L(s) = 1 | + (1 + 1.73i)2-s + (−2 − 3.46i)3-s + (−1.99 + 3.46i)4-s + 18·5-s + (3.99 − 6.92i)6-s + (10 − 17.3i)7-s − 7.99·8-s + (5.50 − 9.52i)9-s + (18 + 31.1i)10-s + (−24 − 41.5i)11-s + 15.9·12-s + 40·14-s + (−36 − 62.3i)15-s + (−8 − 13.8i)16-s + (−33 + 57.1i)17-s + 22·18-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.384 − 0.666i)3-s + (−0.249 + 0.433i)4-s + 1.60·5-s + (0.272 − 0.471i)6-s + (0.539 − 0.935i)7-s − 0.353·8-s + (0.203 − 0.352i)9-s + (0.569 + 0.985i)10-s + (−0.657 − 1.13i)11-s + 0.384·12-s + 0.763·14-s + (−0.619 − 1.07i)15-s + (−0.125 − 0.216i)16-s + (−0.470 + 0.815i)17-s + 0.288·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 + 0.852i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.405527318\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.405527318\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - 1.73i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (2 + 3.46i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 - 18T + 125T^{2} \) |
| 7 | \( 1 + (-10 + 17.3i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (24 + 41.5i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (33 - 57.1i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (8 - 13.8i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (84 + 145. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (3 + 5.19i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + 20T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-127 - 219. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (195 + 337. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-62 + 107. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 - 468T + 1.03e5T^{2} \) |
| 53 | \( 1 - 558T + 1.48e5T^{2} \) |
| 59 | \( 1 + (48 - 83.1i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-413 + 715. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (80 + 138. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (210 - 363. i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 + 362T + 3.89e5T^{2} \) |
| 79 | \( 1 - 776T + 4.93e5T^{2} \) |
| 83 | \( 1 + 5.71e5T^{2} \) |
| 89 | \( 1 + (-813 - 1.40e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (647 - 1.12e3i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79397644358009416123400967394, −10.21802934465342981007344502143, −8.916217776468533648961605395590, −7.978977997895364005711439130202, −6.78989465588064151717327979166, −6.14715990070779769513251022280, −5.36759903289465213826158234788, −3.97961550966874863120558138397, −2.20469694513608481560509192747, −0.790126035196878962512417408708,
1.83471554319677063303695729731, 2.48874928940549639492675900067, 4.46457349180721148245728233341, 5.30050091006334616199819549752, 5.81723370122233618442899401042, 7.37342160103798401315878716067, 8.945361082210781409027982823308, 9.742982539304162505842342770935, 10.21470194239836009305912818478, 11.20078743237968109003419384067