Properties

Label 338.4.c.e
Level $338$
Weight $4$
Character orbit 338.c
Analytic conductor $19.943$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(191,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.191"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-4,-4,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 2) q^{2} + (4 \zeta_{6} - 4) q^{3} - 4 \zeta_{6} q^{4} + 18 q^{5} + 8 \zeta_{6} q^{6} + 20 \zeta_{6} q^{7} - 8 q^{8} + 11 \zeta_{6} q^{9} + ( - 36 \zeta_{6} + 36) q^{10} + (48 \zeta_{6} - 48) q^{11} + \cdots - 528 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{3} - 4 q^{4} + 36 q^{5} + 8 q^{6} + 20 q^{7} - 16 q^{8} + 11 q^{9} + 36 q^{10} - 48 q^{11} + 32 q^{12} + 80 q^{14} - 72 q^{15} - 16 q^{16} - 66 q^{17} + 44 q^{18} - 16 q^{19} - 72 q^{20}+ \cdots - 1056 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 1.73205i −2.00000 + 3.46410i −2.00000 3.46410i 18.0000 4.00000 + 6.92820i 10.0000 + 17.3205i −8.00000 5.50000 + 9.52628i 18.0000 31.1769i
315.1 1.00000 + 1.73205i −2.00000 3.46410i −2.00000 + 3.46410i 18.0000 4.00000 6.92820i 10.0000 17.3205i −8.00000 5.50000 9.52628i 18.0000 + 31.1769i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.4.c.e 2
13.b even 2 1 338.4.c.a 2
13.c even 3 1 338.4.a.c 1
13.c even 3 1 inner 338.4.c.e 2
13.d odd 4 2 338.4.e.a 4
13.e even 6 1 26.4.a.c 1
13.e even 6 1 338.4.c.a 2
13.f odd 12 2 338.4.b.d 2
13.f odd 12 2 338.4.e.a 4
39.h odd 6 1 234.4.a.e 1
52.i odd 6 1 208.4.a.b 1
65.l even 6 1 650.4.a.b 1
65.r odd 12 2 650.4.b.f 2
91.t odd 6 1 1274.4.a.d 1
104.p odd 6 1 832.4.a.o 1
104.s even 6 1 832.4.a.d 1
156.r even 6 1 1872.4.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.4.a.c 1 13.e even 6 1
208.4.a.b 1 52.i odd 6 1
234.4.a.e 1 39.h odd 6 1
338.4.a.c 1 13.c even 3 1
338.4.b.d 2 13.f odd 12 2
338.4.c.a 2 13.b even 2 1
338.4.c.a 2 13.e even 6 1
338.4.c.e 2 1.a even 1 1 trivial
338.4.c.e 2 13.c even 3 1 inner
338.4.e.a 4 13.d odd 4 2
338.4.e.a 4 13.f odd 12 2
650.4.a.b 1 65.l even 6 1
650.4.b.f 2 65.r odd 12 2
832.4.a.d 1 104.s even 6 1
832.4.a.o 1 104.p odd 6 1
1274.4.a.d 1 91.t odd 6 1
1872.4.a.q 1 156.r even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(338, [\chi])\):

\( T_{3}^{2} + 4T_{3} + 16 \) Copy content Toggle raw display
\( T_{5} - 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$5$ \( (T - 18)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 20T + 400 \) Copy content Toggle raw display
$11$ \( T^{2} + 48T + 2304 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 66T + 4356 \) Copy content Toggle raw display
$19$ \( T^{2} + 16T + 256 \) Copy content Toggle raw display
$23$ \( T^{2} + 168T + 28224 \) Copy content Toggle raw display
$29$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$31$ \( (T + 20)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 254T + 64516 \) Copy content Toggle raw display
$41$ \( T^{2} + 390T + 152100 \) Copy content Toggle raw display
$43$ \( T^{2} - 124T + 15376 \) Copy content Toggle raw display
$47$ \( (T - 468)^{2} \) Copy content Toggle raw display
$53$ \( (T - 558)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 96T + 9216 \) Copy content Toggle raw display
$61$ \( T^{2} - 826T + 682276 \) Copy content Toggle raw display
$67$ \( T^{2} + 160T + 25600 \) Copy content Toggle raw display
$71$ \( T^{2} + 420T + 176400 \) Copy content Toggle raw display
$73$ \( (T + 362)^{2} \) Copy content Toggle raw display
$79$ \( (T - 776)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 1626 T + 2643876 \) Copy content Toggle raw display
$97$ \( T^{2} + 1294 T + 1674436 \) Copy content Toggle raw display
show more
show less