Properties

Label 338.4.c.h.191.2
Level $338$
Weight $4$
Character 338.191
Analytic conductor $19.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(191,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.191"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,3,-8,38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 55x^{2} + 54x + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.2
Root \(3.93273 - 6.81169i\) of defining polynomial
Character \(\chi\) \(=\) 338.191
Dual form 338.4.c.h.315.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(4.43273 - 7.67771i) q^{3} +(-2.00000 - 3.46410i) q^{4} +16.8655 q^{5} +(8.86546 + 15.3554i) q^{6} +(-5.43273 - 9.40976i) q^{7} +8.00000 q^{8} +(-25.7982 - 44.6838i) q^{9} +(-16.8655 + 29.2118i) q^{10} +(17.5964 - 30.4778i) q^{11} -35.4618 q^{12} +21.7309 q^{14} +(74.7600 - 129.488i) q^{15} +(-8.00000 + 13.8564i) q^{16} +(-15.1636 - 26.2642i) q^{17} +103.193 q^{18} +(14.1928 + 24.5826i) q^{19} +(-33.7309 - 58.4237i) q^{20} -96.3273 q^{21} +(35.1928 + 60.9556i) q^{22} +(12.3273 - 21.3515i) q^{23} +(35.4618 - 61.4217i) q^{24} +159.444 q^{25} -218.058 q^{27} +(-21.7309 + 37.6391i) q^{28} +(-145.058 + 251.248i) q^{29} +(149.520 + 258.976i) q^{30} +219.731 q^{31} +(-16.0000 - 27.7128i) q^{32} +(-156.000 - 270.200i) q^{33} +60.6546 q^{34} +(-91.6255 - 158.700i) q^{35} +(-103.193 + 178.735i) q^{36} +(-59.3564 + 102.808i) q^{37} -56.7710 q^{38} +134.924 q^{40} +(-41.8474 + 72.4818i) q^{41} +(96.3273 - 166.844i) q^{42} +(-146.818 - 254.297i) q^{43} -140.771 q^{44} +(-435.098 - 753.612i) q^{45} +(24.6546 + 42.7030i) q^{46} -166.211 q^{47} +(70.9237 + 122.843i) q^{48} +(112.471 - 194.805i) q^{49} +(-159.444 + 276.165i) q^{50} -268.865 q^{51} -76.3855 q^{53} +(218.058 - 377.688i) q^{54} +(296.771 - 514.023i) q^{55} +(-43.4618 - 75.2781i) q^{56} +251.651 q^{57} +(-290.116 - 502.496i) q^{58} +(-92.3454 - 159.947i) q^{59} -598.080 q^{60} +(-98.9056 - 171.309i) q^{61} +(-219.731 + 380.585i) q^{62} +(-280.309 + 485.510i) q^{63} +64.0000 q^{64} +624.000 q^{66} +(-160.636 + 278.231i) q^{67} +(-60.6546 + 105.057i) q^{68} +(-109.287 - 189.291i) q^{69} +366.502 q^{70} +(184.473 + 319.516i) q^{71} +(-206.386 - 357.470i) q^{72} +843.273 q^{73} +(-118.713 - 205.617i) q^{74} +(706.771 - 1224.16i) q^{75} +(56.7710 - 98.3303i) q^{76} -382.386 q^{77} +184.044 q^{79} +(-134.924 + 233.695i) q^{80} +(-270.042 + 467.727i) q^{81} +(-83.6947 - 144.964i) q^{82} +1274.16 q^{83} +(192.655 + 333.688i) q^{84} +(-255.742 - 442.958i) q^{85} +587.273 q^{86} +(1286.01 + 2227.43i) q^{87} +(140.771 - 243.823i) q^{88} +(683.717 - 1184.23i) q^{89} +1740.39 q^{90} -98.6184 q^{92} +(974.008 - 1687.03i) q^{93} +(166.211 - 287.886i) q^{94} +(239.367 + 414.597i) q^{95} -283.695 q^{96} +(345.120 + 597.766i) q^{97} +(224.942 + 389.611i) q^{98} -1815.82 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 3 q^{3} - 8 q^{4} + 38 q^{5} + 6 q^{6} - 7 q^{7} + 32 q^{8} - 59 q^{9} - 38 q^{10} - 18 q^{11} - 24 q^{12} + 28 q^{14} + 137 q^{15} - 32 q^{16} + 13 q^{17} + 236 q^{18} - 120 q^{19} - 76 q^{20}+ \cdots - 2844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 4.43273 7.67771i 0.853079 1.47758i −0.0253362 0.999679i \(-0.508066\pi\)
0.878416 0.477898i \(-0.158601\pi\)
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 16.8655 1.50849 0.754246 0.656592i \(-0.228002\pi\)
0.754246 + 0.656592i \(0.228002\pi\)
\(6\) 8.86546 + 15.3554i 0.603218 + 1.04480i
\(7\) −5.43273 9.40976i −0.293340 0.508080i 0.681257 0.732044i \(-0.261433\pi\)
−0.974597 + 0.223964i \(0.928100\pi\)
\(8\) 8.00000 0.353553
\(9\) −25.7982 44.6838i −0.955489 1.65495i
\(10\) −16.8655 + 29.2118i −0.533333 + 0.923759i
\(11\) 17.5964 30.4778i 0.482319 0.835401i −0.517475 0.855698i \(-0.673128\pi\)
0.999794 + 0.0202974i \(0.00646131\pi\)
\(12\) −35.4618 −0.853079
\(13\) 0 0
\(14\) 21.7309 0.414845
\(15\) 74.7600 129.488i 1.28686 2.22891i
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −15.1636 26.2642i −0.216337 0.374706i 0.737348 0.675513i \(-0.236078\pi\)
−0.953685 + 0.300806i \(0.902744\pi\)
\(18\) 103.193 1.35126
\(19\) 14.1928 + 24.5826i 0.171371 + 0.296823i 0.938899 0.344192i \(-0.111847\pi\)
−0.767529 + 0.641015i \(0.778514\pi\)
\(20\) −33.7309 58.4237i −0.377123 0.653196i
\(21\) −96.3273 −1.00097
\(22\) 35.1928 + 60.9556i 0.341051 + 0.590718i
\(23\) 12.3273 21.3515i 0.111757 0.193569i −0.804722 0.593652i \(-0.797685\pi\)
0.916479 + 0.400083i \(0.131019\pi\)
\(24\) 35.4618 61.4217i 0.301609 0.522402i
\(25\) 159.444 1.27555
\(26\) 0 0
\(27\) −218.058 −1.55427
\(28\) −21.7309 + 37.6391i −0.146670 + 0.254040i
\(29\) −145.058 + 251.248i −0.928849 + 1.60881i −0.143599 + 0.989636i \(0.545868\pi\)
−0.785250 + 0.619179i \(0.787466\pi\)
\(30\) 149.520 + 258.976i 0.909950 + 1.57608i
\(31\) 219.731 1.27306 0.636530 0.771252i \(-0.280369\pi\)
0.636530 + 0.771252i \(0.280369\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) −156.000 270.200i −0.822913 1.42533i
\(34\) 60.6546 0.305946
\(35\) −91.6255 158.700i −0.442501 0.766434i
\(36\) −103.193 + 178.735i −0.477744 + 0.827477i
\(37\) −59.3564 + 102.808i −0.263733 + 0.456800i −0.967231 0.253898i \(-0.918287\pi\)
0.703498 + 0.710698i \(0.251621\pi\)
\(38\) −56.7710 −0.242355
\(39\) 0 0
\(40\) 134.924 0.533333
\(41\) −41.8474 + 72.4818i −0.159401 + 0.276091i −0.934653 0.355561i \(-0.884290\pi\)
0.775252 + 0.631653i \(0.217623\pi\)
\(42\) 96.3273 166.844i 0.353896 0.612966i
\(43\) −146.818 254.297i −0.520688 0.901858i −0.999711 0.0240552i \(-0.992342\pi\)
0.479023 0.877802i \(-0.340991\pi\)
\(44\) −140.771 −0.482319
\(45\) −435.098 753.612i −1.44135 2.49649i
\(46\) 24.6546 + 42.7030i 0.0790244 + 0.136874i
\(47\) −166.211 −0.515837 −0.257919 0.966167i \(-0.583037\pi\)
−0.257919 + 0.966167i \(0.583037\pi\)
\(48\) 70.9237 + 122.843i 0.213270 + 0.369394i
\(49\) 112.471 194.805i 0.327903 0.567945i
\(50\) −159.444 + 276.165i −0.450975 + 0.781112i
\(51\) −268.865 −0.738210
\(52\) 0 0
\(53\) −76.3855 −0.197969 −0.0989845 0.995089i \(-0.531559\pi\)
−0.0989845 + 0.995089i \(0.531559\pi\)
\(54\) 218.058 377.688i 0.549518 0.951793i
\(55\) 296.771 514.023i 0.727575 1.26020i
\(56\) −43.4618 75.2781i −0.103711 0.179633i
\(57\) 251.651 0.584771
\(58\) −290.116 502.496i −0.656796 1.13760i
\(59\) −92.3454 159.947i −0.203769 0.352938i 0.745971 0.665978i \(-0.231986\pi\)
−0.949740 + 0.313041i \(0.898652\pi\)
\(60\) −598.080 −1.28686
\(61\) −98.9056 171.309i −0.207599 0.359573i 0.743358 0.668893i \(-0.233232\pi\)
−0.950958 + 0.309321i \(0.899898\pi\)
\(62\) −219.731 + 380.585i −0.450094 + 0.779586i
\(63\) −280.309 + 485.510i −0.560566 + 0.970928i
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 624.000 1.16377
\(67\) −160.636 + 278.231i −0.292909 + 0.507332i −0.974496 0.224404i \(-0.927956\pi\)
0.681588 + 0.731736i \(0.261290\pi\)
\(68\) −60.6546 + 105.057i −0.108168 + 0.187353i
\(69\) −109.287 189.291i −0.190676 0.330260i
\(70\) 366.502 0.625791
\(71\) 184.473 + 319.516i 0.308351 + 0.534079i 0.978002 0.208597i \(-0.0668896\pi\)
−0.669651 + 0.742676i \(0.733556\pi\)
\(72\) −206.386 357.470i −0.337816 0.585115i
\(73\) 843.273 1.35202 0.676011 0.736891i \(-0.263707\pi\)
0.676011 + 0.736891i \(0.263707\pi\)
\(74\) −118.713 205.617i −0.186488 0.323006i
\(75\) 706.771 1224.16i 1.08815 1.88472i
\(76\) 56.7710 98.3303i 0.0856853 0.148411i
\(77\) −382.386 −0.565933
\(78\) 0 0
\(79\) 184.044 0.262109 0.131054 0.991375i \(-0.458164\pi\)
0.131054 + 0.991375i \(0.458164\pi\)
\(80\) −134.924 + 233.695i −0.188562 + 0.326598i
\(81\) −270.042 + 467.727i −0.370428 + 0.641600i
\(82\) −83.6947 144.964i −0.112714 0.195226i
\(83\) 1274.16 1.68503 0.842514 0.538675i \(-0.181075\pi\)
0.842514 + 0.538675i \(0.181075\pi\)
\(84\) 192.655 + 333.688i 0.250242 + 0.433432i
\(85\) −255.742 442.958i −0.326342 0.565242i
\(86\) 587.273 0.736364
\(87\) 1286.01 + 2227.43i 1.58476 + 2.74489i
\(88\) 140.771 243.823i 0.170525 0.295359i
\(89\) 683.717 1184.23i 0.814313 1.41043i −0.0955077 0.995429i \(-0.530447\pi\)
0.909820 0.415002i \(-0.136219\pi\)
\(90\) 1740.39 2.03837
\(91\) 0 0
\(92\) −98.6184 −0.111757
\(93\) 974.008 1687.03i 1.08602 1.88104i
\(94\) 166.211 287.886i 0.182376 0.315884i
\(95\) 239.367 + 414.597i 0.258511 + 0.447755i
\(96\) −283.695 −0.301609
\(97\) 345.120 + 597.766i 0.361254 + 0.625711i 0.988168 0.153378i \(-0.0490153\pi\)
−0.626913 + 0.779089i \(0.715682\pi\)
\(98\) 224.942 + 389.611i 0.231863 + 0.401598i
\(99\) −1815.82 −1.84340
\(100\) −318.887 552.329i −0.318887 0.552329i
\(101\) −697.604 + 1208.29i −0.687269 + 1.19039i 0.285448 + 0.958394i \(0.407857\pi\)
−0.972718 + 0.231992i \(0.925476\pi\)
\(102\) 268.865 465.689i 0.260997 0.452059i
\(103\) −1416.28 −1.35485 −0.677427 0.735590i \(-0.736905\pi\)
−0.677427 + 0.735590i \(0.736905\pi\)
\(104\) 0 0
\(105\) −1624.60 −1.50995
\(106\) 76.3855 132.304i 0.0699926 0.121231i
\(107\) −225.534 + 390.637i −0.203768 + 0.352937i −0.949740 0.313041i \(-0.898652\pi\)
0.745971 + 0.665978i \(0.231986\pi\)
\(108\) 436.116 + 755.376i 0.388568 + 0.673019i
\(109\) −1386.13 −1.21805 −0.609024 0.793152i \(-0.708439\pi\)
−0.609024 + 0.793152i \(0.708439\pi\)
\(110\) 593.542 + 1028.05i 0.514473 + 0.891093i
\(111\) 526.222 + 911.443i 0.449971 + 0.779372i
\(112\) 173.847 0.146670
\(113\) −764.389 1323.96i −0.636351 1.10219i −0.986227 0.165397i \(-0.947110\pi\)
0.349876 0.936796i \(-0.386224\pi\)
\(114\) −251.651 + 435.872i −0.206748 + 0.358098i
\(115\) 207.906 360.103i 0.168585 0.291998i
\(116\) 1160.47 0.928849
\(117\) 0 0
\(118\) 369.382 0.288172
\(119\) −164.760 + 285.373i −0.126920 + 0.219833i
\(120\) 598.080 1035.91i 0.454975 0.788040i
\(121\) 46.2348 + 80.0811i 0.0347369 + 0.0601661i
\(122\) 395.622 0.293590
\(123\) 370.996 + 642.584i 0.271964 + 0.471056i
\(124\) −439.462 761.170i −0.318265 0.551251i
\(125\) 580.909 0.415665
\(126\) −560.618 971.020i −0.396380 0.686550i
\(127\) 723.833 1253.72i 0.505747 0.875979i −0.494231 0.869330i \(-0.664550\pi\)
0.999978 0.00664827i \(-0.00211622\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) −2603.22 −1.77675
\(130\) 0 0
\(131\) 631.877 0.421430 0.210715 0.977548i \(-0.432421\pi\)
0.210715 + 0.977548i \(0.432421\pi\)
\(132\) −624.000 + 1080.80i −0.411456 + 0.712663i
\(133\) 154.211 267.101i 0.100540 0.174140i
\(134\) −321.273 556.461i −0.207118 0.358738i
\(135\) −3677.65 −2.34461
\(136\) −121.309 210.114i −0.0764866 0.132479i
\(137\) 273.709 + 474.078i 0.170690 + 0.295644i 0.938661 0.344841i \(-0.112067\pi\)
−0.767971 + 0.640484i \(0.778734\pi\)
\(138\) 437.149 0.269656
\(139\) 338.535 + 586.360i 0.206577 + 0.357801i 0.950634 0.310315i \(-0.100434\pi\)
−0.744057 + 0.668116i \(0.767101\pi\)
\(140\) −366.502 + 634.800i −0.221250 + 0.383217i
\(141\) −736.768 + 1276.12i −0.440050 + 0.762189i
\(142\) −737.891 −0.436074
\(143\) 0 0
\(144\) 825.542 0.477744
\(145\) −2446.47 + 4237.42i −1.40116 + 2.42688i
\(146\) −843.273 + 1460.59i −0.478012 + 0.827941i
\(147\) −997.106 1727.04i −0.559455 0.969005i
\(148\) 474.851 0.263733
\(149\) 142.167 + 246.240i 0.0781662 + 0.135388i 0.902459 0.430776i \(-0.141760\pi\)
−0.824293 + 0.566164i \(0.808427\pi\)
\(150\) 1413.54 + 2448.33i 0.769435 + 1.33270i
\(151\) 2708.68 1.45980 0.729899 0.683555i \(-0.239567\pi\)
0.729899 + 0.683555i \(0.239567\pi\)
\(152\) 113.542 + 196.661i 0.0605887 + 0.104943i
\(153\) −782.389 + 1355.14i −0.413415 + 0.716055i
\(154\) 382.386 662.311i 0.200088 0.346562i
\(155\) 3705.86 1.92040
\(156\) 0 0
\(157\) −883.775 −0.449254 −0.224627 0.974445i \(-0.572116\pi\)
−0.224627 + 0.974445i \(0.572116\pi\)
\(158\) −184.044 + 318.774i −0.0926693 + 0.160508i
\(159\) −338.596 + 586.466i −0.168883 + 0.292514i
\(160\) −269.847 467.389i −0.133333 0.230940i
\(161\) −267.884 −0.131132
\(162\) −540.084 935.453i −0.261932 0.453680i
\(163\) 1670.39 + 2893.20i 0.802669 + 1.39026i 0.917854 + 0.396919i \(0.129921\pi\)
−0.115185 + 0.993344i \(0.536746\pi\)
\(164\) 334.779 0.159401
\(165\) −2631.01 4557.05i −1.24136 2.15009i
\(166\) −1274.16 + 2206.91i −0.595747 + 1.03186i
\(167\) −908.259 + 1573.15i −0.420857 + 0.728946i −0.996024 0.0890903i \(-0.971604\pi\)
0.575166 + 0.818037i \(0.304937\pi\)
\(168\) −770.618 −0.353896
\(169\) 0 0
\(170\) 1022.97 0.461518
\(171\) 732.295 1268.37i 0.327485 0.567221i
\(172\) −587.273 + 1017.19i −0.260344 + 0.450929i
\(173\) 492.120 + 852.377i 0.216273 + 0.374596i 0.953666 0.300869i \(-0.0972766\pi\)
−0.737393 + 0.675464i \(0.763943\pi\)
\(174\) −5144.03 −2.24120
\(175\) −866.215 1500.33i −0.374170 0.648081i
\(176\) 281.542 + 487.645i 0.120580 + 0.208850i
\(177\) −1637.37 −0.695323
\(178\) 1367.43 + 2368.46i 0.575806 + 0.997325i
\(179\) 1888.66 3271.25i 0.788631 1.36595i −0.138174 0.990408i \(-0.544123\pi\)
0.926805 0.375542i \(-0.122543\pi\)
\(180\) −1740.39 + 3014.45i −0.720674 + 1.24824i
\(181\) 2329.80 0.956754 0.478377 0.878154i \(-0.341225\pi\)
0.478377 + 0.878154i \(0.341225\pi\)
\(182\) 0 0
\(183\) −1753.69 −0.708395
\(184\) 98.6184 170.812i 0.0395122 0.0684371i
\(185\) −1001.07 + 1733.91i −0.397840 + 0.689079i
\(186\) 1948.02 + 3374.06i 0.767932 + 1.33010i
\(187\) −1067.30 −0.417373
\(188\) 332.422 + 575.771i 0.128959 + 0.223364i
\(189\) 1184.65 + 2051.88i 0.455930 + 0.789693i
\(190\) −957.470 −0.365590
\(191\) 2305.96 + 3994.05i 0.873579 + 1.51308i 0.858268 + 0.513201i \(0.171541\pi\)
0.0153112 + 0.999883i \(0.495126\pi\)
\(192\) 283.695 491.374i 0.106635 0.184697i
\(193\) −476.400 + 825.148i −0.177679 + 0.307749i −0.941085 0.338170i \(-0.890192\pi\)
0.763406 + 0.645919i \(0.223525\pi\)
\(194\) −1380.48 −0.510891
\(195\) 0 0
\(196\) −899.767 −0.327903
\(197\) −1025.27 + 1775.82i −0.370799 + 0.642243i −0.989689 0.143235i \(-0.954250\pi\)
0.618889 + 0.785478i \(0.287583\pi\)
\(198\) 1815.82 3145.09i 0.651741 1.12885i
\(199\) 1292.65 + 2238.94i 0.460472 + 0.797560i 0.998984 0.0450571i \(-0.0143470\pi\)
−0.538513 + 0.842617i \(0.681014\pi\)
\(200\) 1275.55 0.450975
\(201\) 1424.12 + 2466.64i 0.499748 + 0.865590i
\(202\) −1395.21 2416.57i −0.485973 0.841730i
\(203\) 3152.25 1.08987
\(204\) 537.731 + 931.377i 0.184552 + 0.319654i
\(205\) −705.775 + 1222.44i −0.240456 + 0.416482i
\(206\) 1416.28 2453.06i 0.479013 0.829675i
\(207\) −1272.09 −0.427132
\(208\) 0 0
\(209\) 998.965 0.330621
\(210\) 1624.60 2813.90i 0.533849 0.924654i
\(211\) 878.113 1520.94i 0.286501 0.496235i −0.686471 0.727157i \(-0.740841\pi\)
0.972972 + 0.230922i \(0.0741743\pi\)
\(212\) 152.771 + 264.607i 0.0494923 + 0.0857231i
\(213\) 3270.87 1.05219
\(214\) −451.068 781.274i −0.144086 0.249564i
\(215\) −2476.16 4288.83i −0.785454 1.36045i
\(216\) −1744.47 −0.549518
\(217\) −1193.74 2067.62i −0.373439 0.646815i
\(218\) 1386.13 2400.85i 0.430645 0.745899i
\(219\) 3738.00 6474.41i 1.15338 1.99772i
\(220\) −2374.17 −0.727575
\(221\) 0 0
\(222\) −2104.89 −0.636355
\(223\) −1019.06 + 1765.07i −0.306015 + 0.530034i −0.977487 0.210996i \(-0.932329\pi\)
0.671472 + 0.741030i \(0.265663\pi\)
\(224\) −173.847 + 301.112i −0.0518556 + 0.0898166i
\(225\) −4113.36 7124.55i −1.21877 2.11098i
\(226\) 3057.56 0.899937
\(227\) 2345.93 + 4063.26i 0.685923 + 1.18805i 0.973146 + 0.230190i \(0.0739347\pi\)
−0.287223 + 0.957864i \(0.592732\pi\)
\(228\) −503.301 871.744i −0.146193 0.253213i
\(229\) 576.154 0.166259 0.0831296 0.996539i \(-0.473508\pi\)
0.0831296 + 0.996539i \(0.473508\pi\)
\(230\) 415.811 + 720.206i 0.119208 + 0.206474i
\(231\) −1695.01 + 2935.85i −0.482786 + 0.836210i
\(232\) −1160.47 + 2009.99i −0.328398 + 0.568802i
\(233\) 724.319 0.203656 0.101828 0.994802i \(-0.467531\pi\)
0.101828 + 0.994802i \(0.467531\pi\)
\(234\) 0 0
\(235\) −2803.22 −0.778137
\(236\) −369.382 + 639.788i −0.101884 + 0.176469i
\(237\) 815.818 1413.04i 0.223599 0.387285i
\(238\) −329.520 570.745i −0.0897463 0.155445i
\(239\) 3137.80 0.849237 0.424619 0.905372i \(-0.360408\pi\)
0.424619 + 0.905372i \(0.360408\pi\)
\(240\) 1196.16 + 2071.81i 0.321716 + 0.557228i
\(241\) 881.869 + 1527.44i 0.235710 + 0.408262i 0.959479 0.281781i \(-0.0909250\pi\)
−0.723769 + 0.690043i \(0.757592\pi\)
\(242\) −184.939 −0.0491254
\(243\) −549.739 952.175i −0.145127 0.251367i
\(244\) −395.622 + 685.238i −0.103800 + 0.179786i
\(245\) 1896.87 3285.48i 0.494640 0.856742i
\(246\) −1483.98 −0.384615
\(247\) 0 0
\(248\) 1757.85 0.450094
\(249\) 5648.01 9782.64i 1.43746 2.48976i
\(250\) −580.909 + 1006.16i −0.146960 + 0.254542i
\(251\) 823.004 + 1425.48i 0.206962 + 0.358469i 0.950756 0.309940i \(-0.100309\pi\)
−0.743794 + 0.668409i \(0.766976\pi\)
\(252\) 2242.47 0.560566
\(253\) −433.832 751.419i −0.107805 0.186724i
\(254\) 1447.67 + 2507.43i 0.357617 + 0.619410i
\(255\) −4534.54 −1.11358
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 3207.86 5556.18i 0.778603 1.34858i −0.154144 0.988048i \(-0.549262\pi\)
0.932747 0.360532i \(-0.117405\pi\)
\(258\) 2603.22 4508.91i 0.628177 1.08803i
\(259\) 1289.87 0.309454
\(260\) 0 0
\(261\) 14969.0 3.55002
\(262\) −631.877 + 1094.44i −0.148998 + 0.258072i
\(263\) 1830.24 3170.07i 0.429116 0.743251i −0.567679 0.823250i \(-0.692159\pi\)
0.996795 + 0.0799995i \(0.0254919\pi\)
\(264\) −1248.00 2161.60i −0.290944 0.503929i
\(265\) −1288.28 −0.298635
\(266\) 308.422 + 534.202i 0.0710923 + 0.123135i
\(267\) −6061.46 10498.8i −1.38935 2.40642i
\(268\) 1285.09 0.292909
\(269\) 2822.65 + 4888.98i 0.639777 + 1.10813i 0.985481 + 0.169783i \(0.0543068\pi\)
−0.345704 + 0.938344i \(0.612360\pi\)
\(270\) 3677.65 6369.88i 0.828944 1.43577i
\(271\) −3335.93 + 5778.01i −0.747762 + 1.29516i 0.201131 + 0.979564i \(0.435538\pi\)
−0.948893 + 0.315598i \(0.897795\pi\)
\(272\) 485.237 0.108168
\(273\) 0 0
\(274\) −1094.84 −0.241392
\(275\) 2805.63 4859.50i 0.615222 1.06560i
\(276\) −437.149 + 757.164i −0.0953379 + 0.165130i
\(277\) 1452.70 + 2516.14i 0.315105 + 0.545778i 0.979460 0.201640i \(-0.0646270\pi\)
−0.664355 + 0.747417i \(0.731294\pi\)
\(278\) −1354.14 −0.292144
\(279\) −5668.66 9818.41i −1.21639 2.10686i
\(280\) −733.004 1269.60i −0.156448 0.270975i
\(281\) −8009.76 −1.70044 −0.850218 0.526431i \(-0.823530\pi\)
−0.850218 + 0.526431i \(0.823530\pi\)
\(282\) −1473.54 2552.24i −0.311162 0.538949i
\(283\) −1853.86 + 3210.97i −0.389400 + 0.674461i −0.992369 0.123304i \(-0.960651\pi\)
0.602969 + 0.797765i \(0.293984\pi\)
\(284\) 737.891 1278.07i 0.154175 0.267040i
\(285\) 4244.20 0.882123
\(286\) 0 0
\(287\) 909.382 0.187035
\(288\) −825.542 + 1429.88i −0.168908 + 0.292557i
\(289\) 1996.63 3458.26i 0.406397 0.703900i
\(290\) −4892.95 8474.83i −0.990772 1.71607i
\(291\) 6119.30 1.23271
\(292\) −1686.55 2921.18i −0.338006 0.585443i
\(293\) −836.999 1449.73i −0.166887 0.289058i 0.770437 0.637517i \(-0.220038\pi\)
−0.937324 + 0.348459i \(0.886705\pi\)
\(294\) 3988.42 0.791189
\(295\) −1557.45 2697.58i −0.307383 0.532404i
\(296\) −474.851 + 822.467i −0.0932438 + 0.161503i
\(297\) −3837.04 + 6645.94i −0.749654 + 1.29844i
\(298\) −568.667 −0.110544
\(299\) 0 0
\(300\) −5654.17 −1.08815
\(301\) −1595.25 + 2763.05i −0.305477 + 0.529102i
\(302\) −2708.68 + 4691.58i −0.516117 + 0.893941i
\(303\) 6184.58 + 10712.0i 1.17259 + 2.03099i
\(304\) −454.168 −0.0856853
\(305\) −1668.09 2889.21i −0.313162 0.542413i
\(306\) −1564.78 2710.28i −0.292328 0.506327i
\(307\) −299.935 −0.0557597 −0.0278798 0.999611i \(-0.508876\pi\)
−0.0278798 + 0.999611i \(0.508876\pi\)
\(308\) 764.771 + 1324.62i 0.141483 + 0.245056i
\(309\) −6277.97 + 10873.8i −1.15580 + 2.00190i
\(310\) −3705.86 + 6418.74i −0.678964 + 1.17600i
\(311\) −890.140 −0.162300 −0.0811498 0.996702i \(-0.525859\pi\)
−0.0811498 + 0.996702i \(0.525859\pi\)
\(312\) 0 0
\(313\) −1154.20 −0.208432 −0.104216 0.994555i \(-0.533233\pi\)
−0.104216 + 0.994555i \(0.533233\pi\)
\(314\) 883.775 1530.74i 0.158835 0.275111i
\(315\) −4727.54 + 8188.35i −0.845609 + 1.46464i
\(316\) −368.088 637.547i −0.0655271 0.113496i
\(317\) 2708.86 0.479951 0.239976 0.970779i \(-0.422861\pi\)
0.239976 + 0.970779i \(0.422861\pi\)
\(318\) −677.193 1172.93i −0.119419 0.206839i
\(319\) 5105.00 + 8842.12i 0.896003 + 1.55192i
\(320\) 1079.39 0.188562
\(321\) 1999.46 + 3463.17i 0.347661 + 0.602167i
\(322\) 267.884 463.988i 0.0463620 0.0803014i
\(323\) 430.428 745.523i 0.0741475 0.128427i
\(324\) 2160.34 0.370428
\(325\) 0 0
\(326\) −6681.56 −1.13514
\(327\) −6144.34 + 10642.3i −1.03909 + 1.79976i
\(328\) −334.779 + 579.854i −0.0563569 + 0.0976131i
\(329\) 902.979 + 1564.01i 0.151316 + 0.262086i
\(330\) 10524.0 1.75554
\(331\) −4093.56 7090.26i −0.679766 1.17739i −0.975051 0.221980i \(-0.928748\pi\)
0.295285 0.955409i \(-0.404585\pi\)
\(332\) −2548.32 4413.82i −0.421257 0.729638i
\(333\) 6125.15 1.00798
\(334\) −1816.52 3146.30i −0.297591 0.515443i
\(335\) −2709.21 + 4692.49i −0.441850 + 0.765307i
\(336\) 770.618 1334.75i 0.125121 0.216716i
\(337\) −8770.94 −1.41776 −0.708878 0.705331i \(-0.750798\pi\)
−0.708878 + 0.705331i \(0.750798\pi\)
\(338\) 0 0
\(339\) −13553.3 −2.17143
\(340\) −1022.97 + 1771.83i −0.163171 + 0.282621i
\(341\) 3866.47 6696.92i 0.614021 1.06351i
\(342\) 1464.59 + 2536.74i 0.231567 + 0.401086i
\(343\) −6170.95 −0.971428
\(344\) −1174.55 2034.37i −0.184091 0.318855i
\(345\) −1843.18 3192.48i −0.287633 0.498195i
\(346\) −1968.48 −0.305856
\(347\) 2139.48 + 3705.69i 0.330989 + 0.573290i 0.982706 0.185172i \(-0.0592843\pi\)
−0.651717 + 0.758462i \(0.725951\pi\)
\(348\) 5144.03 8909.72i 0.792382 1.37245i
\(349\) −3090.73 + 5353.30i −0.474049 + 0.821076i −0.999559 0.0297111i \(-0.990541\pi\)
0.525510 + 0.850788i \(0.323875\pi\)
\(350\) 3464.86 0.529156
\(351\) 0 0
\(352\) −1126.17 −0.170525
\(353\) 2735.80 4738.55i 0.412499 0.714469i −0.582663 0.812714i \(-0.697989\pi\)
0.995162 + 0.0982443i \(0.0313226\pi\)
\(354\) 1637.37 2836.01i 0.245834 0.425797i
\(355\) 3111.22 + 5388.79i 0.465145 + 0.805654i
\(356\) −5469.73 −0.814313
\(357\) 1460.67 + 2529.96i 0.216546 + 0.375069i
\(358\) 3777.32 + 6542.51i 0.557647 + 0.965872i
\(359\) 6398.77 0.940709 0.470354 0.882478i \(-0.344126\pi\)
0.470354 + 0.882478i \(0.344126\pi\)
\(360\) −3480.79 6028.90i −0.509593 0.882641i
\(361\) 3026.63 5242.28i 0.441264 0.764292i
\(362\) −2329.80 + 4035.33i −0.338264 + 0.585890i
\(363\) 819.786 0.118533
\(364\) 0 0
\(365\) 14222.2 2.03952
\(366\) 1753.69 3037.47i 0.250455 0.433802i
\(367\) −4818.10 + 8345.19i −0.685293 + 1.18696i 0.288052 + 0.957615i \(0.406993\pi\)
−0.973345 + 0.229348i \(0.926341\pi\)
\(368\) 197.237 + 341.624i 0.0279393 + 0.0483924i
\(369\) 4318.34 0.609225
\(370\) −2002.15 3467.82i −0.281315 0.487252i
\(371\) 414.982 + 718.770i 0.0580722 + 0.100584i
\(372\) −7792.06 −1.08602
\(373\) −4403.94 7627.84i −0.611333 1.05886i −0.991016 0.133743i \(-0.957300\pi\)
0.379683 0.925117i \(-0.376033\pi\)
\(374\) 1067.30 1848.62i 0.147564 0.255588i
\(375\) 2575.01 4460.06i 0.354595 0.614177i
\(376\) −1329.69 −0.182376
\(377\) 0 0
\(378\) −4738.61 −0.644782
\(379\) 4339.48 7516.19i 0.588137 1.01868i −0.406339 0.913722i \(-0.633195\pi\)
0.994476 0.104961i \(-0.0334718\pi\)
\(380\) 957.470 1658.39i 0.129256 0.223877i
\(381\) −6417.11 11114.8i −0.862884 1.49456i
\(382\) −9223.86 −1.23543
\(383\) 1356.15 + 2348.92i 0.180930 + 0.313380i 0.942197 0.335058i \(-0.108756\pi\)
−0.761268 + 0.648438i \(0.775423\pi\)
\(384\) 567.389 + 982.747i 0.0754023 + 0.130601i
\(385\) −6449.11 −0.853706
\(386\) −952.799 1650.30i −0.125638 0.217611i
\(387\) −7575.29 + 13120.8i −0.995022 + 1.72343i
\(388\) 1380.48 2391.06i 0.180627 0.312855i
\(389\) −290.941 −0.0379211 −0.0189605 0.999820i \(-0.506036\pi\)
−0.0189605 + 0.999820i \(0.506036\pi\)
\(390\) 0 0
\(391\) −747.707 −0.0967089
\(392\) 899.767 1558.44i 0.115931 0.200799i
\(393\) 2800.94 4851.37i 0.359513 0.622696i
\(394\) −2050.54 3551.64i −0.262195 0.454134i
\(395\) 3103.99 0.395389
\(396\) 3631.64 + 6290.18i 0.460850 + 0.798216i
\(397\) −7057.01 12223.1i −0.892144 1.54524i −0.837300 0.546743i \(-0.815867\pi\)
−0.0548436 0.998495i \(-0.517466\pi\)
\(398\) −5170.62 −0.651205
\(399\) −1367.15 2367.97i −0.171537 0.297110i
\(400\) −1275.55 + 2209.32i −0.159444 + 0.276165i
\(401\) 5671.01 9822.47i 0.706226 1.22322i −0.260022 0.965603i \(-0.583730\pi\)
0.966247 0.257616i \(-0.0829369\pi\)
\(402\) −5696.47 −0.706751
\(403\) 0 0
\(404\) 5580.83 0.687269
\(405\) −4554.38 + 7888.42i −0.558788 + 0.967849i
\(406\) −3152.25 + 5459.85i −0.385329 + 0.667409i
\(407\) 2088.92 + 3618.11i 0.254407 + 0.440646i
\(408\) −2150.92 −0.260997
\(409\) −2343.47 4059.01i −0.283318 0.490721i 0.688882 0.724874i \(-0.258102\pi\)
−0.972200 + 0.234152i \(0.924769\pi\)
\(410\) −1411.55 2444.88i −0.170028 0.294497i
\(411\) 4853.11 0.582448
\(412\) 2832.55 + 4906.13i 0.338713 + 0.586669i
\(413\) −1003.38 + 1737.90i −0.119547 + 0.207061i
\(414\) 1272.09 2203.32i 0.151014 0.261564i
\(415\) 21489.3 2.54185
\(416\) 0 0
\(417\) 6002.54 0.704905
\(418\) −998.965 + 1730.26i −0.116892 + 0.202463i
\(419\) −5944.84 + 10296.8i −0.693137 + 1.20055i 0.277668 + 0.960677i \(0.410438\pi\)
−0.970805 + 0.239871i \(0.922895\pi\)
\(420\) 3249.21 + 5627.79i 0.377488 + 0.653829i
\(421\) −4755.64 −0.550536 −0.275268 0.961367i \(-0.588767\pi\)
−0.275268 + 0.961367i \(0.588767\pi\)
\(422\) 1756.23 + 3041.87i 0.202587 + 0.350891i
\(423\) 4287.94 + 7426.93i 0.492876 + 0.853687i
\(424\) −611.084 −0.0699926
\(425\) −2417.75 4187.66i −0.275948 0.477957i
\(426\) −3270.87 + 5665.32i −0.372005 + 0.644332i
\(427\) −1074.65 + 1861.36i −0.121794 + 0.210954i
\(428\) 1804.27 0.203768
\(429\) 0 0
\(430\) 9904.63 1.11080
\(431\) 2189.06 3791.57i 0.244649 0.423744i −0.717384 0.696678i \(-0.754661\pi\)
0.962033 + 0.272934i \(0.0879941\pi\)
\(432\) 1744.47 3021.50i 0.194284 0.336510i
\(433\) −7788.16 13489.5i −0.864377 1.49715i −0.867664 0.497150i \(-0.834380\pi\)
0.00328725 0.999995i \(-0.498954\pi\)
\(434\) 4774.96 0.528123
\(435\) 21689.1 + 37566.6i 2.39061 + 4.14065i
\(436\) 2772.26 + 4801.70i 0.304512 + 0.527430i
\(437\) 699.834 0.0766077
\(438\) 7476.00 + 12948.8i 0.815564 + 1.41260i
\(439\) 6737.38 11669.5i 0.732477 1.26869i −0.223345 0.974740i \(-0.571698\pi\)
0.955822 0.293948i \(-0.0949692\pi\)
\(440\) 2374.17 4112.18i 0.257236 0.445547i
\(441\) −11606.2 −1.25323
\(442\) 0 0
\(443\) −24.4564 −0.00262294 −0.00131147 0.999999i \(-0.500417\pi\)
−0.00131147 + 0.999999i \(0.500417\pi\)
\(444\) 2104.89 3645.77i 0.224985 0.389686i
\(445\) 11531.2 19972.6i 1.22838 2.12762i
\(446\) −2038.12 3530.13i −0.216385 0.374791i
\(447\) 2520.75 0.266728
\(448\) −347.695 602.225i −0.0366675 0.0635099i
\(449\) 6818.36 + 11809.7i 0.716655 + 1.24128i 0.962318 + 0.271928i \(0.0876613\pi\)
−0.245662 + 0.969356i \(0.579005\pi\)
\(450\) 16453.4 1.72361
\(451\) 1472.72 + 2550.83i 0.153765 + 0.266328i
\(452\) −3057.56 + 5295.85i −0.318176 + 0.551096i
\(453\) 12006.9 20796.5i 1.24532 2.15696i
\(454\) −9383.70 −0.970042
\(455\) 0 0
\(456\) 2013.21 0.206748
\(457\) −6690.26 + 11587.9i −0.684808 + 1.18612i 0.288689 + 0.957423i \(0.406781\pi\)
−0.973497 + 0.228699i \(0.926553\pi\)
\(458\) −576.154 + 997.928i −0.0587815 + 0.101812i
\(459\) 3306.56 + 5727.13i 0.336246 + 0.582395i
\(460\) −1663.24 −0.168585
\(461\) 3391.27 + 5873.86i 0.342619 + 0.593434i 0.984918 0.173020i \(-0.0553526\pi\)
−0.642299 + 0.766454i \(0.722019\pi\)
\(462\) −3390.02 5871.69i −0.341381 0.591290i
\(463\) −10966.2 −1.10074 −0.550368 0.834922i \(-0.685512\pi\)
−0.550368 + 0.834922i \(0.685512\pi\)
\(464\) −2320.93 4019.97i −0.232212 0.402204i
\(465\) 16427.1 28452.6i 1.63825 2.83754i
\(466\) −724.319 + 1254.56i −0.0720031 + 0.124713i
\(467\) −609.640 −0.0604085 −0.0302043 0.999544i \(-0.509616\pi\)
−0.0302043 + 0.999544i \(0.509616\pi\)
\(468\) 0 0
\(469\) 3490.78 0.343687
\(470\) 2803.22 4855.32i 0.275113 0.476509i
\(471\) −3917.54 + 6785.37i −0.383250 + 0.663808i
\(472\) −738.763 1279.58i −0.0720431 0.124782i
\(473\) −10333.9 −1.00455
\(474\) 1631.64 + 2826.07i 0.158109 + 0.273852i
\(475\) 2262.95 + 3919.54i 0.218592 + 0.378612i
\(476\) 1318.08 0.126920
\(477\) 1970.61 + 3413.19i 0.189157 + 0.327630i
\(478\) −3137.80 + 5434.84i −0.300251 + 0.520050i
\(479\) −4202.64 + 7279.19i −0.400884 + 0.694352i −0.993833 0.110888i \(-0.964630\pi\)
0.592949 + 0.805240i \(0.297964\pi\)
\(480\) −4784.64 −0.454975
\(481\) 0 0
\(482\) −3527.48 −0.333345
\(483\) −1187.46 + 2056.73i −0.111866 + 0.193757i
\(484\) 184.939 320.324i 0.0173685 0.0300831i
\(485\) 5820.61 + 10081.6i 0.544949 + 0.943880i
\(486\) 2198.96 0.205240
\(487\) −8080.22 13995.4i −0.751848 1.30224i −0.946926 0.321451i \(-0.895830\pi\)
0.195079 0.980788i \(-0.437504\pi\)
\(488\) −791.245 1370.48i −0.0733975 0.127128i
\(489\) 29617.5 2.73896
\(490\) 3793.75 + 6570.96i 0.349763 + 0.605808i
\(491\) −3213.48 + 5565.91i −0.295361 + 0.511581i −0.975069 0.221903i \(-0.928773\pi\)
0.679708 + 0.733483i \(0.262107\pi\)
\(492\) 1483.98 2570.34i 0.135982 0.235528i
\(493\) 8798.45 0.803777
\(494\) 0 0
\(495\) −30624.6 −2.78076
\(496\) −1757.85 + 3044.68i −0.159132 + 0.275625i
\(497\) 2004.38 3471.69i 0.180903 0.313333i
\(498\) 11296.0 + 19565.3i 1.01644 + 1.76052i
\(499\) −15240.3 −1.36724 −0.683618 0.729840i \(-0.739595\pi\)
−0.683618 + 0.729840i \(0.739595\pi\)
\(500\) −1161.82 2012.33i −0.103916 0.179988i
\(501\) 8052.13 + 13946.7i 0.718049 + 1.24370i
\(502\) −3292.02 −0.292689
\(503\) −5202.00 9010.14i −0.461125 0.798692i 0.537892 0.843014i \(-0.319221\pi\)
−0.999017 + 0.0443215i \(0.985887\pi\)
\(504\) −2242.47 + 3884.08i −0.198190 + 0.343275i
\(505\) −11765.4 + 20378.3i −1.03674 + 1.79569i
\(506\) 1735.33 0.152460
\(507\) 0 0
\(508\) −5790.67 −0.505747
\(509\) 7311.67 12664.2i 0.636707 1.10281i −0.349443 0.936957i \(-0.613629\pi\)
0.986151 0.165852i \(-0.0530373\pi\)
\(510\) 4534.54 7854.05i 0.393711 0.681928i
\(511\) −4581.27 7935.00i −0.396602 0.686935i
\(512\) 512.000 0.0441942
\(513\) −3094.85 5360.43i −0.266356 0.461343i
\(514\) 6415.73 + 11112.4i 0.550556 + 0.953590i
\(515\) −23886.2 −2.04379
\(516\) 5206.45 + 9017.83i 0.444188 + 0.769356i
\(517\) −2924.71 + 5065.75i −0.248798 + 0.430931i
\(518\) −1289.87 + 2234.12i −0.109409 + 0.189501i
\(519\) 8725.75 0.737992
\(520\) 0 0
\(521\) −19937.9 −1.67657 −0.838285 0.545232i \(-0.816442\pi\)
−0.838285 + 0.545232i \(0.816442\pi\)
\(522\) −14969.0 + 25927.0i −1.25512 + 2.17393i
\(523\) −2163.50 + 3747.29i −0.180886 + 0.313303i −0.942182 0.335101i \(-0.891230\pi\)
0.761297 + 0.648404i \(0.224563\pi\)
\(524\) −1263.75 2188.89i −0.105358 0.182485i
\(525\) −15358.8 −1.27679
\(526\) 3660.48 + 6340.14i 0.303431 + 0.525557i
\(527\) −3331.92 5771.06i −0.275410 0.477023i
\(528\) 4992.00 0.411456
\(529\) 5779.58 + 10010.5i 0.475021 + 0.822760i
\(530\) 1288.28 2231.36i 0.105583 0.182876i
\(531\) −4764.69 + 8252.68i −0.389397 + 0.674456i
\(532\) −1233.69 −0.100540
\(533\) 0 0
\(534\) 24245.9 1.96483
\(535\) −3803.74 + 6588.27i −0.307383 + 0.532403i
\(536\) −1285.09 + 2225.84i −0.103559 + 0.179369i
\(537\) −16743.8 29001.2i −1.34553 2.33053i
\(538\) −11290.6 −0.904782
\(539\) −3958.16 6855.74i −0.316308 0.547862i
\(540\) 7355.30 + 12739.8i 0.586152 + 1.01524i
\(541\) −2602.93 −0.206855 −0.103428 0.994637i \(-0.532981\pi\)
−0.103428 + 0.994637i \(0.532981\pi\)
\(542\) −6671.87 11556.0i −0.528748 0.915818i
\(543\) 10327.4 17887.5i 0.816187 1.41368i
\(544\) −485.237 + 840.455i −0.0382433 + 0.0662393i
\(545\) −23377.7 −1.83742
\(546\) 0 0
\(547\) 11225.3 0.877441 0.438720 0.898624i \(-0.355432\pi\)
0.438720 + 0.898624i \(0.355432\pi\)
\(548\) 1094.84 1896.31i 0.0853450 0.147822i
\(549\) −5103.17 + 8838.95i −0.396718 + 0.687135i
\(550\) 5611.27 + 9719.00i 0.435028 + 0.753490i
\(551\) −8235.11 −0.636710
\(552\) −874.297 1514.33i −0.0674141 0.116765i
\(553\) −999.862 1731.81i −0.0768869 0.133172i
\(554\) −5810.78 −0.445626
\(555\) 8874.97 + 15371.9i 0.678778 + 1.17568i
\(556\) 1354.14 2345.44i 0.103288 0.178901i
\(557\) −4124.42 + 7143.70i −0.313747 + 0.543426i −0.979170 0.203040i \(-0.934918\pi\)
0.665423 + 0.746466i \(0.268251\pi\)
\(558\) 22674.6 1.72024
\(559\) 0 0
\(560\) 2932.02 0.221250
\(561\) −4731.06 + 8194.43i −0.356053 + 0.616701i
\(562\) 8009.76 13873.3i 0.601195 1.04130i
\(563\) 846.532 + 1466.24i 0.0633696 + 0.109759i 0.895970 0.444115i \(-0.146482\pi\)
−0.832600 + 0.553875i \(0.813149\pi\)
\(564\) 5894.14 0.440050
\(565\) −12891.8 22329.2i −0.959931 1.66265i
\(566\) −3707.71 6421.94i −0.275348 0.476916i
\(567\) 5868.26 0.434645
\(568\) 1475.78 + 2556.13i 0.109018 + 0.188825i
\(569\) −4125.77 + 7146.05i −0.303974 + 0.526499i −0.977032 0.213091i \(-0.931647\pi\)
0.673058 + 0.739590i \(0.264980\pi\)
\(570\) −4244.20 + 7351.18i −0.311877 + 0.540188i
\(571\) −23153.2 −1.69691 −0.848453 0.529271i \(-0.822466\pi\)
−0.848453 + 0.529271i \(0.822466\pi\)
\(572\) 0 0
\(573\) 40886.9 2.98093
\(574\) −909.382 + 1575.10i −0.0661269 + 0.114535i
\(575\) 1965.51 3404.36i 0.142552 0.246908i
\(576\) −1651.08 2859.76i −0.119436 0.206869i
\(577\) 2058.46 0.148518 0.0742590 0.997239i \(-0.476341\pi\)
0.0742590 + 0.997239i \(0.476341\pi\)
\(578\) 3993.25 + 6916.52i 0.287366 + 0.497732i
\(579\) 4223.50 + 7315.32i 0.303148 + 0.525068i
\(580\) 19571.8 1.40116
\(581\) −6922.17 11989.5i −0.494286 0.856128i
\(582\) −6119.30 + 10598.9i −0.435830 + 0.754880i
\(583\) −1344.11 + 2328.06i −0.0954842 + 0.165383i
\(584\) 6746.18 0.478012
\(585\) 0 0
\(586\) 3348.00 0.236014
\(587\) −6430.86 + 11138.6i −0.452180 + 0.783200i −0.998521 0.0543635i \(-0.982687\pi\)
0.546341 + 0.837563i \(0.316020\pi\)
\(588\) −3988.42 + 6908.15i −0.279728 + 0.484503i
\(589\) 3118.59 + 5401.55i 0.218165 + 0.377873i
\(590\) 6229.79 0.434706
\(591\) 9089.49 + 15743.5i 0.632642 + 1.09577i
\(592\) −949.703 1644.93i −0.0659333 0.114200i
\(593\) 18098.4 1.25331 0.626653 0.779298i \(-0.284424\pi\)
0.626653 + 0.779298i \(0.284424\pi\)
\(594\) −7674.07 13291.9i −0.530086 0.918135i
\(595\) −2778.75 + 4812.94i −0.191458 + 0.331616i
\(596\) 568.667 984.961i 0.0390831 0.0676939i
\(597\) 22920.0 1.57128
\(598\) 0 0
\(599\) −15338.0 −1.04623 −0.523115 0.852262i \(-0.675230\pi\)
−0.523115 + 0.852262i \(0.675230\pi\)
\(600\) 5654.17 9793.31i 0.384717 0.666350i
\(601\) −11144.7 + 19303.2i −0.756409 + 1.31014i 0.188262 + 0.982119i \(0.439715\pi\)
−0.944671 + 0.328020i \(0.893619\pi\)
\(602\) −3190.50 5526.10i −0.216005 0.374131i
\(603\) 16576.5 1.11948
\(604\) −5417.37 9383.16i −0.364950 0.632111i
\(605\) 779.772 + 1350.60i 0.0524004 + 0.0907601i
\(606\) −24738.3 −1.65829
\(607\) −3595.90 6228.29i −0.240450 0.416472i 0.720392 0.693567i \(-0.243962\pi\)
−0.960843 + 0.277095i \(0.910628\pi\)
\(608\) 454.168 786.643i 0.0302943 0.0524713i
\(609\) 13973.1 24202.1i 0.929749 1.61037i
\(610\) 6672.35 0.442878
\(611\) 0 0
\(612\) 6259.12 0.413415
\(613\) −398.529 + 690.272i −0.0262584 + 0.0454810i −0.878856 0.477087i \(-0.841693\pi\)
0.852598 + 0.522568i \(0.175026\pi\)
\(614\) 299.935 519.503i 0.0197140 0.0341457i
\(615\) 6257.02 + 10837.5i 0.410256 + 0.710584i
\(616\) −3059.08 −0.200088
\(617\) 10454.1 + 18107.1i 0.682120 + 1.18147i 0.974333 + 0.225113i \(0.0722752\pi\)
−0.292213 + 0.956353i \(0.594391\pi\)
\(618\) −12555.9 21747.5i −0.817272 1.41556i
\(619\) 12309.9 0.799315 0.399658 0.916665i \(-0.369129\pi\)
0.399658 + 0.916665i \(0.369129\pi\)
\(620\) −7411.73 12837.5i −0.480100 0.831558i
\(621\) −2688.07 + 4655.87i −0.173701 + 0.300859i
\(622\) 890.140 1541.77i 0.0573816 0.0993879i
\(623\) −14857.8 −0.955481
\(624\) 0 0
\(625\) −10133.2 −0.648522
\(626\) 1154.20 1999.13i 0.0736918 0.127638i
\(627\) 4428.14 7669.77i 0.282046 0.488518i
\(628\) 1767.55 + 3061.49i 0.112314 + 0.194533i
\(629\) 3600.24 0.228221
\(630\) −9455.09 16376.7i −0.597936 1.03566i
\(631\) 5166.33 + 8948.35i 0.325940 + 0.564545i 0.981702 0.190422i \(-0.0609858\pi\)
−0.655762 + 0.754968i \(0.727652\pi\)
\(632\) 1472.35 0.0926693
\(633\) −7784.88 13483.8i −0.488817 0.846656i
\(634\) −2708.86 + 4691.88i −0.169688 + 0.293909i
\(635\) 12207.8 21144.5i 0.762915 1.32141i
\(636\) 2708.77 0.168883
\(637\) 0 0
\(638\) −20420.0 −1.26714
\(639\) 9518.13 16485.9i 0.589251 1.02061i
\(640\) −1079.39 + 1869.56i −0.0666666 + 0.115470i
\(641\) −338.433 586.184i −0.0208539 0.0361199i 0.855410 0.517951i \(-0.173305\pi\)
−0.876264 + 0.481831i \(0.839972\pi\)
\(642\) −7997.86 −0.491667
\(643\) −13156.3 22787.4i −0.806897 1.39759i −0.915003 0.403448i \(-0.867812\pi\)
0.108105 0.994139i \(-0.465522\pi\)
\(644\) 535.767 + 927.976i 0.0327829 + 0.0567816i
\(645\) −43904.5 −2.68022
\(646\) 860.856 + 1491.05i 0.0524302 + 0.0908118i
\(647\) −84.9379 + 147.117i −0.00516113 + 0.00893934i −0.868594 0.495524i \(-0.834976\pi\)
0.863433 + 0.504463i \(0.168310\pi\)
\(648\) −2160.34 + 3741.81i −0.130966 + 0.226840i
\(649\) −6499.78 −0.393126
\(650\) 0 0
\(651\) −21166.1 −1.27429
\(652\) 6681.56 11572.8i 0.401334 0.695131i
\(653\) 7213.30 12493.8i 0.432279 0.748729i −0.564790 0.825235i \(-0.691043\pi\)
0.997069 + 0.0765053i \(0.0243762\pi\)
\(654\) −12288.7 21284.6i −0.734749 1.27262i
\(655\) 10656.9 0.635724
\(656\) −669.558 1159.71i −0.0398504 0.0690229i
\(657\) −21754.9 37680.6i −1.29184 2.23754i
\(658\) −3611.91 −0.213993
\(659\) 12605.9 + 21834.1i 0.745155 + 1.29065i 0.950122 + 0.311877i \(0.100958\pi\)
−0.204968 + 0.978769i \(0.565709\pi\)
\(660\) −10524.0 + 18228.2i −0.620679 + 1.07505i
\(661\) −11419.5 + 19779.2i −0.671963 + 1.16387i 0.305384 + 0.952229i \(0.401215\pi\)
−0.977347 + 0.211644i \(0.932118\pi\)
\(662\) 16374.2 0.961334
\(663\) 0 0
\(664\) 10193.3 0.595747
\(665\) 2600.84 4504.78i 0.151663 0.262689i
\(666\) −6125.15 + 10609.1i −0.356374 + 0.617257i
\(667\) 3576.35 + 6194.42i 0.207612 + 0.359594i
\(668\) 7266.07 0.420857
\(669\) 9034.45 + 15648.1i 0.522111 + 0.904322i
\(670\) −5418.42 9384.97i −0.312435 0.541154i
\(671\) −6961.52 −0.400516
\(672\) 1541.24 + 2669.50i 0.0884740 + 0.153241i
\(673\) 8354.10 14469.7i 0.478495 0.828777i −0.521201 0.853434i \(-0.674516\pi\)
0.999696 + 0.0246566i \(0.00784924\pi\)
\(674\) 8770.94 15191.7i 0.501252 0.868195i
\(675\) −34768.0 −1.98255
\(676\) 0 0
\(677\) −15842.6 −0.899378 −0.449689 0.893185i \(-0.648465\pi\)
−0.449689 + 0.893185i \(0.648465\pi\)
\(678\) 13553.3 23475.1i 0.767717 1.32973i
\(679\) 3749.89 6495.00i 0.211941 0.367092i
\(680\) −2045.94 3543.66i −0.115379 0.199843i
\(681\) 41595.4 2.34059
\(682\) 7732.94 + 13393.8i 0.434178 + 0.752019i
\(683\) −8233.63 14261.1i −0.461275 0.798952i 0.537750 0.843105i \(-0.319275\pi\)
−0.999025 + 0.0441525i \(0.985941\pi\)
\(684\) −5858.36 −0.327485
\(685\) 4616.23 + 7995.54i 0.257485 + 0.445976i
\(686\) 6170.95 10688.4i 0.343452 0.594876i
\(687\) 2553.94 4423.55i 0.141832 0.245661i
\(688\) 4698.18 0.260344
\(689\) 0 0
\(690\) 7372.71 0.406775
\(691\) 8265.50 14316.3i 0.455043 0.788157i −0.543648 0.839313i \(-0.682957\pi\)
0.998691 + 0.0511562i \(0.0162906\pi\)
\(692\) 1968.48 3409.51i 0.108136 0.187298i
\(693\) 9864.85 + 17086.4i 0.540743 + 0.936594i
\(694\) −8557.92 −0.468089
\(695\) 5709.55 + 9889.23i 0.311619 + 0.539741i
\(696\) 10288.1 + 17819.4i 0.560299 + 0.970466i
\(697\) 2538.23 0.137938
\(698\) −6181.46 10706.6i −0.335203 0.580589i
\(699\) 3210.71 5561.12i 0.173734 0.300917i
\(700\) −3464.86 + 6001.31i −0.187085 + 0.324040i
\(701\) −11032.2 −0.594409 −0.297205 0.954814i \(-0.596054\pi\)
−0.297205 + 0.954814i \(0.596054\pi\)
\(702\) 0 0
\(703\) −3369.72 −0.180785
\(704\) 1126.17 1950.58i 0.0602899 0.104425i
\(705\) −12425.9 + 21522.3i −0.663812 + 1.14976i
\(706\) 5471.61 + 9477.11i 0.291681 + 0.505206i
\(707\) 15159.6 0.806414
\(708\) 3274.74 + 5672.01i 0.173831 + 0.301084i
\(709\) −10489.6 18168.5i −0.555633 0.962385i −0.997854 0.0654790i \(-0.979142\pi\)
0.442220 0.896906i \(-0.354191\pi\)
\(710\) −12444.9 −0.657814
\(711\) −4748.00 8223.78i −0.250442 0.433778i
\(712\) 5469.73 9473.86i 0.287903 0.498663i
\(713\) 2708.69 4691.59i 0.142274 0.246425i
\(714\) −5842.69 −0.306243
\(715\) 0 0
\(716\) −15109.3 −0.788631
\(717\) 13909.0 24091.2i 0.724467 1.25481i
\(718\) −6398.77 + 11083.0i −0.332591 + 0.576064i
\(719\) 8849.89 + 15328.5i 0.459034 + 0.795070i 0.998910 0.0466744i \(-0.0148623\pi\)
−0.539876 + 0.841744i \(0.681529\pi\)
\(720\) 13923.1 0.720674
\(721\) 7694.25 + 13326.8i 0.397433 + 0.688373i
\(722\) 6053.26 + 10484.6i 0.312021 + 0.540436i
\(723\) 15636.4 0.804319
\(724\) −4659.60 8070.66i −0.239189 0.414287i
\(725\) −23128.6 + 40060.0i −1.18479 + 2.05212i
\(726\) −819.786 + 1419.91i −0.0419079 + 0.0725866i
\(727\) 33899.2 1.72937 0.864686 0.502313i \(-0.167518\pi\)
0.864686 + 0.502313i \(0.167518\pi\)
\(728\) 0 0
\(729\) −24329.6 −1.23607
\(730\) −14222.2 + 24633.6i −0.721078 + 1.24894i
\(731\) −4452.60 + 7712.13i −0.225288 + 0.390210i
\(732\) 3507.37 + 6074.95i 0.177099 + 0.306744i
\(733\) 29937.3 1.50854 0.754270 0.656564i \(-0.227991\pi\)
0.754270 + 0.656564i \(0.227991\pi\)
\(734\) −9636.19 16690.4i −0.484575 0.839309i
\(735\) −16816.7 29127.3i −0.843934 1.46174i
\(736\) −788.947 −0.0395122
\(737\) 5653.24 + 9791.70i 0.282551 + 0.489392i
\(738\) −4318.34 + 7479.59i −0.215394 + 0.373073i
\(739\) 8297.60 14371.9i 0.413034 0.715396i −0.582186 0.813056i \(-0.697802\pi\)
0.995220 + 0.0976599i \(0.0311357\pi\)
\(740\) 8008.59 0.397840
\(741\) 0 0
\(742\) −1659.93 −0.0821265
\(743\) 2464.54 4268.70i 0.121689 0.210772i −0.798745 0.601670i \(-0.794502\pi\)
0.920434 + 0.390898i \(0.127836\pi\)
\(744\) 7792.06 13496.2i 0.383966 0.665049i
\(745\) 2397.71 + 4152.95i 0.117913 + 0.204231i
\(746\) 17615.8 0.864556
\(747\) −32871.0 56934.3i −1.61002 2.78864i
\(748\) 2134.60 + 3697.24i 0.104343 + 0.180728i
\(749\) 4901.07 0.239094
\(750\) 5150.03 + 8920.11i 0.250737 + 0.434289i
\(751\) 5343.83 9255.78i 0.259653 0.449732i −0.706496 0.707717i \(-0.749725\pi\)
0.966149 + 0.257985i \(0.0830586\pi\)
\(752\) 1329.69 2303.09i 0.0644796 0.111682i
\(753\) 14592.6 0.706221
\(754\) 0 0
\(755\) 45683.2 2.20210
\(756\) 4738.61 8207.51i 0.227965 0.394847i
\(757\) −14454.6 + 25036.1i −0.694004 + 1.20205i 0.276511 + 0.961011i \(0.410822\pi\)
−0.970515 + 0.241040i \(0.922512\pi\)
\(758\) 8678.95 + 15032.4i 0.415876 + 0.720318i
\(759\) −7692.23 −0.367866
\(760\) 1914.94 + 3316.77i 0.0913976 + 0.158305i
\(761\) 12699.9 + 21996.8i 0.604954 + 1.04781i 0.992059 + 0.125775i \(0.0401416\pi\)
−0.387105 + 0.922036i \(0.626525\pi\)
\(762\) 25668.5 1.22030
\(763\) 7530.47 + 13043.2i 0.357302 + 0.618865i
\(764\) 9223.86 15976.2i 0.436790 0.756542i
\(765\) −13195.4 + 22855.0i −0.623633 + 1.08016i
\(766\) −5424.61 −0.255873
\(767\) 0 0
\(768\) −2269.56 −0.106635
\(769\) −11870.1 + 20559.7i −0.556630 + 0.964111i 0.441145 + 0.897436i \(0.354572\pi\)
−0.997775 + 0.0666752i \(0.978761\pi\)
\(770\) 6449.11 11170.2i 0.301831 0.522786i
\(771\) −28439.2 49258.1i −1.32842 2.30089i
\(772\) 3811.20 0.177679
\(773\) −18.6421 32.2891i −0.000867413 0.00150240i 0.865591 0.500751i \(-0.166943\pi\)
−0.866459 + 0.499249i \(0.833609\pi\)
\(774\) −15150.6 26241.6i −0.703587 1.21865i
\(775\) 35034.7 1.62385
\(776\) 2760.96 + 4782.13i 0.127723 + 0.221222i
\(777\) 5717.64 9903.25i 0.263989 0.457242i
\(778\) 290.941 503.925i 0.0134071 0.0232218i
\(779\) −2375.72 −0.109267
\(780\) 0 0
\(781\) 12984.2 0.594893
\(782\) 747.707 1295.07i 0.0341918 0.0592219i
\(783\) 31631.1 54786.7i 1.44368 2.50053i
\(784\) 1799.53 + 3116.88i 0.0819759 + 0.141986i
\(785\) −14905.3 −0.677697
\(786\) 5601.88 + 9702.74i 0.254214 + 0.440312i
\(787\) 3486.17 + 6038.22i 0.157902 + 0.273493i 0.934112 0.356981i \(-0.116194\pi\)
−0.776210 + 0.630474i \(0.782860\pi\)
\(788\) 8202.16 0.370799
\(789\) −16225.9 28104.1i −0.732140 1.26810i
\(790\) −3103.99 + 5376.26i −0.139791 + 0.242125i
\(791\) −8305.44 + 14385.4i −0.373334 + 0.646634i
\(792\) −14526.6 −0.651741
\(793\) 0 0
\(794\) 28228.0 1.26168
\(795\) −5710.58 + 9891.02i −0.254759 + 0.441256i
\(796\) 5170.62 8955.77i 0.230236 0.398780i
\(797\) −6844.86 11855.6i −0.304212 0.526911i 0.672873 0.739758i \(-0.265060\pi\)
−0.977086 + 0.212846i \(0.931727\pi\)
\(798\) 5468.60 0.242589
\(799\) 2520.36 + 4365.40i 0.111595 + 0.193287i
\(800\) −2551.10 4418.63i −0.112744 0.195278i
\(801\) −70554.6 −3.11227
\(802\) 11342.0 + 19644.9i 0.499377 + 0.864946i
\(803\) 14838.6 25701.1i 0.652106 1.12948i
\(804\) 5696.47 9866.57i 0.249874 0.432795i
\(805\) −4517.98 −0.197811
\(806\) 0 0
\(807\) 50048.2 2.18312
\(808\) −5580.83 + 9666.29i −0.242986 + 0.420865i
\(809\) 3549.44 6147.81i 0.154254 0.267176i −0.778533 0.627604i \(-0.784036\pi\)
0.932787 + 0.360427i \(0.117369\pi\)
\(810\) −9108.77 15776.8i −0.395123 0.684373i
\(811\) −24631.2 −1.06649 −0.533243 0.845962i \(-0.679027\pi\)
−0.533243 + 0.845962i \(0.679027\pi\)
\(812\) −6304.50 10919.7i −0.272469 0.471929i
\(813\) 29574.6 + 51224.7i 1.27580 + 2.20975i
\(814\) −8355.66 −0.359786
\(815\) 28171.9 + 48795.1i 1.21082 + 2.09720i
\(816\) 2150.92 3725.51i 0.0922762 0.159827i
\(817\) 4167.51 7218.34i 0.178461 0.309104i
\(818\) 9373.87 0.400672
\(819\) 0 0
\(820\) 5646.20 0.240456
\(821\) 1145.05 1983.28i 0.0486753 0.0843081i −0.840661 0.541561i \(-0.817833\pi\)
0.889337 + 0.457253i \(0.151167\pi\)
\(822\) −4853.11 + 8405.83i −0.205927 + 0.356675i
\(823\) −18242.5 31596.9i −0.772651 1.33827i −0.936105 0.351720i \(-0.885597\pi\)
0.163454 0.986551i \(-0.447736\pi\)
\(824\) −11330.2 −0.479013
\(825\) −24873.2 43081.7i −1.04967 1.81807i
\(826\) −2006.75 3475.79i −0.0845324 0.146414i
\(827\) −3929.01 −0.165206 −0.0826028 0.996583i \(-0.526323\pi\)
−0.0826028 + 0.996583i \(0.526323\pi\)
\(828\) 2544.18 + 4406.64i 0.106783 + 0.184953i
\(829\) −8700.85 + 15070.3i −0.364527 + 0.631380i −0.988700 0.149906i \(-0.952103\pi\)
0.624173 + 0.781286i \(0.285436\pi\)
\(830\) −21489.3 + 37220.6i −0.898680 + 1.55656i
\(831\) 25757.6 1.07524
\(832\) 0 0
\(833\) −6821.88 −0.283750
\(834\) −6002.54 + 10396.7i −0.249222 + 0.431665i
\(835\) −15318.2 + 26531.9i −0.634860 + 1.09961i
\(836\) −1997.93 3460.52i −0.0826553 0.143163i
\(837\) −47914.1 −1.97868
\(838\) −11889.7 20593.5i −0.490122 0.848915i
\(839\) −19983.0 34611.5i −0.822276 1.42422i −0.903984 0.427567i \(-0.859371\pi\)
0.0817082 0.996656i \(-0.473962\pi\)
\(840\) −12996.8 −0.533849
\(841\) −29889.3 51769.7i −1.22552 2.12267i
\(842\) 4755.64 8237.01i 0.194644 0.337133i
\(843\) −35505.1 + 61496.7i −1.45061 + 2.51252i
\(844\) −7024.91 −0.286501
\(845\) 0 0
\(846\) −17151.8 −0.697033
\(847\) 502.363 870.118i 0.0203794 0.0352982i
\(848\) 611.084 1058.43i 0.0247461 0.0428615i
\(849\) 16435.3 + 28466.7i 0.664378 + 1.15074i
\(850\) 9671.00 0.390250
\(851\) 1463.41 + 2534.70i 0.0589483 + 0.102101i
\(852\) −6541.75 11330.6i −0.263048 0.455612i
\(853\) −7753.33 −0.311218 −0.155609 0.987819i \(-0.549734\pi\)
−0.155609 + 0.987819i \(0.549734\pi\)
\(854\) −2149.31 3722.71i −0.0861216 0.149167i
\(855\) 12350.5 21391.7i 0.494009 0.855649i
\(856\) −1804.27 + 3125.09i −0.0720430 + 0.124782i
\(857\) −34346.7 −1.36903 −0.684515 0.728998i \(-0.739986\pi\)
−0.684515 + 0.728998i \(0.739986\pi\)
\(858\) 0 0
\(859\) −23048.5 −0.915489 −0.457744 0.889084i \(-0.651342\pi\)
−0.457744 + 0.889084i \(0.651342\pi\)
\(860\) −9904.63 + 17155.3i −0.392727 + 0.680223i
\(861\) 4031.04 6981.97i 0.159556 0.276359i
\(862\) 4378.13 + 7583.14i 0.172993 + 0.299632i
\(863\) 8452.37 0.333398 0.166699 0.986008i \(-0.446689\pi\)
0.166699 + 0.986008i \(0.446689\pi\)
\(864\) 3488.93 + 6043.01i 0.137379 + 0.237948i
\(865\) 8299.84 + 14375.7i 0.326246 + 0.565075i
\(866\) 31152.7 1.22241
\(867\) −17701.0 30659.1i −0.693377 1.20096i
\(868\) −4774.96 + 8270.46i −0.186720 + 0.323408i
\(869\) 3238.51 5609.26i 0.126420 0.218966i
\(870\) −86756.5 −3.38083
\(871\) 0 0
\(872\) −11089.0 −0.430645
\(873\) 17807.0 30842.6i 0.690349 1.19572i
\(874\) −699.834 + 1212.15i −0.0270849 + 0.0469125i
\(875\) −3155.92 5466.22i −0.121931 0.211191i
\(876\) −29904.0 −1.15338
\(877\) −1685.53 2919.43i −0.0648990 0.112408i 0.831750 0.555150i \(-0.187339\pi\)
−0.896649 + 0.442742i \(0.854006\pi\)
\(878\) 13474.8 + 23339.0i 0.517939 + 0.897097i
\(879\) −14840.8 −0.569473
\(880\) 4748.34 + 8224.36i 0.181894 + 0.315049i
\(881\) −4965.18 + 8599.95i −0.189877 + 0.328876i −0.945209 0.326466i \(-0.894142\pi\)
0.755332 + 0.655342i \(0.227475\pi\)
\(882\) 11606.2 20102.5i 0.443084 0.767445i
\(883\) 38422.6 1.46435 0.732176 0.681116i \(-0.238505\pi\)
0.732176 + 0.681116i \(0.238505\pi\)
\(884\) 0 0
\(885\) −27615.0 −1.04889
\(886\) 24.4564 42.3598i 0.000927348 0.00160621i
\(887\) 13039.1 22584.3i 0.493584 0.854913i −0.506388 0.862305i \(-0.669020\pi\)
0.999973 + 0.00739257i \(0.00235315\pi\)
\(888\) 4209.77 + 7291.54i 0.159089 + 0.275550i
\(889\) −15729.6 −0.593422
\(890\) 23062.4 + 39945.2i 0.868599 + 1.50446i
\(891\) 9503.53 + 16460.6i 0.357329 + 0.618912i
\(892\) 8152.49 0.306015
\(893\) −2358.99 4085.89i −0.0883993 0.153112i
\(894\) −2520.75 + 4366.06i −0.0943025 + 0.163337i
\(895\) 31853.1 55171.2i 1.18964 2.06052i
\(896\) 1390.78 0.0518556
\(897\) 0 0
\(898\) −27273.4 −1.01350
\(899\) −31873.8 + 55207.0i −1.18248 + 2.04812i
\(900\) −16453.4 + 28498.2i −0.609387 + 1.05549i
\(901\) 1158.28 + 2006.21i 0.0428280 + 0.0741802i
\(902\) −5890.90 −0.217456
\(903\) 14142.6 + 24495.7i 0.521192 + 0.902731i
\(904\) −6115.12 10591.7i −0.224984 0.389684i
\(905\) 39293.1 1.44326
\(906\) 24013.7 + 41593.0i 0.880577 + 1.52520i
\(907\) −4494.45 + 7784.62i −0.164538 + 0.284988i −0.936491 0.350691i \(-0.885947\pi\)
0.771953 + 0.635679i \(0.219280\pi\)
\(908\) 9383.70 16253.0i 0.342962 0.594027i
\(909\) 71987.7 2.62671
\(910\) 0 0
\(911\) 28318.0 1.02988 0.514938 0.857227i \(-0.327815\pi\)
0.514938 + 0.857227i \(0.327815\pi\)
\(912\) −2013.21 + 3486.97i −0.0730964 + 0.126607i
\(913\) 22420.6 38833.6i 0.812721 1.40767i
\(914\) −13380.5 23175.7i −0.484232 0.838715i
\(915\) −29576.7 −1.06861
\(916\) −1152.31 1995.86i −0.0415648 0.0719923i
\(917\) −3432.82 5945.82i −0.123622 0.214120i
\(918\) −13226.2 −0.475524
\(919\) 6431.78 + 11140.2i 0.230865 + 0.399869i 0.958063 0.286558i \(-0.0925112\pi\)
−0.727198 + 0.686428i \(0.759178\pi\)
\(920\) 1663.24 2880.82i 0.0596039 0.103237i
\(921\) −1329.53 + 2302.82i −0.0475674 + 0.0823892i
\(922\) −13565.1 −0.484537
\(923\) 0 0
\(924\) 13560.1 0.482786
\(925\) −9464.01 + 16392.1i −0.336405 + 0.582671i
\(926\) 10966.2 18993.9i 0.389169 0.674060i
\(927\) 36537.4 + 63284.6i 1.29455 + 2.24222i
\(928\) 9283.73 0.328398
\(929\) 949.747 + 1645.01i 0.0335416 + 0.0580958i 0.882309 0.470671i \(-0.155988\pi\)
−0.848767 + 0.528767i \(0.822655\pi\)
\(930\) 32854.2 + 56905.1i 1.15842 + 2.00644i
\(931\) 6385.09 0.224772
\(932\) −1448.64 2509.12i −0.0509139 0.0881854i
\(933\) −3945.75 + 6834.24i −0.138455 + 0.239810i
\(934\) 609.640 1055.93i 0.0213576 0.0369925i
\(935\) −18000.5 −0.629605
\(936\) 0 0
\(937\) −35209.9 −1.22760 −0.613798 0.789463i \(-0.710359\pi\)
−0.613798 + 0.789463i \(0.710359\pi\)
\(938\) −3490.78 + 6046.21i −0.121512 + 0.210464i
\(939\) −5116.25 + 8861.60i −0.177809 + 0.307974i
\(940\) 5606.45 + 9710.65i 0.194534 + 0.336943i
\(941\) 56666.1 1.96308 0.981542 0.191247i \(-0.0612531\pi\)
0.981542 + 0.191247i \(0.0612531\pi\)
\(942\) −7835.07 13570.7i −0.270998 0.469383i
\(943\) 1031.73 + 1787.01i 0.0356286 + 0.0617105i
\(944\) 2955.05 0.101884
\(945\) 19979.7 + 34605.8i 0.687767 + 1.19125i
\(946\) 10333.9 17898.8i 0.355162 0.615159i
\(947\) 13668.2 23673.9i 0.469013 0.812354i −0.530360 0.847773i \(-0.677943\pi\)
0.999373 + 0.0354184i \(0.0112764\pi\)
\(948\) −6526.54 −0.223599
\(949\) 0 0
\(950\) −9051.79 −0.309136
\(951\) 12007.6 20797.8i 0.409436 0.709165i
\(952\) −1318.08 + 2282.98i −0.0448731 + 0.0777226i
\(953\) 7217.54 + 12501.1i 0.245329 + 0.424923i 0.962224 0.272258i \(-0.0877706\pi\)
−0.716895 + 0.697181i \(0.754437\pi\)
\(954\) −7882.43 −0.267509
\(955\) 38891.1 + 67361.4i 1.31779 + 2.28248i
\(956\) −6275.61 10869.7i −0.212309 0.367731i
\(957\) 90516.3 3.05745
\(958\) −8405.28 14558.4i −0.283468 0.490981i
\(959\) 2973.97 5151.07i 0.100140 0.173448i
\(960\) 4784.64 8287.24i 0.160858 0.278614i
\(961\) 18490.7 0.620680
\(962\) 0 0
\(963\) 23273.5 0.778793
\(964\) 3527.48 6109.77i 0.117855 0.204131i
\(965\) −8034.70 + 13916.5i −0.268027 + 0.464237i
\(966\) −2374.91 4113.47i −0.0791009 0.137007i
\(967\) 21556.9 0.716879 0.358440 0.933553i \(-0.383309\pi\)
0.358440 + 0.933553i \(0.383309\pi\)
\(968\) 369.879 + 640.649i 0.0122814 + 0.0212719i
\(969\) −3815.94 6609.41i −0.126507 0.219117i
\(970\) −23282.5 −0.770675
\(971\) 1576.77 + 2731.05i 0.0521123 + 0.0902611i 0.890905 0.454190i \(-0.150071\pi\)
−0.838793 + 0.544451i \(0.816738\pi\)
\(972\) −2198.96 + 3808.70i −0.0725633 + 0.125683i
\(973\) 3678.34 6371.07i 0.121194 0.209915i
\(974\) 32320.9 1.06327
\(975\) 0 0
\(976\) 3164.98 0.103800
\(977\) 2464.81 4269.17i 0.0807125 0.139798i −0.822844 0.568268i \(-0.807614\pi\)
0.903556 + 0.428470i \(0.140947\pi\)
\(978\) −29617.5 + 51299.1i −0.968369 + 1.67726i
\(979\) −24061.9 41676.4i −0.785517 1.36056i
\(980\) −15175.0 −0.494640
\(981\) 35759.7 + 61937.5i 1.16383 + 2.01581i
\(982\) −6426.96 11131.8i −0.208852 0.361742i
\(983\) −15526.2 −0.503774 −0.251887 0.967757i \(-0.581051\pi\)
−0.251887 + 0.967757i \(0.581051\pi\)
\(984\) 2967.97 + 5140.67i 0.0961538 + 0.166543i
\(985\) −17291.6 + 29950.0i −0.559348 + 0.968819i
\(986\) −8798.45 + 15239.4i −0.284178 + 0.492211i
\(987\) 16010.6 0.516337
\(988\) 0 0
\(989\) −7239.49 −0.232763
\(990\) 30624.6 53043.4i 0.983146 1.70286i
\(991\) −14938.4 + 25874.1i −0.478844 + 0.829381i −0.999706 0.0242594i \(-0.992277\pi\)
0.520862 + 0.853641i \(0.325611\pi\)
\(992\) −3515.69 6089.36i −0.112524 0.194897i
\(993\) −72582.6 −2.31958
\(994\) 4008.76 + 6943.38i 0.127918 + 0.221560i
\(995\) 21801.2 + 37760.8i 0.694618 + 1.20311i
\(996\) −45184.1 −1.43746
\(997\) −1300.23 2252.07i −0.0413026 0.0715382i 0.844635 0.535342i \(-0.179817\pi\)
−0.885938 + 0.463804i \(0.846484\pi\)
\(998\) 15240.3 26397.0i 0.483391 0.837258i
\(999\) 12943.2 22418.2i 0.409913 0.709990i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.c.h.191.2 4
13.2 odd 12 338.4.e.g.23.2 8
13.3 even 3 inner 338.4.c.h.315.2 4
13.4 even 6 338.4.a.f.1.1 2
13.5 odd 4 338.4.e.g.147.4 8
13.6 odd 12 26.4.b.a.25.1 4
13.7 odd 12 26.4.b.a.25.3 yes 4
13.8 odd 4 338.4.e.g.147.2 8
13.9 even 3 338.4.a.i.1.1 2
13.10 even 6 338.4.c.i.315.2 4
13.11 odd 12 338.4.e.g.23.4 8
13.12 even 2 338.4.c.i.191.2 4
39.20 even 12 234.4.b.b.181.1 4
39.32 even 12 234.4.b.b.181.4 4
52.7 even 12 208.4.f.d.129.4 4
52.19 even 12 208.4.f.d.129.3 4
65.7 even 12 650.4.c.e.649.4 4
65.19 odd 12 650.4.d.d.51.4 4
65.32 even 12 650.4.c.f.649.4 4
65.33 even 12 650.4.c.f.649.1 4
65.58 even 12 650.4.c.e.649.1 4
65.59 odd 12 650.4.d.d.51.2 4
104.19 even 12 832.4.f.h.129.2 4
104.45 odd 12 832.4.f.j.129.4 4
104.59 even 12 832.4.f.h.129.1 4
104.85 odd 12 832.4.f.j.129.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.b.a.25.1 4 13.6 odd 12
26.4.b.a.25.3 yes 4 13.7 odd 12
208.4.f.d.129.3 4 52.19 even 12
208.4.f.d.129.4 4 52.7 even 12
234.4.b.b.181.1 4 39.20 even 12
234.4.b.b.181.4 4 39.32 even 12
338.4.a.f.1.1 2 13.4 even 6
338.4.a.i.1.1 2 13.9 even 3
338.4.c.h.191.2 4 1.1 even 1 trivial
338.4.c.h.315.2 4 13.3 even 3 inner
338.4.c.i.191.2 4 13.12 even 2
338.4.c.i.315.2 4 13.10 even 6
338.4.e.g.23.2 8 13.2 odd 12
338.4.e.g.23.4 8 13.11 odd 12
338.4.e.g.147.2 8 13.8 odd 4
338.4.e.g.147.4 8 13.5 odd 4
650.4.c.e.649.1 4 65.58 even 12
650.4.c.e.649.4 4 65.7 even 12
650.4.c.f.649.1 4 65.33 even 12
650.4.c.f.649.4 4 65.32 even 12
650.4.d.d.51.2 4 65.59 odd 12
650.4.d.d.51.4 4 65.19 odd 12
832.4.f.h.129.1 4 104.59 even 12
832.4.f.h.129.2 4 104.19 even 12
832.4.f.j.129.3 4 104.85 odd 12
832.4.f.j.129.4 4 104.45 odd 12