Properties

Label 26.4.b.a.25.1
Level $26$
Weight $4$
Character 26.25
Analytic conductor $1.534$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [26,4,Mod(25,26)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(26, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("26.25"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 26.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.53404966015\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 109x^{2} + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 25.1
Root \(-7.86546i\) of defining polynomial
Character \(\chi\) \(=\) 26.25
Dual form 26.4.b.a.25.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -8.86546 q^{3} -4.00000 q^{4} -16.8655i q^{5} +17.7309i q^{6} +10.8655i q^{7} +8.00000i q^{8} +51.5964 q^{9} -33.7309 q^{10} -35.1928i q^{11} +35.4618 q^{12} +(-20.1345 - 42.3273i) q^{13} +21.7309 q^{14} +149.520i q^{15} +16.0000 q^{16} -30.3273 q^{17} -103.193i q^{18} +28.3855i q^{19} +67.4618i q^{20} -96.3273i q^{21} -70.3855 q^{22} +24.6546 q^{23} -70.9237i q^{24} -159.444 q^{25} +(-84.6546 + 40.2691i) q^{26} -218.058 q^{27} -43.4618i q^{28} +290.116 q^{29} +299.040 q^{30} -219.731i q^{31} -32.0000i q^{32} +312.000i q^{33} +60.6546i q^{34} +183.251 q^{35} -206.386 q^{36} +118.713i q^{37} +56.7710 q^{38} +(178.502 + 375.251i) q^{39} +134.924 q^{40} -83.6947i q^{41} -192.655 q^{42} -293.636 q^{43} +140.771i q^{44} -870.197i q^{45} -49.3092i q^{46} -166.211i q^{47} -141.847 q^{48} +224.942 q^{49} +318.887i q^{50} +268.865 q^{51} +(80.5382 + 169.309i) q^{52} -76.3855 q^{53} +436.116i q^{54} -593.542 q^{55} -86.9237 q^{56} -251.651i q^{57} -580.233i q^{58} +184.691i q^{59} -598.080i q^{60} +197.811 q^{61} -439.462 q^{62} +560.618i q^{63} -64.0000 q^{64} +(-713.869 + 339.578i) q^{65} +624.000 q^{66} -321.273i q^{67} +121.309 q^{68} -218.574 q^{69} -366.502i q^{70} +368.946i q^{71} +412.771i q^{72} +843.273i q^{73} +237.426 q^{74} +1413.54 q^{75} -113.542i q^{76} +382.386 q^{77} +(750.502 - 357.004i) q^{78} +184.044 q^{79} -269.847i q^{80} +540.084 q^{81} -167.389 q^{82} -1274.16i q^{83} +385.309i q^{84} +511.484i q^{85} +587.273i q^{86} -2572.02 q^{87} +281.542 q^{88} -1367.43i q^{89} -1740.39 q^{90} +(459.906 - 218.771i) q^{91} -98.6184 q^{92} +1948.02i q^{93} -332.422 q^{94} +478.735 q^{95} +283.695i q^{96} +690.241i q^{97} -449.884i q^{98} -1815.82i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} - 16 q^{4} + 118 q^{9} - 76 q^{10} + 24 q^{12} - 110 q^{13} + 28 q^{14} + 64 q^{16} + 26 q^{17} + 72 q^{22} - 196 q^{23} - 78 q^{25} - 44 q^{26} - 666 q^{27} + 748 q^{29} + 548 q^{30} + 350 q^{35}+ \cdots + 324 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).

\(n\) \(15\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) −8.86546 −1.70616 −0.853079 0.521781i \(-0.825268\pi\)
−0.853079 + 0.521781i \(0.825268\pi\)
\(4\) −4.00000 −0.500000
\(5\) 16.8655i 1.50849i −0.656592 0.754246i \(-0.728002\pi\)
0.656592 0.754246i \(-0.271998\pi\)
\(6\) 17.7309i 1.20644i
\(7\) 10.8655i 0.586680i 0.956008 + 0.293340i \(0.0947667\pi\)
−0.956008 + 0.293340i \(0.905233\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 51.5964 1.91098
\(10\) −33.7309 −1.06667
\(11\) 35.1928i 0.964638i −0.875996 0.482319i \(-0.839795\pi\)
0.875996 0.482319i \(-0.160205\pi\)
\(12\) 35.4618 0.853079
\(13\) −20.1345 42.3273i −0.429563 0.903037i
\(14\) 21.7309 0.414845
\(15\) 149.520i 2.57373i
\(16\) 16.0000 0.250000
\(17\) −30.3273 −0.432674 −0.216337 0.976319i \(-0.569411\pi\)
−0.216337 + 0.976319i \(0.569411\pi\)
\(18\) 103.193i 1.35126i
\(19\) 28.3855i 0.342741i 0.985207 + 0.171371i \(0.0548196\pi\)
−0.985207 + 0.171371i \(0.945180\pi\)
\(20\) 67.4618i 0.754246i
\(21\) 96.3273i 1.00097i
\(22\) −70.3855 −0.682102
\(23\) 24.6546 0.223515 0.111757 0.993736i \(-0.464352\pi\)
0.111757 + 0.993736i \(0.464352\pi\)
\(24\) 70.9237i 0.603218i
\(25\) −159.444 −1.27555
\(26\) −84.6546 + 40.2691i −0.638544 + 0.303747i
\(27\) −218.058 −1.55427
\(28\) 43.4618i 0.293340i
\(29\) 290.116 1.85770 0.928849 0.370457i \(-0.120799\pi\)
0.928849 + 0.370457i \(0.120799\pi\)
\(30\) 299.040 1.81990
\(31\) 219.731i 1.27306i −0.771252 0.636530i \(-0.780369\pi\)
0.771252 0.636530i \(-0.219631\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 312.000i 1.64583i
\(34\) 60.6546i 0.305946i
\(35\) 183.251 0.885002
\(36\) −206.386 −0.955489
\(37\) 118.713i 0.527467i 0.964596 + 0.263733i \(0.0849539\pi\)
−0.964596 + 0.263733i \(0.915046\pi\)
\(38\) 56.7710 0.242355
\(39\) 178.502 + 375.251i 0.732902 + 1.54072i
\(40\) 134.924 0.533333
\(41\) 83.6947i 0.318803i −0.987214 0.159401i \(-0.949044\pi\)
0.987214 0.159401i \(-0.0509564\pi\)
\(42\) −192.655 −0.707792
\(43\) −293.636 −1.04138 −0.520688 0.853747i \(-0.674324\pi\)
−0.520688 + 0.853747i \(0.674324\pi\)
\(44\) 140.771i 0.482319i
\(45\) 870.197i 2.88269i
\(46\) 49.3092i 0.158049i
\(47\) 166.211i 0.515837i −0.966167 0.257919i \(-0.916963\pi\)
0.966167 0.257919i \(-0.0830366\pi\)
\(48\) −141.847 −0.426540
\(49\) 224.942 0.655807
\(50\) 318.887i 0.901950i
\(51\) 268.865 0.738210
\(52\) 80.5382 + 169.309i 0.214781 + 0.451518i
\(53\) −76.3855 −0.197969 −0.0989845 0.995089i \(-0.531559\pi\)
−0.0989845 + 0.995089i \(0.531559\pi\)
\(54\) 436.116i 1.09904i
\(55\) −593.542 −1.45515
\(56\) −86.9237 −0.207423
\(57\) 251.651i 0.584771i
\(58\) 580.233i 1.31359i
\(59\) 184.691i 0.407537i 0.979019 + 0.203769i \(0.0653190\pi\)
−0.979019 + 0.203769i \(0.934681\pi\)
\(60\) 598.080i 1.28686i
\(61\) 197.811 0.415199 0.207599 0.978214i \(-0.433435\pi\)
0.207599 + 0.978214i \(0.433435\pi\)
\(62\) −439.462 −0.900189
\(63\) 560.618i 1.12113i
\(64\) −64.0000 −0.125000
\(65\) −713.869 + 339.578i −1.36222 + 0.647992i
\(66\) 624.000 1.16377
\(67\) 321.273i 0.585817i −0.956140 0.292909i \(-0.905377\pi\)
0.956140 0.292909i \(-0.0946231\pi\)
\(68\) 121.309 0.216337
\(69\) −218.574 −0.381352
\(70\) 366.502i 0.625791i
\(71\) 368.946i 0.616701i 0.951273 + 0.308351i \(0.0997770\pi\)
−0.951273 + 0.308351i \(0.900223\pi\)
\(72\) 412.771i 0.675632i
\(73\) 843.273i 1.35202i 0.736891 + 0.676011i \(0.236293\pi\)
−0.736891 + 0.676011i \(0.763707\pi\)
\(74\) 237.426 0.372975
\(75\) 1413.54 2.17629
\(76\) 113.542i 0.171371i
\(77\) 382.386 0.565933
\(78\) 750.502 357.004i 1.08946 0.518240i
\(79\) 184.044 0.262109 0.131054 0.991375i \(-0.458164\pi\)
0.131054 + 0.991375i \(0.458164\pi\)
\(80\) 269.847i 0.377123i
\(81\) 540.084 0.740856
\(82\) −167.389 −0.225428
\(83\) 1274.16i 1.68503i −0.538675 0.842514i \(-0.681075\pi\)
0.538675 0.842514i \(-0.318925\pi\)
\(84\) 385.309i 0.500484i
\(85\) 511.484i 0.652685i
\(86\) 587.273i 0.736364i
\(87\) −2572.02 −3.16953
\(88\) 281.542 0.341051
\(89\) 1367.43i 1.62863i −0.580426 0.814313i \(-0.697114\pi\)
0.580426 0.814313i \(-0.302886\pi\)
\(90\) −1740.39 −2.03837
\(91\) 459.906 218.771i 0.529793 0.252016i
\(92\) −98.6184 −0.111757
\(93\) 1948.02i 2.17204i
\(94\) −332.422 −0.364752
\(95\) 478.735 0.517023
\(96\) 283.695i 0.301609i
\(97\) 690.241i 0.722509i 0.932467 + 0.361254i \(0.117651\pi\)
−0.932467 + 0.361254i \(0.882349\pi\)
\(98\) 449.884i 0.463726i
\(99\) 1815.82i 1.84340i
\(100\) 637.775 0.637775
\(101\) −1395.21 −1.37454 −0.687269 0.726403i \(-0.741191\pi\)
−0.687269 + 0.726403i \(0.741191\pi\)
\(102\) 537.731i 0.521993i
\(103\) 1416.28 1.35485 0.677427 0.735590i \(-0.263095\pi\)
0.677427 + 0.735590i \(0.263095\pi\)
\(104\) 338.618 161.076i 0.319272 0.151873i
\(105\) −1624.60 −1.50995
\(106\) 152.771i 0.139985i
\(107\) 451.068 0.407537 0.203768 0.979019i \(-0.434681\pi\)
0.203768 + 0.979019i \(0.434681\pi\)
\(108\) 872.233 0.777136
\(109\) 1386.13i 1.21805i 0.793152 + 0.609024i \(0.208439\pi\)
−0.793152 + 0.609024i \(0.791561\pi\)
\(110\) 1187.08i 1.02895i
\(111\) 1052.44i 0.899942i
\(112\) 173.847i 0.146670i
\(113\) 1528.78 1.27270 0.636351 0.771399i \(-0.280443\pi\)
0.636351 + 0.771399i \(0.280443\pi\)
\(114\) −503.301 −0.413496
\(115\) 415.811i 0.337170i
\(116\) −1160.47 −0.928849
\(117\) −1038.87 2183.94i −0.820885 1.72568i
\(118\) 369.382 0.288172
\(119\) 329.520i 0.253841i
\(120\) −1196.16 −0.909950
\(121\) 92.4697 0.0694738
\(122\) 395.622i 0.293590i
\(123\) 741.992i 0.543928i
\(124\) 878.924i 0.636530i
\(125\) 580.909i 0.415665i
\(126\) 1121.24 0.792760
\(127\) 1447.67 1.01149 0.505747 0.862682i \(-0.331217\pi\)
0.505747 + 0.862682i \(0.331217\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 2603.22 1.77675
\(130\) 679.157 + 1427.74i 0.458200 + 0.963238i
\(131\) 631.877 0.421430 0.210715 0.977548i \(-0.432421\pi\)
0.210715 + 0.977548i \(0.432421\pi\)
\(132\) 1248.00i 0.822913i
\(133\) −308.422 −0.201079
\(134\) −642.546 −0.414235
\(135\) 3677.65i 2.34461i
\(136\) 242.618i 0.152973i
\(137\) 547.418i 0.341380i −0.985325 0.170690i \(-0.945400\pi\)
0.985325 0.170690i \(-0.0545997\pi\)
\(138\) 437.149i 0.269656i
\(139\) −677.070 −0.413153 −0.206577 0.978430i \(-0.566232\pi\)
−0.206577 + 0.978430i \(0.566232\pi\)
\(140\) −733.004 −0.442501
\(141\) 1473.54i 0.880100i
\(142\) 737.891 0.436074
\(143\) −1489.61 + 708.590i −0.871104 + 0.414373i
\(144\) 825.542 0.477744
\(145\) 4892.95i 2.80233i
\(146\) 1686.55 0.956024
\(147\) −1994.21 −1.11891
\(148\) 474.851i 0.263733i
\(149\) 284.334i 0.156332i 0.996940 + 0.0781662i \(0.0249065\pi\)
−0.996940 + 0.0781662i \(0.975094\pi\)
\(150\) 2827.08i 1.53887i
\(151\) 2708.68i 1.45980i 0.683555 + 0.729899i \(0.260433\pi\)
−0.683555 + 0.729899i \(0.739567\pi\)
\(152\) −227.084 −0.121177
\(153\) −1564.78 −0.826829
\(154\) 764.771i 0.400175i
\(155\) −3705.86 −1.92040
\(156\) −714.008 1501.00i −0.366451 0.770362i
\(157\) −883.775 −0.449254 −0.224627 0.974445i \(-0.572116\pi\)
−0.224627 + 0.974445i \(0.572116\pi\)
\(158\) 368.088i 0.185339i
\(159\) 677.193 0.337767
\(160\) −539.695 −0.266666
\(161\) 267.884i 0.131132i
\(162\) 1080.17i 0.523864i
\(163\) 3340.78i 1.60534i −0.596425 0.802669i \(-0.703413\pi\)
0.596425 0.802669i \(-0.296587\pi\)
\(164\) 334.779i 0.159401i
\(165\) 5262.02 2.48271
\(166\) −2548.32 −1.19149
\(167\) 1816.52i 0.841715i 0.907127 + 0.420857i \(0.138271\pi\)
−0.907127 + 0.420857i \(0.861729\pi\)
\(168\) 770.618 0.353896
\(169\) −1386.20 + 1704.48i −0.630952 + 0.775822i
\(170\) 1022.97 0.461518
\(171\) 1464.59i 0.654971i
\(172\) 1174.55 0.520688
\(173\) 984.241 0.432546 0.216273 0.976333i \(-0.430610\pi\)
0.216273 + 0.976333i \(0.430610\pi\)
\(174\) 5144.03i 2.24120i
\(175\) 1732.43i 0.748339i
\(176\) 563.084i 0.241159i
\(177\) 1637.37i 0.695323i
\(178\) −2734.87 −1.15161
\(179\) 3777.32 1.57726 0.788631 0.614866i \(-0.210790\pi\)
0.788631 + 0.614866i \(0.210790\pi\)
\(180\) 3480.79i 1.44135i
\(181\) −2329.80 −0.956754 −0.478377 0.878154i \(-0.658775\pi\)
−0.478377 + 0.878154i \(0.658775\pi\)
\(182\) −437.542 919.811i −0.178202 0.374621i
\(183\) −1753.69 −0.708395
\(184\) 197.237i 0.0790244i
\(185\) 2002.15 0.795680
\(186\) 3896.03 1.53586
\(187\) 1067.30i 0.417373i
\(188\) 664.843i 0.257919i
\(189\) 2369.30i 0.911859i
\(190\) 957.470i 0.365590i
\(191\) −4611.93 −1.74716 −0.873579 0.486681i \(-0.838207\pi\)
−0.873579 + 0.486681i \(0.838207\pi\)
\(192\) 567.389 0.213270
\(193\) 952.799i 0.355358i 0.984089 + 0.177679i \(0.0568588\pi\)
−0.984089 + 0.177679i \(0.943141\pi\)
\(194\) 1380.48 0.510891
\(195\) 6328.78 3010.52i 2.32417 1.10558i
\(196\) −899.767 −0.327903
\(197\) 2050.54i 0.741598i −0.928713 0.370799i \(-0.879084\pi\)
0.928713 0.370799i \(-0.120916\pi\)
\(198\) −3631.64 −1.30348
\(199\) 2585.31 0.920943 0.460472 0.887674i \(-0.347680\pi\)
0.460472 + 0.887674i \(0.347680\pi\)
\(200\) 1275.55i 0.450975i
\(201\) 2848.23i 0.999497i
\(202\) 2790.42i 0.971946i
\(203\) 3152.25i 1.08987i
\(204\) −1075.46 −0.369105
\(205\) −1411.55 −0.480912
\(206\) 2832.55i 0.958026i
\(207\) 1272.09 0.427132
\(208\) −322.153 677.237i −0.107391 0.225759i
\(209\) 998.965 0.330621
\(210\) 3249.21i 1.06770i
\(211\) −1756.23 −0.573003 −0.286501 0.958080i \(-0.592492\pi\)
−0.286501 + 0.958080i \(0.592492\pi\)
\(212\) 305.542 0.0989845
\(213\) 3270.87i 1.05219i
\(214\) 902.137i 0.288172i
\(215\) 4952.31i 1.57091i
\(216\) 1744.47i 0.549518i
\(217\) 2387.48 0.746878
\(218\) 2772.26 0.861290
\(219\) 7476.00i 2.30676i
\(220\) 2374.17 0.727575
\(221\) 610.626 + 1283.67i 0.185860 + 0.390720i
\(222\) −2104.89 −0.636355
\(223\) 2038.12i 0.612030i −0.952027 0.306015i \(-0.901004\pi\)
0.952027 0.306015i \(-0.0989959\pi\)
\(224\) 347.695 0.103711
\(225\) −8226.72 −2.43755
\(226\) 3057.56i 0.899937i
\(227\) 4691.85i 1.37185i 0.727674 + 0.685923i \(0.240601\pi\)
−0.727674 + 0.685923i \(0.759399\pi\)
\(228\) 1006.60i 0.292386i
\(229\) 576.154i 0.166259i 0.996539 + 0.0831296i \(0.0264915\pi\)
−0.996539 + 0.0831296i \(0.973508\pi\)
\(230\) −831.622 −0.238415
\(231\) −3390.02 −0.965572
\(232\) 2320.93i 0.656796i
\(233\) −724.319 −0.203656 −0.101828 0.994802i \(-0.532469\pi\)
−0.101828 + 0.994802i \(0.532469\pi\)
\(234\) −4367.87 + 2077.74i −1.22024 + 0.580453i
\(235\) −2803.22 −0.778137
\(236\) 738.763i 0.203769i
\(237\) −1631.64 −0.447199
\(238\) −659.040 −0.179493
\(239\) 3137.80i 0.849237i −0.905372 0.424619i \(-0.860408\pi\)
0.905372 0.424619i \(-0.139592\pi\)
\(240\) 2392.32i 0.643432i
\(241\) 1763.74i 0.471421i −0.971823 0.235710i \(-0.924258\pi\)
0.971823 0.235710i \(-0.0757417\pi\)
\(242\) 184.939i 0.0491254i
\(243\) 1099.48 0.290253
\(244\) −791.245 −0.207599
\(245\) 3793.75i 0.989280i
\(246\) 1483.98 0.384615
\(247\) 1201.48 571.529i 0.309508 0.147229i
\(248\) 1757.85 0.450094
\(249\) 11296.0i 2.87492i
\(250\) 1161.82 0.293920
\(251\) 1646.01 0.413925 0.206962 0.978349i \(-0.433642\pi\)
0.206962 + 0.978349i \(0.433642\pi\)
\(252\) 2242.47i 0.560566i
\(253\) 867.663i 0.215611i
\(254\) 2895.33i 0.715234i
\(255\) 4534.54i 1.11358i
\(256\) 256.000 0.0625000
\(257\) 6415.73 1.55721 0.778603 0.627516i \(-0.215928\pi\)
0.778603 + 0.627516i \(0.215928\pi\)
\(258\) 5206.45i 1.25635i
\(259\) −1289.87 −0.309454
\(260\) 2855.48 1358.31i 0.681112 0.323996i
\(261\) 14969.0 3.55002
\(262\) 1263.75i 0.297996i
\(263\) −3660.48 −0.858232 −0.429116 0.903249i \(-0.641175\pi\)
−0.429116 + 0.903249i \(0.641175\pi\)
\(264\) −2496.00 −0.581887
\(265\) 1288.28i 0.298635i
\(266\) 616.843i 0.142185i
\(267\) 12122.9i 2.77869i
\(268\) 1285.09i 0.292909i
\(269\) −5645.30 −1.27955 −0.639777 0.768560i \(-0.720973\pi\)
−0.639777 + 0.768560i \(0.720973\pi\)
\(270\) 7355.30 1.65789
\(271\) 6671.87i 1.49552i 0.663966 + 0.747762i \(0.268872\pi\)
−0.663966 + 0.747762i \(0.731128\pi\)
\(272\) −485.237 −0.108168
\(273\) −4077.27 + 1939.51i −0.903912 + 0.429979i
\(274\) −1094.84 −0.241392
\(275\) 5611.27i 1.23044i
\(276\) 874.297 0.190676
\(277\) 2905.39 0.630210 0.315105 0.949057i \(-0.397960\pi\)
0.315105 + 0.949057i \(0.397960\pi\)
\(278\) 1354.14i 0.292144i
\(279\) 11337.3i 2.43279i
\(280\) 1466.01i 0.312895i
\(281\) 8009.76i 1.70044i −0.526431 0.850218i \(-0.676470\pi\)
0.526431 0.850218i \(-0.323530\pi\)
\(282\) 2947.07 0.622325
\(283\) −3707.71 −0.778800 −0.389400 0.921069i \(-0.627318\pi\)
−0.389400 + 0.921069i \(0.627318\pi\)
\(284\) 1475.78i 0.308351i
\(285\) −4244.20 −0.882123
\(286\) 1417.18 + 2979.23i 0.293006 + 0.615963i
\(287\) 909.382 0.187035
\(288\) 1651.08i 0.337816i
\(289\) −3993.25 −0.812794
\(290\) −9785.89 −1.98154
\(291\) 6119.30i 1.23271i
\(292\) 3373.09i 0.676011i
\(293\) 1674.00i 0.333775i 0.985976 + 0.166887i \(0.0533717\pi\)
−0.985976 + 0.166887i \(0.946628\pi\)
\(294\) 3988.42i 0.791189i
\(295\) 3114.90 0.614767
\(296\) −949.703 −0.186488
\(297\) 7674.07i 1.49931i
\(298\) 568.667 0.110544
\(299\) −496.409 1043.56i −0.0960136 0.201842i
\(300\) −5654.17 −1.08815
\(301\) 3190.50i 0.610954i
\(302\) 5417.37 1.03223
\(303\) 12369.2 2.34518
\(304\) 454.168i 0.0856853i
\(305\) 3336.18i 0.626324i
\(306\) 3129.56i 0.584657i
\(307\) 299.935i 0.0557597i −0.999611 0.0278798i \(-0.991124\pi\)
0.999611 0.0278798i \(-0.00887558\pi\)
\(308\) −1529.54 −0.282967
\(309\) −12555.9 −2.31159
\(310\) 7411.73i 1.35793i
\(311\) 890.140 0.162300 0.0811498 0.996702i \(-0.474141\pi\)
0.0811498 + 0.996702i \(0.474141\pi\)
\(312\) −3002.01 + 1428.02i −0.544728 + 0.259120i
\(313\) −1154.20 −0.208432 −0.104216 0.994555i \(-0.533233\pi\)
−0.104216 + 0.994555i \(0.533233\pi\)
\(314\) 1767.55i 0.317671i
\(315\) 9455.09 1.69122
\(316\) −736.176 −0.131054
\(317\) 2708.86i 0.479951i −0.970779 0.239976i \(-0.922861\pi\)
0.970779 0.239976i \(-0.0771394\pi\)
\(318\) 1354.39i 0.238837i
\(319\) 10210.0i 1.79201i
\(320\) 1079.39i 0.188562i
\(321\) −3998.93 −0.695322
\(322\) 535.767 0.0927240
\(323\) 860.856i 0.148295i
\(324\) −2160.34 −0.370428
\(325\) 3210.33 + 6748.82i 0.547929 + 1.15187i
\(326\) −6681.56 −1.13514
\(327\) 12288.7i 2.07818i
\(328\) 669.558 0.112714
\(329\) 1805.96 0.302631
\(330\) 10524.0i 1.75554i
\(331\) 8187.12i 1.35953i −0.733429 0.679766i \(-0.762081\pi\)
0.733429 0.679766i \(-0.237919\pi\)
\(332\) 5096.64i 0.842514i
\(333\) 6125.15i 1.00798i
\(334\) 3633.04 0.595182
\(335\) −5418.42 −0.883701
\(336\) 1541.24i 0.250242i
\(337\) 8770.94 1.41776 0.708878 0.705331i \(-0.249202\pi\)
0.708878 + 0.705331i \(0.249202\pi\)
\(338\) 3408.96 + 2772.40i 0.548589 + 0.446150i
\(339\) −13553.3 −2.17143
\(340\) 2045.94i 0.326342i
\(341\) −7732.94 −1.22804
\(342\) 2929.18 0.463134
\(343\) 6170.95i 0.971428i
\(344\) 2349.09i 0.368182i
\(345\) 3686.36i 0.575266i
\(346\) 1968.48i 0.305856i
\(347\) −4278.96 −0.661978 −0.330989 0.943635i \(-0.607382\pi\)
−0.330989 + 0.943635i \(0.607382\pi\)
\(348\) 10288.1 1.58476
\(349\) 6181.46i 0.948097i 0.880499 + 0.474049i \(0.157208\pi\)
−0.880499 + 0.474049i \(0.842792\pi\)
\(350\) −3464.86 −0.529156
\(351\) 4390.50 + 9229.82i 0.667657 + 1.40356i
\(352\) −1126.17 −0.170525
\(353\) 5471.61i 0.824998i 0.910958 + 0.412499i \(0.135344\pi\)
−0.910958 + 0.412499i \(0.864656\pi\)
\(354\) −3274.74 −0.491668
\(355\) 6222.44 0.930289
\(356\) 5469.73i 0.814313i
\(357\) 2921.35i 0.433093i
\(358\) 7554.64i 1.11529i
\(359\) 6398.77i 0.940709i 0.882478 + 0.470354i \(0.155874\pi\)
−0.882478 + 0.470354i \(0.844126\pi\)
\(360\) 6961.57 1.01919
\(361\) 6053.26 0.882528
\(362\) 4659.60i 0.676528i
\(363\) −819.786 −0.118533
\(364\) −1839.62 + 875.084i −0.264897 + 0.126008i
\(365\) 14222.2 2.03952
\(366\) 3507.37i 0.500911i
\(367\) 9636.19 1.37059 0.685293 0.728267i \(-0.259674\pi\)
0.685293 + 0.728267i \(0.259674\pi\)
\(368\) 394.474 0.0558787
\(369\) 4318.34i 0.609225i
\(370\) 4004.29i 0.562630i
\(371\) 829.964i 0.116144i
\(372\) 7792.06i 1.08602i
\(373\) 8807.88 1.22267 0.611333 0.791373i \(-0.290634\pi\)
0.611333 + 0.791373i \(0.290634\pi\)
\(374\) 2134.60 0.295127
\(375\) 5150.03i 0.709190i
\(376\) 1329.69 0.182376
\(377\) −5841.36 12279.8i −0.797998 1.67757i
\(378\) −4738.61 −0.644782
\(379\) 8678.95i 1.17627i 0.808761 + 0.588137i \(0.200138\pi\)
−0.808761 + 0.588137i \(0.799862\pi\)
\(380\) −1914.94 −0.258511
\(381\) −12834.2 −1.72577
\(382\) 9223.86i 1.23543i
\(383\) 2712.30i 0.361860i 0.983496 + 0.180930i \(0.0579107\pi\)
−0.983496 + 0.180930i \(0.942089\pi\)
\(384\) 1134.78i 0.150805i
\(385\) 6449.11i 0.853706i
\(386\) 1905.60 0.251276
\(387\) −15150.6 −1.99004
\(388\) 2760.96i 0.361254i
\(389\) 290.941 0.0379211 0.0189605 0.999820i \(-0.493964\pi\)
0.0189605 + 0.999820i \(0.493964\pi\)
\(390\) −6021.04 12657.6i −0.781761 1.64344i
\(391\) −747.707 −0.0967089
\(392\) 1799.53i 0.231863i
\(393\) −5601.88 −0.719027
\(394\) −4101.08 −0.524389
\(395\) 3103.99i 0.395389i
\(396\) 7263.28i 0.921700i
\(397\) 14114.0i 1.78429i 0.451751 + 0.892144i \(0.350799\pi\)
−0.451751 + 0.892144i \(0.649201\pi\)
\(398\) 5170.62i 0.651205i
\(399\) 2734.30 0.343073
\(400\) −2551.10 −0.318887
\(401\) 11342.0i 1.41245i −0.707987 0.706226i \(-0.750396\pi\)
0.707987 0.706226i \(-0.249604\pi\)
\(402\) 5696.47 0.706751
\(403\) −9300.62 + 4424.18i −1.14962 + 0.546859i
\(404\) 5580.83 0.687269
\(405\) 9108.77i 1.11758i
\(406\) 6304.50 0.770657
\(407\) 4177.83 0.508814
\(408\) 2150.92i 0.260997i
\(409\) 4686.94i 0.566636i −0.959026 0.283318i \(-0.908565\pi\)
0.959026 0.283318i \(-0.0914352\pi\)
\(410\) 2823.10i 0.340056i
\(411\) 4853.11i 0.582448i
\(412\) −5665.11 −0.677427
\(413\) −2006.75 −0.239094
\(414\) 2544.18i 0.302028i
\(415\) −21489.3 −2.54185
\(416\) −1354.47 + 644.305i −0.159636 + 0.0759367i
\(417\) 6002.54 0.704905
\(418\) 1997.93i 0.233785i
\(419\) 11889.7 1.38627 0.693137 0.720806i \(-0.256228\pi\)
0.693137 + 0.720806i \(0.256228\pi\)
\(420\) 6498.42 0.754977
\(421\) 4755.64i 0.550536i 0.961367 + 0.275268i \(0.0887666\pi\)
−0.961367 + 0.275268i \(0.911233\pi\)
\(422\) 3512.45i 0.405174i
\(423\) 8575.88i 0.985753i
\(424\) 611.084i 0.0699926i
\(425\) 4835.50 0.551897
\(426\) −6541.75 −0.744011
\(427\) 2149.31i 0.243589i
\(428\) −1804.27 −0.203768
\(429\) 13206.1 6281.98i 1.48624 0.706985i
\(430\) 9904.63 1.11080
\(431\) 4378.13i 0.489297i 0.969612 + 0.244649i \(0.0786726\pi\)
−0.969612 + 0.244649i \(0.921327\pi\)
\(432\) −3488.93 −0.388568
\(433\) −15576.3 −1.72875 −0.864377 0.502844i \(-0.832287\pi\)
−0.864377 + 0.502844i \(0.832287\pi\)
\(434\) 4774.96i 0.528123i
\(435\) 43378.2i 4.78121i
\(436\) 5544.52i 0.609024i
\(437\) 699.834i 0.0766077i
\(438\) −14952.0 −1.63113
\(439\) 13474.8 1.46495 0.732477 0.680792i \(-0.238364\pi\)
0.732477 + 0.680792i \(0.238364\pi\)
\(440\) 4748.34i 0.514473i
\(441\) 11606.2 1.25323
\(442\) 2567.35 1221.25i 0.276281 0.131423i
\(443\) −24.4564 −0.00262294 −0.00131147 0.999999i \(-0.500417\pi\)
−0.00131147 + 0.999999i \(0.500417\pi\)
\(444\) 4209.77i 0.449971i
\(445\) −23062.4 −2.45677
\(446\) −4076.25 −0.432771
\(447\) 2520.75i 0.266728i
\(448\) 695.389i 0.0733350i
\(449\) 13636.7i 1.43331i −0.697427 0.716655i \(-0.745672\pi\)
0.697427 0.716655i \(-0.254328\pi\)
\(450\) 16453.4i 1.72361i
\(451\) −2945.45 −0.307529
\(452\) −6115.12 −0.636351
\(453\) 24013.7i 2.49065i
\(454\) 9383.70 0.970042
\(455\) −3689.67 7756.52i −0.380164 0.799190i
\(456\) 2013.21 0.206748
\(457\) 13380.5i 1.36962i −0.728723 0.684808i \(-0.759886\pi\)
0.728723 0.684808i \(-0.240114\pi\)
\(458\) 1152.31 0.117563
\(459\) 6613.12 0.672492
\(460\) 1663.24i 0.168585i
\(461\) 6782.55i 0.685238i 0.939474 + 0.342619i \(0.111314\pi\)
−0.939474 + 0.342619i \(0.888686\pi\)
\(462\) 6780.05i 0.682763i
\(463\) 10966.2i 1.10074i −0.834922 0.550368i \(-0.814488\pi\)
0.834922 0.550368i \(-0.185512\pi\)
\(464\) 4641.86 0.464425
\(465\) 32854.2 3.27651
\(466\) 1448.64i 0.144006i
\(467\) 609.640 0.0604085 0.0302043 0.999544i \(-0.490384\pi\)
0.0302043 + 0.999544i \(0.490384\pi\)
\(468\) 4155.48 + 8735.74i 0.410442 + 0.862841i
\(469\) 3490.78 0.343687
\(470\) 5606.45i 0.550226i
\(471\) 7835.07 0.766499
\(472\) −1477.53 −0.144086
\(473\) 10333.9i 1.00455i
\(474\) 3263.27i 0.316217i
\(475\) 4525.89i 0.437184i
\(476\) 1318.08i 0.126920i
\(477\) −3941.22 −0.378314
\(478\) −6275.61 −0.600501
\(479\) 8405.28i 0.801769i 0.916129 + 0.400884i \(0.131297\pi\)
−0.916129 + 0.400884i \(0.868703\pi\)
\(480\) 4784.64 0.454975
\(481\) 5024.79 2390.23i 0.476322 0.226580i
\(482\) −3527.48 −0.333345
\(483\) 2374.91i 0.223731i
\(484\) −369.879 −0.0347369
\(485\) 11641.2 1.08990
\(486\) 2198.96i 0.205240i
\(487\) 16160.4i 1.50370i −0.659337 0.751848i \(-0.729163\pi\)
0.659337 0.751848i \(-0.270837\pi\)
\(488\) 1582.49i 0.146795i
\(489\) 29617.5i 2.73896i
\(490\) −7587.49 −0.699527
\(491\) −6426.96 −0.590722 −0.295361 0.955386i \(-0.595440\pi\)
−0.295361 + 0.955386i \(0.595440\pi\)
\(492\) 2967.97i 0.271964i
\(493\) −8798.45 −0.803777
\(494\) −1143.06 2402.96i −0.104107 0.218855i
\(495\) −30624.6 −2.78076
\(496\) 3515.69i 0.318265i
\(497\) −4008.76 −0.361806
\(498\) 22592.0 2.03288
\(499\) 15240.3i 1.36724i 0.729840 + 0.683618i \(0.239595\pi\)
−0.729840 + 0.683618i \(0.760405\pi\)
\(500\) 2323.64i 0.207832i
\(501\) 16104.3i 1.43610i
\(502\) 3292.02i 0.292689i
\(503\) 10404.0 0.922250 0.461125 0.887335i \(-0.347446\pi\)
0.461125 + 0.887335i \(0.347446\pi\)
\(504\) −4484.95 −0.396380
\(505\) 23530.8i 2.07348i
\(506\) −1735.33 −0.152460
\(507\) 12289.3 15111.0i 1.07650 1.32368i
\(508\) −5790.67 −0.505747
\(509\) 14623.3i 1.27341i 0.771106 + 0.636707i \(0.219704\pi\)
−0.771106 + 0.636707i \(0.780296\pi\)
\(510\) −9069.08 −0.787423
\(511\) −9162.55 −0.793204
\(512\) 512.000i 0.0441942i
\(513\) 6189.70i 0.532713i
\(514\) 12831.5i 1.10111i
\(515\) 23886.2i 2.04379i
\(516\) −10412.9 −0.888376
\(517\) −5849.42 −0.497596
\(518\) 2579.74i 0.218817i
\(519\) −8725.75 −0.737992
\(520\) −2716.63 5710.96i −0.229100 0.481619i
\(521\) −19937.9 −1.67657 −0.838285 0.545232i \(-0.816442\pi\)
−0.838285 + 0.545232i \(0.816442\pi\)
\(522\) 29937.9i 2.51024i
\(523\) 4327.00 0.361771 0.180886 0.983504i \(-0.442104\pi\)
0.180886 + 0.983504i \(0.442104\pi\)
\(524\) −2527.51 −0.210715
\(525\) 15358.8i 1.27679i
\(526\) 7320.96i 0.606862i
\(527\) 6663.85i 0.550819i
\(528\) 4992.00i 0.411456i
\(529\) −11559.2 −0.950041
\(530\) 2576.55 0.211167
\(531\) 9529.38i 0.778794i
\(532\) 1233.69 0.100540
\(533\) −3542.57 + 1685.15i −0.287891 + 0.136946i
\(534\) 24245.9 1.96483
\(535\) 7607.48i 0.614766i
\(536\) 2570.18 0.207118
\(537\) −33487.7 −2.69106
\(538\) 11290.6i 0.904782i
\(539\) 7916.32i 0.632616i
\(540\) 14710.6i 1.17230i
\(541\) 2602.93i 0.206855i −0.994637 0.103428i \(-0.967019\pi\)
0.994637 0.103428i \(-0.0329810\pi\)
\(542\) 13343.7 1.05750
\(543\) 20654.7 1.63237
\(544\) 970.474i 0.0764866i
\(545\) 23377.7 1.83742
\(546\) 3879.01 + 8154.55i 0.304041 + 0.639162i
\(547\) 11225.3 0.877441 0.438720 0.898624i \(-0.355432\pi\)
0.438720 + 0.898624i \(0.355432\pi\)
\(548\) 2189.67i 0.170690i
\(549\) 10206.3 0.793435
\(550\) 11222.5 0.870055
\(551\) 8235.11i 0.636710i
\(552\) 1748.59i 0.134828i
\(553\) 1999.72i 0.153774i
\(554\) 5810.78i 0.445626i
\(555\) −17749.9 −1.35756
\(556\) 2708.28 0.206577
\(557\) 8248.83i 0.627494i 0.949507 + 0.313747i \(0.101584\pi\)
−0.949507 + 0.313747i \(0.898416\pi\)
\(558\) −22674.6 −1.72024
\(559\) 5912.24 + 12428.8i 0.447336 + 0.940401i
\(560\) 2932.02 0.221250
\(561\) 9462.12i 0.712105i
\(562\) −16019.5 −1.20239
\(563\) 1693.06 0.126739 0.0633696 0.997990i \(-0.479815\pi\)
0.0633696 + 0.997990i \(0.479815\pi\)
\(564\) 5894.14i 0.440050i
\(565\) 25783.6i 1.91986i
\(566\) 7415.42i 0.550695i
\(567\) 5868.26i 0.434645i
\(568\) −2951.57 −0.218037
\(569\) −8251.55 −0.607949 −0.303974 0.952680i \(-0.598314\pi\)
−0.303974 + 0.952680i \(0.598314\pi\)
\(570\) 8488.41i 0.623755i
\(571\) 23153.2 1.69691 0.848453 0.529271i \(-0.177534\pi\)
0.848453 + 0.529271i \(0.177534\pi\)
\(572\) 5958.46 2834.36i 0.435552 0.207186i
\(573\) 40886.9 2.98093
\(574\) 1818.76i 0.132254i
\(575\) −3931.02 −0.285104
\(576\) −3302.17 −0.238872
\(577\) 2058.46i 0.148518i −0.997239 0.0742590i \(-0.976341\pi\)
0.997239 0.0742590i \(-0.0236591\pi\)
\(578\) 7986.51i 0.574732i
\(579\) 8447.00i 0.606296i
\(580\) 19571.8i 1.40116i
\(581\) 13844.3 0.988571
\(582\) −12238.6 −0.871660
\(583\) 2688.22i 0.190968i
\(584\) −6746.18 −0.478012
\(585\) −36833.1 + 17521.0i −2.60318 + 1.23830i
\(586\) 3348.00 0.236014
\(587\) 12861.7i 0.904361i −0.891926 0.452180i \(-0.850646\pi\)
0.891926 0.452180i \(-0.149354\pi\)
\(588\) 7976.85 0.559455
\(589\) 6237.18 0.436330
\(590\) 6229.79i 0.434706i
\(591\) 18179.0i 1.26528i
\(592\) 1899.41i 0.131867i
\(593\) 18098.4i 1.25331i 0.779298 + 0.626653i \(0.215576\pi\)
−0.779298 + 0.626653i \(0.784424\pi\)
\(594\) 15348.1 1.06017
\(595\) −5557.51 −0.382917
\(596\) 1137.33i 0.0781662i
\(597\) −22920.0 −1.57128
\(598\) −2087.13 + 992.818i −0.142724 + 0.0678919i
\(599\) −15338.0 −1.04623 −0.523115 0.852262i \(-0.675230\pi\)
−0.523115 + 0.852262i \(0.675230\pi\)
\(600\) 11308.3i 0.769435i
\(601\) 22289.4 1.51282 0.756409 0.654099i \(-0.226952\pi\)
0.756409 + 0.654099i \(0.226952\pi\)
\(602\) −6380.99 −0.432010
\(603\) 16576.5i 1.11948i
\(604\) 10834.7i 0.729899i
\(605\) 1559.54i 0.104801i
\(606\) 24738.3i 1.65829i
\(607\) 7191.81 0.480900 0.240450 0.970662i \(-0.422705\pi\)
0.240450 + 0.970662i \(0.422705\pi\)
\(608\) 908.337 0.0605887
\(609\) 27946.1i 1.85950i
\(610\) −6672.35 −0.442878
\(611\) −7035.26 + 3346.58i −0.465820 + 0.221584i
\(612\) 6259.12 0.413415
\(613\) 797.058i 0.0525169i −0.999655 0.0262584i \(-0.991641\pi\)
0.999655 0.0262584i \(-0.00835928\pi\)
\(614\) −599.871 −0.0394280
\(615\) 12514.0 0.820512
\(616\) 3059.08i 0.200088i
\(617\) 20908.3i 1.36424i 0.731240 + 0.682120i \(0.238942\pi\)
−0.731240 + 0.682120i \(0.761058\pi\)
\(618\) 25111.9i 1.63454i
\(619\) 12309.9i 0.799315i 0.916665 + 0.399658i \(0.130871\pi\)
−0.916665 + 0.399658i \(0.869129\pi\)
\(620\) 14823.5 0.960200
\(621\) −5376.14 −0.347403
\(622\) 1780.28i 0.114763i
\(623\) 14857.8 0.955481
\(624\) 2856.03 + 6004.02i 0.183226 + 0.385181i
\(625\) −10133.2 −0.648522
\(626\) 2308.40i 0.147384i
\(627\) −8856.28 −0.564092
\(628\) 3535.10 0.224627
\(629\) 3600.24i 0.228221i
\(630\) 18910.2i 1.19587i
\(631\) 10332.7i 0.651881i −0.945390 0.325940i \(-0.894319\pi\)
0.945390 0.325940i \(-0.105681\pi\)
\(632\) 1472.35i 0.0926693i
\(633\) 15569.8 0.977634
\(634\) −5417.71 −0.339377
\(635\) 24415.6i 1.52583i
\(636\) −2708.77 −0.168883
\(637\) −4529.10 9521.18i −0.281710 0.592218i
\(638\) −20420.0 −1.26714
\(639\) 19036.3i 1.17850i
\(640\) 2158.78 0.133333
\(641\) −676.867 −0.0417077 −0.0208539 0.999783i \(-0.506638\pi\)
−0.0208539 + 0.999783i \(0.506638\pi\)
\(642\) 7997.86i 0.491667i
\(643\) 26312.7i 1.61379i −0.590692 0.806897i \(-0.701145\pi\)
0.590692 0.806897i \(-0.298855\pi\)
\(644\) 1071.53i 0.0655658i
\(645\) 43904.5i 2.68022i
\(646\) −1721.71 −0.104860
\(647\) −169.876 −0.0103223 −0.00516113 0.999987i \(-0.501643\pi\)
−0.00516113 + 0.999987i \(0.501643\pi\)
\(648\) 4320.67i 0.261932i
\(649\) 6499.78 0.393126
\(650\) 13497.6 6420.65i 0.814494 0.387444i
\(651\) −21166.1 −1.27429
\(652\) 13363.1i 0.802669i
\(653\) −14426.6 −0.864558 −0.432279 0.901740i \(-0.642290\pi\)
−0.432279 + 0.901740i \(0.642290\pi\)
\(654\) −24577.4 −1.46950
\(655\) 10656.9i 0.635724i
\(656\) 1339.12i 0.0797007i
\(657\) 43509.8i 2.58368i
\(658\) 3611.91i 0.213993i
\(659\) −25211.8 −1.49031 −0.745155 0.666892i \(-0.767624\pi\)
−0.745155 + 0.666892i \(0.767624\pi\)
\(660\) −21048.1 −1.24136
\(661\) 22839.0i 1.34393i 0.740585 + 0.671963i \(0.234548\pi\)
−0.740585 + 0.671963i \(0.765452\pi\)
\(662\) −16374.2 −0.961334
\(663\) −5413.48 11380.3i −0.317107 0.666631i
\(664\) 10193.3 0.595747
\(665\) 5201.67i 0.303327i
\(666\) 12250.3 0.712747
\(667\) 7152.70 0.415223
\(668\) 7266.07i 0.420857i
\(669\) 18068.9i 1.04422i
\(670\) 10836.8i 0.624871i
\(671\) 6961.52i 0.400516i
\(672\) −3082.47 −0.176948
\(673\) 16708.2 0.956989 0.478495 0.878090i \(-0.341183\pi\)
0.478495 + 0.878090i \(0.341183\pi\)
\(674\) 17541.9i 1.00250i
\(675\) 34768.0 1.98255
\(676\) 5544.80 6817.93i 0.315476 0.387911i
\(677\) −15842.6 −0.899378 −0.449689 0.893185i \(-0.648465\pi\)
−0.449689 + 0.893185i \(0.648465\pi\)
\(678\) 27106.7i 1.53543i
\(679\) −7499.78 −0.423881
\(680\) −4091.87 −0.230759
\(681\) 41595.4i 2.34059i
\(682\) 15465.9i 0.868356i
\(683\) 16467.3i 0.922550i 0.887257 + 0.461275i \(0.152608\pi\)
−0.887257 + 0.461275i \(0.847392\pi\)
\(684\) 5858.36i 0.327485i
\(685\) −9232.45 −0.514969
\(686\) 12341.9 0.686904
\(687\) 5107.87i 0.283664i
\(688\) −4698.18 −0.260344
\(689\) 1537.99 + 3233.19i 0.0850401 + 0.178773i
\(690\) 7372.71 0.406775
\(691\) 16531.0i 0.910086i 0.890470 + 0.455043i \(0.150376\pi\)
−0.890470 + 0.455043i \(0.849624\pi\)
\(692\) −3936.96 −0.216273
\(693\) 19729.7 1.08149
\(694\) 8557.92i 0.468089i
\(695\) 11419.1i 0.623239i
\(696\) 20576.1i 1.12060i
\(697\) 2538.23i 0.137938i
\(698\) 12362.9 0.670406
\(699\) 6421.43 0.347469
\(700\) 6929.72i 0.374170i
\(701\) 11032.2 0.594409 0.297205 0.954814i \(-0.403946\pi\)
0.297205 + 0.954814i \(0.403946\pi\)
\(702\) 18459.6 8781.00i 0.992470 0.472105i
\(703\) −3369.72 −0.180785
\(704\) 2252.34i 0.120580i
\(705\) 24851.9 1.32762
\(706\) 10943.2 0.583362
\(707\) 15159.6i 0.806414i
\(708\) 6549.48i 0.347662i
\(709\) 20979.1i 1.11127i 0.831427 + 0.555633i \(0.187524\pi\)
−0.831427 + 0.555633i \(0.812476\pi\)
\(710\) 12444.9i 0.657814i
\(711\) 9496.01 0.500883
\(712\) 10939.5 0.575806
\(713\) 5417.38i 0.284548i
\(714\) 5842.69 0.306243
\(715\) 11950.7 + 25123.0i 0.625078 + 1.31405i
\(716\) −15109.3 −0.788631
\(717\) 27818.1i 1.44893i
\(718\) 12797.5 0.665181
\(719\) 17699.8 0.918068 0.459034 0.888419i \(-0.348196\pi\)
0.459034 + 0.888419i \(0.348196\pi\)
\(720\) 13923.1i 0.720674i
\(721\) 15388.5i 0.794865i
\(722\) 12106.5i 0.624042i
\(723\) 15636.4i 0.804319i
\(724\) 9319.19 0.478377
\(725\) −46257.2 −2.36959
\(726\) 1639.57i 0.0838158i
\(727\) −33899.2 −1.72937 −0.864686 0.502313i \(-0.832482\pi\)
−0.864686 + 0.502313i \(0.832482\pi\)
\(728\) 1750.17 + 3679.24i 0.0891010 + 0.187310i
\(729\) −24329.6 −1.23607
\(730\) 28444.4i 1.44216i
\(731\) 8905.20 0.450576
\(732\) 7014.75 0.354197
\(733\) 29937.3i 1.50854i −0.656564 0.754270i \(-0.727991\pi\)
0.656564 0.754270i \(-0.272009\pi\)
\(734\) 19272.4i 0.969151i
\(735\) 33633.3i 1.68787i
\(736\) 788.947i 0.0395122i
\(737\) −11306.5 −0.565101
\(738\) −8636.69 −0.430787
\(739\) 16595.2i 0.826068i −0.910716 0.413034i \(-0.864469\pi\)
0.910716 0.413034i \(-0.135531\pi\)
\(740\) −8008.59 −0.397840
\(741\) −10651.7 + 5066.87i −0.528070 + 0.251196i
\(742\) −1659.93 −0.0821265
\(743\) 4929.07i 0.243378i 0.992568 + 0.121689i \(0.0388311\pi\)
−0.992568 + 0.121689i \(0.961169\pi\)
\(744\) −15584.1 −0.767932
\(745\) 4795.42 0.235826
\(746\) 17615.8i 0.864556i
\(747\) 65742.1i 3.22005i
\(748\) 4269.21i 0.208687i
\(749\) 4901.07i 0.239094i
\(750\) −10300.1 −0.501473
\(751\) 10687.7 0.519305 0.259653 0.965702i \(-0.416392\pi\)
0.259653 + 0.965702i \(0.416392\pi\)
\(752\) 2659.37i 0.128959i
\(753\) −14592.6 −0.706221
\(754\) −24559.7 + 11682.7i −1.18622 + 0.564270i
\(755\) 45683.2 2.20210
\(756\) 9477.21i 0.455930i
\(757\) 28909.2 1.38801 0.694004 0.719971i \(-0.255845\pi\)
0.694004 + 0.719971i \(0.255845\pi\)
\(758\) 17357.9 0.831751
\(759\) 7692.23i 0.367866i
\(760\) 3829.88i 0.182795i
\(761\) 25399.7i 1.20991i −0.796261 0.604954i \(-0.793192\pi\)
0.796261 0.604954i \(-0.206808\pi\)
\(762\) 25668.5i 1.22030i
\(763\) −15060.9 −0.714604
\(764\) 18447.7 0.873579
\(765\) 26390.7i 1.24727i
\(766\) 5424.61 0.255873
\(767\) 7817.46 3718.66i 0.368021 0.175063i
\(768\) −2269.56 −0.106635
\(769\) 23740.3i 1.11326i −0.830761 0.556630i \(-0.812094\pi\)
0.830761 0.556630i \(-0.187906\pi\)
\(770\) −12898.2 −0.603662
\(771\) −56878.4 −2.65684
\(772\) 3811.20i 0.177679i
\(773\) 37.2842i 0.00173483i −1.00000 0.000867413i \(-0.999724\pi\)
1.00000 0.000867413i \(-0.000276106\pi\)
\(774\) 30301.2i 1.40717i
\(775\) 35034.7i 1.62385i
\(776\) −5521.93 −0.255445
\(777\) 11435.3 0.527978
\(778\) 581.883i 0.0268143i
\(779\) 2375.72 0.109267
\(780\) −25315.1 + 12042.1i −1.16209 + 0.552789i
\(781\) 12984.2 0.594893
\(782\) 1495.41i 0.0683835i
\(783\) −63262.3 −2.88737
\(784\) 3599.07 0.163952
\(785\) 14905.3i 0.677697i
\(786\) 11203.8i 0.508429i
\(787\) 6972.34i 0.315803i −0.987455 0.157902i \(-0.949527\pi\)
0.987455 0.157902i \(-0.0504729\pi\)
\(788\) 8202.16i 0.370799i
\(789\) 32451.9 1.46428
\(790\) −6207.97 −0.279582
\(791\) 16610.9i 0.746669i
\(792\) 14526.6 0.651741
\(793\) −3982.84 8372.81i −0.178354 0.374940i
\(794\) 28228.0 1.26168
\(795\) 11421.2i 0.509518i
\(796\) −10341.2 −0.460472
\(797\) −13689.7 −0.608425 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(798\) 5468.60i 0.242589i
\(799\) 5040.73i 0.223189i
\(800\) 5102.20i 0.225487i
\(801\) 70554.6i 3.11227i
\(802\) −22684.0 −0.998754
\(803\) 29677.1 1.30421
\(804\) 11392.9i 0.499748i
\(805\) 4517.98 0.197811
\(806\) 8848.36 + 18601.2i 0.386688 + 0.812904i
\(807\) 50048.2 2.18312
\(808\) 11161.7i 0.485973i
\(809\) −7098.88 −0.308509 −0.154254 0.988031i \(-0.549298\pi\)
−0.154254 + 0.988031i \(0.549298\pi\)
\(810\) −18217.5 −0.790246
\(811\) 24631.2i 1.06649i 0.845962 + 0.533243i \(0.179027\pi\)
−0.845962 + 0.533243i \(0.820973\pi\)
\(812\) 12609.0i 0.544937i
\(813\) 59149.2i 2.55160i
\(814\) 8355.66i 0.359786i
\(815\) −56343.8 −2.42164
\(816\) 4301.85 0.184552
\(817\) 8335.02i 0.356922i
\(818\) −9373.87 −0.400672
\(819\) 23729.5 11287.8i 1.01242 0.481596i
\(820\) 5646.20 0.240456
\(821\) 2290.09i 0.0973506i 0.998815 + 0.0486753i \(0.0154999\pi\)
−0.998815 + 0.0486753i \(0.984500\pi\)
\(822\) 9706.22 0.411853
\(823\) −36484.9 −1.54530 −0.772651 0.634831i \(-0.781070\pi\)
−0.772651 + 0.634831i \(0.781070\pi\)
\(824\) 11330.2i 0.479013i
\(825\) 49746.4i 2.09933i
\(826\) 4013.50i 0.169065i
\(827\) 3929.01i 0.165206i −0.996583 0.0826028i \(-0.973677\pi\)
0.996583 0.0826028i \(-0.0263233\pi\)
\(828\) −5088.35 −0.213566
\(829\) −17401.7 −0.729055 −0.364527 0.931193i \(-0.618769\pi\)
−0.364527 + 0.931193i \(0.618769\pi\)
\(830\) 42978.6i 1.79736i
\(831\) −25757.6 −1.07524
\(832\) 1288.61 + 2708.95i 0.0536954 + 0.112880i
\(833\) −6821.88 −0.283750
\(834\) 12005.1i 0.498443i
\(835\) 30636.4 1.26972
\(836\) −3995.86 −0.165311
\(837\) 47914.1i 1.97868i
\(838\) 23779.3i 0.980243i
\(839\) 39966.0i 1.64455i 0.569089 + 0.822276i \(0.307296\pi\)
−0.569089 + 0.822276i \(0.692704\pi\)
\(840\) 12996.8i 0.533849i
\(841\) 59778.5 2.45105
\(842\) 9511.28 0.389288
\(843\) 71010.2i 2.90121i
\(844\) 7024.91 0.286501
\(845\) 28746.9 + 23378.9i 1.17032 + 0.951786i
\(846\) −17151.8 −0.697033
\(847\) 1004.73i 0.0407589i
\(848\) −1222.17 −0.0494923
\(849\) 32870.6 1.32876
\(850\) 9671.00i 0.390250i
\(851\) 2926.82i 0.117897i
\(852\) 13083.5i 0.526095i
\(853\) 7753.33i 0.311218i −0.987819 0.155609i \(-0.950266\pi\)
0.987819 0.155609i \(-0.0497340\pi\)
\(854\) 4298.62 0.172243
\(855\) 24701.0 0.988019
\(856\) 3608.55i 0.144086i
\(857\) 34346.7 1.36903 0.684515 0.728998i \(-0.260014\pi\)
0.684515 + 0.728998i \(0.260014\pi\)
\(858\) −12564.0 26412.2i −0.499914 1.05093i
\(859\) −23048.5 −0.915489 −0.457744 0.889084i \(-0.651342\pi\)
−0.457744 + 0.889084i \(0.651342\pi\)
\(860\) 19809.3i 0.785454i
\(861\) −8062.09 −0.319112
\(862\) 8756.26 0.345985
\(863\) 8452.37i 0.333398i −0.986008 0.166699i \(-0.946689\pi\)
0.986008 0.166699i \(-0.0533107\pi\)
\(864\) 6977.86i 0.274759i
\(865\) 16599.7i 0.652492i
\(866\) 31152.7i 1.22241i
\(867\) 35402.0 1.38675
\(868\) −9549.91 −0.373439
\(869\) 6477.02i 0.252840i
\(870\) 86756.5 3.38083
\(871\) −13598.6 + 6468.68i −0.529014 + 0.251645i
\(872\) −11089.0 −0.430645
\(873\) 35613.9i 1.38070i
\(874\) 1399.67 0.0541699
\(875\) −6311.85 −0.243862
\(876\) 29904.0i 1.15338i
\(877\) 3371.07i 0.129798i −0.997892 0.0648990i \(-0.979327\pi\)
0.997892 0.0648990i \(-0.0206725\pi\)
\(878\) 26949.5i 1.03588i
\(879\) 14840.8i 0.569473i
\(880\) −9496.67 −0.363787
\(881\) −9930.37 −0.379753 −0.189877 0.981808i \(-0.560809\pi\)
−0.189877 + 0.981808i \(0.560809\pi\)
\(882\) 23212.4i 0.886169i
\(883\) −38422.6 −1.46435 −0.732176 0.681116i \(-0.761495\pi\)
−0.732176 + 0.681116i \(0.761495\pi\)
\(884\) −2442.50 5134.69i −0.0929302 0.195360i
\(885\) −27615.0 −1.04889
\(886\) 48.9129i 0.00185470i
\(887\) −26078.1 −0.987168 −0.493584 0.869698i \(-0.664314\pi\)
−0.493584 + 0.869698i \(0.664314\pi\)
\(888\) 8419.55 0.318177
\(889\) 15729.6i 0.593422i
\(890\) 46124.8i 1.73720i
\(891\) 19007.1i 0.714658i
\(892\) 8152.49i 0.306015i
\(893\) 4717.98 0.176799
\(894\) −5041.50 −0.188605
\(895\) 63706.2i 2.37929i
\(896\) −1390.78 −0.0518556
\(897\) 4400.89 + 9251.66i 0.163814 + 0.344375i
\(898\) −27273.4 −1.01350
\(899\) 63747.6i 2.36496i
\(900\) 32906.9 1.21877
\(901\) 2316.57 0.0856560
\(902\) 5890.90i 0.217456i
\(903\) 28285.2i 1.04238i
\(904\) 12230.2i 0.449968i
\(905\) 39293.1i 1.44326i
\(906\) −48027.5 −1.76115
\(907\) −8988.90 −0.329076 −0.164538 0.986371i \(-0.552613\pi\)
−0.164538 + 0.986371i \(0.552613\pi\)
\(908\) 18767.4i 0.685923i
\(909\) −71987.7 −2.62671
\(910\) −15513.0 + 7379.35i −0.565112 + 0.268817i
\(911\) 28318.0 1.02988 0.514938 0.857227i \(-0.327815\pi\)
0.514938 + 0.857227i \(0.327815\pi\)
\(912\) 4026.41i 0.146193i
\(913\) −44841.2 −1.62544
\(914\) −26761.1 −0.968465
\(915\) 29576.7i 1.06861i
\(916\) 2304.62i 0.0831296i
\(917\) 6865.64i 0.247245i
\(918\) 13226.2i 0.475524i
\(919\) −12863.6 −0.461730 −0.230865 0.972986i \(-0.574155\pi\)
−0.230865 + 0.972986i \(0.574155\pi\)
\(920\) 3326.49 0.119208
\(921\) 2659.07i 0.0951348i
\(922\) 13565.1 0.484537
\(923\) 15616.5 7428.55i 0.556904 0.264912i
\(924\) 13560.1 0.482786
\(925\) 18928.0i 0.672810i
\(926\) −21932.3 −0.778337
\(927\) 73074.8 2.58909
\(928\) 9283.73i 0.328398i
\(929\) 1899.49i 0.0670833i 0.999437 + 0.0335416i \(0.0106786\pi\)
−0.999437 + 0.0335416i \(0.989321\pi\)
\(930\) 65708.4i 2.31684i
\(931\) 6385.09i 0.224772i
\(932\) 2897.28 0.101828
\(933\) −7891.50 −0.276909
\(934\) 1219.28i 0.0427153i
\(935\) 18000.5 0.629605
\(936\) 17471.5 8310.96i 0.610121 0.290227i
\(937\) −35209.9 −1.22760 −0.613798 0.789463i \(-0.710359\pi\)
−0.613798 + 0.789463i \(0.710359\pi\)
\(938\) 6981.56i 0.243023i
\(939\) 10232.5 0.355618
\(940\) 11212.9 0.389068
\(941\) 56666.1i 1.96308i −0.191247 0.981542i \(-0.561253\pi\)
0.191247 0.981542i \(-0.438747\pi\)
\(942\) 15670.1i 0.541997i
\(943\) 2063.46i 0.0712572i
\(944\) 2955.05i 0.101884i
\(945\) −39959.4 −1.37553
\(946\) 20667.8 0.710324
\(947\) 27336.3i 0.938026i −0.883191 0.469013i \(-0.844610\pi\)
0.883191 0.469013i \(-0.155390\pi\)
\(948\) 6526.54 0.223599
\(949\) 35693.5 16978.9i 1.22093 0.580779i
\(950\) −9051.79 −0.309136
\(951\) 24015.3i 0.818873i
\(952\) 2636.16 0.0897463
\(953\) 14435.1 0.490659 0.245329 0.969440i \(-0.421104\pi\)
0.245329 + 0.969440i \(0.421104\pi\)
\(954\) 7882.43i 0.267509i
\(955\) 77782.3i 2.63558i
\(956\) 12551.2i 0.424619i
\(957\) 90516.3i 3.05745i
\(958\) 16810.6 0.566936
\(959\) 5947.95 0.200281
\(960\) 9569.28i 0.321716i
\(961\) −18490.7 −0.620680
\(962\) −4780.46 10049.6i −0.160216 0.336810i
\(963\) 23273.5 0.778793
\(964\) 7054.96i 0.235710i
\(965\) 16069.4 0.536054
\(966\) −4749.82 −0.158202
\(967\) 21556.9i 0.716879i −0.933553 0.358440i \(-0.883309\pi\)
0.933553 0.358440i \(-0.116691\pi\)
\(968\) 739.757i 0.0245627i
\(969\) 7631.89i 0.253015i
\(970\) 23282.5i 0.770675i
\(971\) −3153.54 −0.104225 −0.0521123 0.998641i \(-0.516595\pi\)
−0.0521123 + 0.998641i \(0.516595\pi\)
\(972\) −4397.91 −0.145127
\(973\) 7356.68i 0.242389i
\(974\) −32320.9 −1.06327
\(975\) −28461.0 59831.4i −0.934853 1.96527i
\(976\) 3164.98 0.103800
\(977\) 4929.61i 0.161425i 0.996737 + 0.0807125i \(0.0257196\pi\)
−0.996737 + 0.0807125i \(0.974280\pi\)
\(978\) 59235.1 1.93674
\(979\) −48123.8 −1.57103
\(980\) 15175.0i 0.494640i
\(981\) 71519.3i 2.32766i
\(982\) 12853.9i 0.417704i
\(983\) 15526.2i 0.503774i −0.967757 0.251887i \(-0.918949\pi\)
0.967757 0.251887i \(-0.0810511\pi\)
\(984\) −5935.94 −0.192308
\(985\) −34583.3 −1.11870
\(986\) 17596.9i 0.568356i
\(987\) −16010.6 −0.516337
\(988\) −4805.93 + 2286.12i −0.154754 + 0.0736145i
\(989\) −7239.49 −0.232763
\(990\) 61249.2i 1.96629i
\(991\) 29876.8 0.957687 0.478844 0.877900i \(-0.341056\pi\)
0.478844 + 0.877900i \(0.341056\pi\)
\(992\) −7031.39 −0.225047
\(993\) 72582.6i 2.31958i
\(994\) 8017.53i 0.255836i
\(995\) 43602.4i 1.38924i
\(996\) 45184.1i 1.43746i
\(997\) 2600.46 0.0826052 0.0413026 0.999147i \(-0.486849\pi\)
0.0413026 + 0.999147i \(0.486849\pi\)
\(998\) 30480.7 0.966782
\(999\) 25886.3i 0.819826i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 26.4.b.a.25.1 4
3.2 odd 2 234.4.b.b.181.4 4
4.3 odd 2 208.4.f.d.129.3 4
5.2 odd 4 650.4.c.f.649.4 4
5.3 odd 4 650.4.c.e.649.1 4
5.4 even 2 650.4.d.d.51.4 4
8.3 odd 2 832.4.f.h.129.2 4
8.5 even 2 832.4.f.j.129.4 4
13.2 odd 12 338.4.c.i.191.2 4
13.3 even 3 338.4.e.g.147.4 8
13.4 even 6 338.4.e.g.23.4 8
13.5 odd 4 338.4.a.f.1.1 2
13.6 odd 12 338.4.c.i.315.2 4
13.7 odd 12 338.4.c.h.315.2 4
13.8 odd 4 338.4.a.i.1.1 2
13.9 even 3 338.4.e.g.23.2 8
13.10 even 6 338.4.e.g.147.2 8
13.11 odd 12 338.4.c.h.191.2 4
13.12 even 2 inner 26.4.b.a.25.3 yes 4
39.38 odd 2 234.4.b.b.181.1 4
52.51 odd 2 208.4.f.d.129.4 4
65.12 odd 4 650.4.c.e.649.4 4
65.38 odd 4 650.4.c.f.649.1 4
65.64 even 2 650.4.d.d.51.2 4
104.51 odd 2 832.4.f.h.129.1 4
104.77 even 2 832.4.f.j.129.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.b.a.25.1 4 1.1 even 1 trivial
26.4.b.a.25.3 yes 4 13.12 even 2 inner
208.4.f.d.129.3 4 4.3 odd 2
208.4.f.d.129.4 4 52.51 odd 2
234.4.b.b.181.1 4 39.38 odd 2
234.4.b.b.181.4 4 3.2 odd 2
338.4.a.f.1.1 2 13.5 odd 4
338.4.a.i.1.1 2 13.8 odd 4
338.4.c.h.191.2 4 13.11 odd 12
338.4.c.h.315.2 4 13.7 odd 12
338.4.c.i.191.2 4 13.2 odd 12
338.4.c.i.315.2 4 13.6 odd 12
338.4.e.g.23.2 8 13.9 even 3
338.4.e.g.23.4 8 13.4 even 6
338.4.e.g.147.2 8 13.10 even 6
338.4.e.g.147.4 8 13.3 even 3
650.4.c.e.649.1 4 5.3 odd 4
650.4.c.e.649.4 4 65.12 odd 4
650.4.c.f.649.1 4 65.38 odd 4
650.4.c.f.649.4 4 5.2 odd 4
650.4.d.d.51.2 4 65.64 even 2
650.4.d.d.51.4 4 5.4 even 2
832.4.f.h.129.1 4 104.51 odd 2
832.4.f.h.129.2 4 8.3 odd 2
832.4.f.j.129.3 4 104.77 even 2
832.4.f.j.129.4 4 8.5 even 2