + 0.889084i \(0.651342\pi\)
\(860\) −9904.63 17155.3i −0.392727 0.680223i
\(861\) 4031.04 + 6981.97i 0.159556 + 0.276359i
\(862\) 4378.13 7583.14i 0.172993 0.299632i
\(863\) 8452.37 0.333398 0.166699 0.986008i \(-0.446689\pi\)
0.166699 + 0.986008i \(0.446689\pi\)
\(864\) 3488.93 6043.01i 0.137379 0.237948i
\(865\) 8299.84 14375.7i 0.326246 0.565075i
\(866\) 31152.7 1.22241
\(867\) −17701.0 + 30659.1i −0.693377 + 1.20096i
\(868\) −4774.96 8270.46i −0.186720 0.323408i
\(869\) 3238.51 + 5609.26i 0.126420 + 0.218966i
\(870\) −86756.5 −3.38083
\(871\) 0 0
\(872\) −11089.0 −0.430645
\(873\) 17807.0 + 30842.6i 0.690349 + 1.19572i
\(874\) −699.834 1212.15i −0.0270849 0.0469125i
\(875\) −3155.92 + 5466.22i −0.121931 + 0.211191i
\(876\) −29904.0 −1.15338
\(877\) −1685.53 + 2919.43i −0.0648990 + 0.112408i −0.896649 0.442742i \(-0.854006\pi\)
0.831750 + 0.555150i \(0.187339\pi\)
\(878\) 13474.8 23339.0i 0.517939 0.897097i
\(879\) −14840.8 −0.569473
\(880\) 4748.34 8224.36i 0.181894 0.315049i
\(881\) −4965.18 8599.95i −0.189877 0.328876i 0.755332 0.655342i \(-0.227475\pi\)
−0.945209 + 0.326466i \(0.894142\pi\)
\(882\) 11606.2 + 20102.5i 0.443084 + 0.767445i
\(883\) 38422.6 1.46435 0.732176 0.681116i \(-0.238505\pi\)
0.732176 + 0.681116i \(0.238505\pi\)
\(884\) 0 0
\(885\) −27615.0 −1.04889
\(886\) 24.4564 + 42.3598i 0.000927348 + 0.00160621i
\(887\) 13039.1 + 22584.3i 0.493584 + 0.854913i 0.999973 0.00739257i \(-0.00235315\pi\)
−0.506388 + 0.862305i \(0.669020\pi\)
\(888\) 4209.77 7291.54i 0.159089 0.275550i
\(889\) −15729.6 −0.593422
\(890\) 23062.4 39945.2i 0.868599 1.50446i
\(891\) 9503.53 16460.6i 0.357329 0.618912i
\(892\) 8152.49 0.306015
\(893\) −2358.99 + 4085.89i −0.0883993 + 0.153112i
\(894\) −2520.75 4366.06i −0.0943025 0.163337i
\(895\) 31853.1 + 55171.2i 1.18964 + 2.06052i
\(896\) 1390.78 0.0518556
\(897\) 0 0
\(898\) −27273.4 −1.01350
\(899\) −31873.8 55207.0i −1.18248 2.04812i
\(900\) −16453.4 28498.2i −0.609387 1.05549i
\(901\) 1158.28 2006.21i 0.0428280 0.0741802i
\(902\) −5890.90 −0.217456
\(903\) 14142.6 24495.7i 0.521192 0.902731i
\(904\) −6115.12 + 10591.7i −0.224984 + 0.389684i
\(905\) 39293.1 1.44326
\(906\) 24013.7 41593.0i 0.880577 1.52520i
\(907\) −4494.45 7784.62i −0.164538 0.284988i 0.771953 0.635679i \(-0.219280\pi\)
−0.936491 + 0.350691i \(0.885947\pi\)
\(908\) 9383.70 + 16253.0i 0.342962 + 0.594027i
\(909\) 71987.7 2.62671
\(910\) 0 0
\(911\) 28318.0 1.02988 0.514938 0.857227i \(-0.327815\pi\)
0.514938 + 0.857227i \(0.327815\pi\)
\(912\) −2013.21 3486.97i −0.0730964 0.126607i
\(913\) 22420.6 + 38833.6i 0.812721 + 1.40767i
\(914\) −13380.5 + 23175.7i −0.484232 + 0.838715i
\(915\) −29576.7 −1.06861
\(916\) −1152.31 + 1995.86i −0.0415648 + 0.0719923i
\(917\) −3432.82 + 5945.82i −0.123622 + 0.214120i
\(918\) −13226.2 −0.475524
\(919\) 6431.78 11140.2i 0.230865 0.399869i −0.727198 0.686428i \(-0.759178\pi\)
0.958063 + 0.286558i \(0.0925112\pi\)
\(920\) 1663.24 + 2880.82i 0.0596039 + 0.103237i
\(921\) −1329.53 2302.82i −0.0475674 0.0823892i
\(922\) −13565.1 −0.484537
\(923\) 0 0
\(924\) 13560.1 0.482786
\(925\) −9464.01 16392.1i −0.336405 0.582671i
\(926\) 10966.2 + 18993.9i 0.389169 + 0.674060i
\(927\) 36537.4 63284.6i 1.29455 2.24222i
\(928\) 9283.73 0.328398
\(929\) 949.747 1645.01i 0.0335416 0.0580958i −0.848767 0.528767i \(-0.822655\pi\)
0.882309 + 0.470671i \(0.155988\pi\)
\(930\) 32854.2 56905.1i 1.15842 2.00644i
\(931\) 6385.09 0.224772
\(932\) −1448.64 + 2509.12i −0.0509139 + 0.0881854i
\(933\) −3945.75 6834.24i −0.138455 0.239810i
\(934\) 609.640 + 1055.93i 0.0213576 + 0.0369925i
\(935\) −18000.5 −0.629605
\(936\) 0 0
\(937\) −35209.9 −1.22760 −0.613798 0.789463i \(-0.710359\pi\)
−0.613798 + 0.789463i \(0.710359\pi\)
\(938\) −3490.78 6046.21i −0.121512 0.210464i
\(939\) −5116.25 8861.60i −0.177809 0.307974i
\(940\) 5606.45 9710.65i 0.194534 0.336943i
\(941\) 56666.1 1.96308 0.981542 0.191247i \(-0.0612531\pi\)
0.981542 + 0.191247i \(0.0612531\pi\)
\(942\) −7835.07 + 13570.7i −0.270998 + 0.469383i
\(943\) 1031.73 1787.01i 0.0356286 0.0617105i
\(944\) 2955.05 0.101884
\(945\) 19979.7 34605.8i 0.687767 1.19125i
\(946\) 10333.9 + 17898.8i 0.355162 + 0.615159i
\(947\) 13668.2 + 23673.9i 0.469013 + 0.812354i 0.999373 0.0354184i \(-0.0112764\pi\)
−0.530360 + 0.847773i \(0.677943\pi\)
\(948\) −6526.54 −0.223599
\(949\) 0 0
\(950\) −9051.79 −0.309136
\(951\) 12007.6 + 20797.8i 0.409436 + 0.709165i
\(952\) −1318.08 2282.98i −0.0448731 0.0777226i
\(953\) 7217.54 12501.1i 0.245329 0.424923i −0.716895 0.697181i \(-0.754437\pi\)
0.962224 + 0.272258i \(0.0877706\pi\)
\(954\) −7882.43 −0.267509
\(955\) 38891.1 67361.4i 1.31779 2.28248i
\(956\) −6275.61 + 10869.7i −0.212309 + 0.367731i
\(957\) 90516.3 3.05745
\(958\) −8405.28 + 14558.4i −0.283468 + 0.490981i
\(959\) 2973.97 + 5151.07i 0.100140 + 0.173448i
\(960\) 4784.64 + 8287.24i 0.160858 + 0.278614i
\(961\) 18490.7 0.620680
\(962\) 0 0
\(963\) 23273.5 0.778793
\(964\) 3527.48 + 6109.77i 0.117855 + 0.204131i
\(965\) −8034.70 13916.5i −0.268027 0.464237i
\(966\) −2374.91 + 4113.47i −0.0791009 + 0.137007i
\(967\) 21556.9 0.716879 0.358440 0.933553i \(-0.383309\pi\)
0.358440 + 0.933553i \(0.383309\pi\)
\(968\) 369.879 640.649i 0.0122814 0.0212719i
\(969\) −3815.94 + 6609.41i −0.126507 + 0.219117i
\(970\) −23282.5 −0.770675
\(971\) 1576.77 2731.05i 0.0521123 0.0902611i −0.838793 0.544451i \(-0.816738\pi\)
0.890905 + 0.454190i \(0.150071\pi\)
\(972\) −2198.96 3808.70i −0.0725633 0.125683i
\(973\) 3678.34 + 6371.07i 0.121194 + 0.209915i
\(974\) 32320.9 1.06327
\(975\) 0 0
\(976\) 3164.98 0.103800
\(977\) 2464.81 + 4269.17i 0.0807125 + 0.139798i 0.903556 0.428470i \(-0.140947\pi\)
−0.822844 + 0.568268i \(0.807614\pi\)
\(978\) −29617.5 51299.1i −0.968369 1.67726i
\(979\) −24061.9 + 41676.4i −0.785517 + 1.36056i
\(980\) −15175.0 −0.494640
\(981\) 35759.7 61937.5i 1.16383 2.01581i
\(982\) −6426.96 + 11131.8i −0.208852 + 0.361742i
\(983\) −15526.2 −0.503774 −0.251887 0.967757i \(-0.581051\pi\)
−0.251887 + 0.967757i \(0.581051\pi\)
\(984\) 2967.97 5140.67i 0.0961538 0.166543i
\(985\) −17291.6 29950.0i −0.559348 0.968819i
\(986\) −8798.45 15239.4i −0.284178 0.492211i
\(987\) 16010.6 0.516337
\(988\) 0 0
\(989\) −7239.49 −0.232763
\(990\) 30624.6 + 53043.4i 0.983146 + 1.70286i
\(991\) −14938.4 25874.1i −0.478844 0.829381i 0.520862 0.853641i \(-0.325611\pi\)
−0.999706 + 0.0242594i \(0.992277\pi\)
\(992\) −3515.69 + 6089.36i −0.112524 + 0.194897i
\(993\) −72582.6 −2.31958
\(994\) 4008.76 6943.38i 0.127918 0.221560i
\(995\) 21801.2 37760.8i 0.694618 1.20311i
\(996\) −45184.1 −1.43746
\(997\) −1300.23 + 2252.07i −0.0413026 + 0.0715382i −0.885938 0.463804i \(-0.846484\pi\)
0.844635 + 0.535342i \(0.179817\pi\)
\(998\) 15240.3 + 26397.0i 0.483391 + 0.837258i
\(999\) 12943.2 + 22418.2i 0.409913 + 0.709990i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.c.h.315.2 4
13.2 odd 12 26.4.b.a.25.1 4
13.3 even 3 338.4.a.i.1.1 2
13.4 even 6 338.4.c.i.191.2 4
13.5 odd 4 338.4.e.g.23.2 8
13.6 odd 12 338.4.e.g.147.4 8
13.7 odd 12 338.4.e.g.147.2 8
13.8 odd 4 338.4.e.g.23.4 8
13.9 even 3 inner 338.4.c.h.191.2 4
13.10 even 6 338.4.a.f.1.1 2
13.11 odd 12 26.4.b.a.25.3 yes 4
13.12 even 2 338.4.c.i.315.2 4
39.2 even 12 234.4.b.b.181.4 4
39.11 even 12 234.4.b.b.181.1 4
52.11 even 12 208.4.f.d.129.4 4
52.15 even 12 208.4.f.d.129.3 4
65.2 even 12 650.4.c.f.649.4 4
65.24 odd 12 650.4.d.d.51.2 4
65.28 even 12 650.4.c.e.649.1 4
65.37 even 12 650.4.c.e.649.4 4
65.54 odd 12 650.4.d.d.51.4 4
65.63 even 12 650.4.c.f.649.1 4
104.11 even 12 832.4.f.h.129.1 4
104.37 odd 12 832.4.f.j.129.3 4
104.67 even 12 832.4.f.h.129.2 4
104.93 odd 12 832.4.f.j.129.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.b.a.25.1 4 13.2 odd 12
26.4.b.a.25.3 yes 4 13.11 odd 12
208.4.f.d.129.3 4 52.15 even 12
208.4.f.d.129.4 4 52.11 even 12
234.4.b.b.181.1 4 39.11 even 12
234.4.b.b.181.4 4 39.2 even 12
338.4.a.f.1.1 2 13.10 even 6
338.4.a.i.1.1 2 13.3 even 3
338.4.c.h.191.2 4 13.9 even 3 inner
338.4.c.h.315.2 4 1.1 even 1 trivial
338.4.c.i.191.2 4 13.4 even 6
338.4.c.i.315.2 4 13.12 even 2
338.4.e.g.23.2 8 13.5 odd 4
338.4.e.g.23.4 8 13.8 odd 4
338.4.e.g.147.2 8 13.7 odd 12
338.4.e.g.147.4 8 13.6 odd 12
650.4.c.e.649.1 4 65.28 even 12
650.4.c.e.649.4 4 65.37 even 12
650.4.c.f.649.1 4 65.63 even 12
650.4.c.f.649.4 4 65.2 even 12
650.4.d.d.51.2 4 65.24 odd 12
650.4.d.d.51.4 4 65.54 odd 12
832.4.f.h.129.1 4 104.11 even 12
832.4.f.h.129.2 4 104.67 even 12
832.4.f.j.129.3 4 104.37 odd 12
832.4.f.j.129.4 4 104.93 odd 12