Properties

Label 338.4.b.d
Level $338$
Weight $4$
Character orbit 338.b
Analytic conductor $19.943$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(337,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.337"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 4 q^{3} - 4 q^{4} - 9 \beta q^{5} + 4 \beta q^{6} - 10 \beta q^{7} - 4 \beta q^{8} - 11 q^{9} + 36 q^{10} + 24 \beta q^{11} - 16 q^{12} + 40 q^{14} - 36 \beta q^{15} + 16 q^{16} - 66 q^{17} + \cdots - 264 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{3} - 8 q^{4} - 22 q^{9} + 72 q^{10} - 32 q^{12} + 80 q^{14} + 32 q^{16} - 132 q^{17} - 192 q^{22} - 336 q^{23} - 398 q^{25} - 304 q^{27} + 12 q^{29} + 288 q^{30} - 720 q^{35} + 88 q^{36} + 64 q^{38}+ \cdots - 576 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
2.00000i 4.00000 −4.00000 18.0000i 8.00000i 20.0000i 8.00000i −11.0000 36.0000
337.2 2.00000i 4.00000 −4.00000 18.0000i 8.00000i 20.0000i 8.00000i −11.0000 36.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.4.b.d 2
13.b even 2 1 inner 338.4.b.d 2
13.c even 3 2 338.4.e.a 4
13.d odd 4 1 26.4.a.c 1
13.d odd 4 1 338.4.a.c 1
13.e even 6 2 338.4.e.a 4
13.f odd 12 2 338.4.c.a 2
13.f odd 12 2 338.4.c.e 2
39.f even 4 1 234.4.a.e 1
52.f even 4 1 208.4.a.b 1
65.f even 4 1 650.4.b.f 2
65.g odd 4 1 650.4.a.b 1
65.k even 4 1 650.4.b.f 2
91.i even 4 1 1274.4.a.d 1
104.j odd 4 1 832.4.a.d 1
104.m even 4 1 832.4.a.o 1
156.l odd 4 1 1872.4.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.4.a.c 1 13.d odd 4 1
208.4.a.b 1 52.f even 4 1
234.4.a.e 1 39.f even 4 1
338.4.a.c 1 13.d odd 4 1
338.4.b.d 2 1.a even 1 1 trivial
338.4.b.d 2 13.b even 2 1 inner
338.4.c.a 2 13.f odd 12 2
338.4.c.e 2 13.f odd 12 2
338.4.e.a 4 13.c even 3 2
338.4.e.a 4 13.e even 6 2
650.4.a.b 1 65.g odd 4 1
650.4.b.f 2 65.f even 4 1
650.4.b.f 2 65.k even 4 1
832.4.a.d 1 104.j odd 4 1
832.4.a.o 1 104.m even 4 1
1274.4.a.d 1 91.i even 4 1
1872.4.a.q 1 156.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 4 \) acting on \(S_{4}^{\mathrm{new}}(338, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( (T - 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 324 \) Copy content Toggle raw display
$7$ \( T^{2} + 400 \) Copy content Toggle raw display
$11$ \( T^{2} + 2304 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 66)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 256 \) Copy content Toggle raw display
$23$ \( (T + 168)^{2} \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 400 \) Copy content Toggle raw display
$37$ \( T^{2} + 64516 \) Copy content Toggle raw display
$41$ \( T^{2} + 152100 \) Copy content Toggle raw display
$43$ \( (T - 124)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 219024 \) Copy content Toggle raw display
$53$ \( (T - 558)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 9216 \) Copy content Toggle raw display
$61$ \( (T + 826)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 25600 \) Copy content Toggle raw display
$71$ \( T^{2} + 176400 \) Copy content Toggle raw display
$73$ \( T^{2} + 131044 \) Copy content Toggle raw display
$79$ \( (T - 776)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 2643876 \) Copy content Toggle raw display
$97$ \( T^{2} + 1674436 \) Copy content Toggle raw display
show more
show less