Properties

Label 338.10.a.r.1.12
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,240,324,3840,2164] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 4 x^{14} - 189447 x^{13} - 2075910 x^{12} + 13427724566 x^{11} + 240902663602 x^{10} + \cdots - 13\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{3}\cdot 13^{13} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(96.2913\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{2} +163.789 q^{3} +256.000 q^{4} -328.410 q^{5} +2620.62 q^{6} +11627.7 q^{7} +4096.00 q^{8} +7143.79 q^{9} -5254.55 q^{10} +65659.4 q^{11} +41929.9 q^{12} +186043. q^{14} -53789.8 q^{15} +65536.0 q^{16} +150400. q^{17} +114301. q^{18} -180202. q^{19} -84072.8 q^{20} +1.90449e6 q^{21} +1.05055e6 q^{22} +1.01492e6 q^{23} +670879. q^{24} -1.84527e6 q^{25} -2.05378e6 q^{27} +2.97669e6 q^{28} +4.65597e6 q^{29} -860637. q^{30} +449634. q^{31} +1.04858e6 q^{32} +1.07543e7 q^{33} +2.40640e6 q^{34} -3.81865e6 q^{35} +1.82881e6 q^{36} +1.77914e7 q^{37} -2.88323e6 q^{38} -1.34517e6 q^{40} +1.14044e7 q^{41} +3.04718e7 q^{42} -4.03420e7 q^{43} +1.68088e7 q^{44} -2.34609e6 q^{45} +1.62387e7 q^{46} -1.06710e7 q^{47} +1.07341e7 q^{48} +9.48499e7 q^{49} -2.95244e7 q^{50} +2.46339e7 q^{51} -7.92920e7 q^{53} -3.28605e7 q^{54} -2.15632e7 q^{55} +4.76271e7 q^{56} -2.95151e7 q^{57} +7.44956e7 q^{58} -7.70667e7 q^{59} -1.37702e7 q^{60} +1.05698e8 q^{61} +7.19415e6 q^{62} +8.30658e7 q^{63} +1.67772e7 q^{64} +1.72068e8 q^{66} -1.04892e8 q^{67} +3.85025e7 q^{68} +1.66232e8 q^{69} -6.10984e7 q^{70} +1.44246e8 q^{71} +2.92610e7 q^{72} +1.96637e7 q^{73} +2.84662e8 q^{74} -3.02235e8 q^{75} -4.61317e7 q^{76} +7.63468e8 q^{77} -5.52966e8 q^{79} -2.15226e7 q^{80} -4.76998e8 q^{81} +1.82470e8 q^{82} -7.29864e8 q^{83} +4.87549e8 q^{84} -4.93929e7 q^{85} -6.45472e8 q^{86} +7.62596e8 q^{87} +2.68941e8 q^{88} -2.46836e8 q^{89} -3.75374e7 q^{90} +2.59819e8 q^{92} +7.36451e7 q^{93} -1.70735e8 q^{94} +5.91801e7 q^{95} +1.71745e8 q^{96} -7.21914e8 q^{97} +1.51760e9 q^{98} +4.69057e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + 240 q^{2} + 324 q^{3} + 3840 q^{4} + 2164 q^{5} + 5184 q^{6} + 4227 q^{7} + 61440 q^{8} + 112199 q^{9} + 34624 q^{10} - 58782 q^{11} + 82944 q^{12} + 67632 q^{14} + 488672 q^{15} + 983040 q^{16}+ \cdots + 3437295177 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 0.707107
\(3\) 163.789 1.16745 0.583726 0.811951i \(-0.301594\pi\)
0.583726 + 0.811951i \(0.301594\pi\)
\(4\) 256.000 0.500000
\(5\) −328.410 −0.234991 −0.117495 0.993073i \(-0.537487\pi\)
−0.117495 + 0.993073i \(0.537487\pi\)
\(6\) 2620.62 0.825513
\(7\) 11627.7 1.83043 0.915214 0.402968i \(-0.132021\pi\)
0.915214 + 0.402968i \(0.132021\pi\)
\(8\) 4096.00 0.353553
\(9\) 7143.79 0.362942
\(10\) −5254.55 −0.166164
\(11\) 65659.4 1.35216 0.676082 0.736826i \(-0.263676\pi\)
0.676082 + 0.736826i \(0.263676\pi\)
\(12\) 41929.9 0.583726
\(13\) 0 0
\(14\) 186043. 1.29431
\(15\) −53789.8 −0.274340
\(16\) 65536.0 0.250000
\(17\) 150400. 0.436746 0.218373 0.975865i \(-0.429925\pi\)
0.218373 + 0.975865i \(0.429925\pi\)
\(18\) 114301. 0.256639
\(19\) −180202. −0.317226 −0.158613 0.987341i \(-0.550702\pi\)
−0.158613 + 0.987341i \(0.550702\pi\)
\(20\) −84072.8 −0.117495
\(21\) 1.90449e6 2.13694
\(22\) 1.05055e6 0.956125
\(23\) 1.01492e6 0.756232 0.378116 0.925758i \(-0.376572\pi\)
0.378116 + 0.925758i \(0.376572\pi\)
\(24\) 670879. 0.412756
\(25\) −1.84527e6 −0.944779
\(26\) 0 0
\(27\) −2.05378e6 −0.743734
\(28\) 2.97669e6 0.915214
\(29\) 4.65597e6 1.22242 0.611209 0.791470i \(-0.290684\pi\)
0.611209 + 0.791470i \(0.290684\pi\)
\(30\) −860637. −0.193988
\(31\) 449634. 0.0874443 0.0437222 0.999044i \(-0.486078\pi\)
0.0437222 + 0.999044i \(0.486078\pi\)
\(32\) 1.04858e6 0.176777
\(33\) 1.07543e7 1.57859
\(34\) 2.40640e6 0.308826
\(35\) −3.81865e6 −0.430134
\(36\) 1.82881e6 0.181471
\(37\) 1.77914e7 1.56063 0.780317 0.625384i \(-0.215058\pi\)
0.780317 + 0.625384i \(0.215058\pi\)
\(38\) −2.88323e6 −0.224313
\(39\) 0 0
\(40\) −1.34517e6 −0.0830818
\(41\) 1.14044e7 0.630295 0.315148 0.949043i \(-0.397946\pi\)
0.315148 + 0.949043i \(0.397946\pi\)
\(42\) 3.04718e7 1.51104
\(43\) −4.03420e7 −1.79949 −0.899744 0.436418i \(-0.856247\pi\)
−0.899744 + 0.436418i \(0.856247\pi\)
\(44\) 1.68088e7 0.676082
\(45\) −2.34609e6 −0.0852880
\(46\) 1.62387e7 0.534737
\(47\) −1.06710e7 −0.318980 −0.159490 0.987200i \(-0.550985\pi\)
−0.159490 + 0.987200i \(0.550985\pi\)
\(48\) 1.07341e7 0.291863
\(49\) 9.48499e7 2.35047
\(50\) −2.95244e7 −0.668060
\(51\) 2.46339e7 0.509879
\(52\) 0 0
\(53\) −7.92920e7 −1.38035 −0.690173 0.723645i \(-0.742465\pi\)
−0.690173 + 0.723645i \(0.742465\pi\)
\(54\) −3.28605e7 −0.525899
\(55\) −2.15632e7 −0.317746
\(56\) 4.76271e7 0.647154
\(57\) −2.95151e7 −0.370346
\(58\) 7.44956e7 0.864379
\(59\) −7.70667e7 −0.828004 −0.414002 0.910276i \(-0.635869\pi\)
−0.414002 + 0.910276i \(0.635869\pi\)
\(60\) −1.37702e7 −0.137170
\(61\) 1.05698e8 0.977423 0.488712 0.872445i \(-0.337467\pi\)
0.488712 + 0.872445i \(0.337467\pi\)
\(62\) 7.19415e6 0.0618325
\(63\) 8.30658e7 0.664339
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) 1.72068e8 1.11623
\(67\) −1.04892e8 −0.635925 −0.317963 0.948103i \(-0.602999\pi\)
−0.317963 + 0.948103i \(0.602999\pi\)
\(68\) 3.85025e7 0.218373
\(69\) 1.66232e8 0.882864
\(70\) −6.10984e7 −0.304150
\(71\) 1.44246e8 0.673660 0.336830 0.941565i \(-0.390645\pi\)
0.336830 + 0.941565i \(0.390645\pi\)
\(72\) 2.92610e7 0.128319
\(73\) 1.96637e7 0.0810423 0.0405211 0.999179i \(-0.487098\pi\)
0.0405211 + 0.999179i \(0.487098\pi\)
\(74\) 2.84662e8 1.10354
\(75\) −3.02235e8 −1.10298
\(76\) −4.61317e7 −0.158613
\(77\) 7.63468e8 2.47504
\(78\) 0 0
\(79\) −5.52966e8 −1.59726 −0.798632 0.601820i \(-0.794443\pi\)
−0.798632 + 0.601820i \(0.794443\pi\)
\(80\) −2.15226e7 −0.0587477
\(81\) −4.76998e8 −1.23122
\(82\) 1.82470e8 0.445686
\(83\) −7.29864e8 −1.68807 −0.844035 0.536288i \(-0.819826\pi\)
−0.844035 + 0.536288i \(0.819826\pi\)
\(84\) 4.87549e8 1.06847
\(85\) −4.93929e7 −0.102631
\(86\) −6.45472e8 −1.27243
\(87\) 7.62596e8 1.42711
\(88\) 2.68941e8 0.478063
\(89\) −2.46836e8 −0.417017 −0.208508 0.978021i \(-0.566861\pi\)
−0.208508 + 0.978021i \(0.566861\pi\)
\(90\) −3.75374e7 −0.0603077
\(91\) 0 0
\(92\) 2.59819e8 0.378116
\(93\) 7.36451e7 0.102087
\(94\) −1.70735e8 −0.225553
\(95\) 5.91801e7 0.0745451
\(96\) 1.71745e8 0.206378
\(97\) −7.21914e8 −0.827966 −0.413983 0.910284i \(-0.635863\pi\)
−0.413983 + 0.910284i \(0.635863\pi\)
\(98\) 1.51760e9 1.66203
\(99\) 4.69057e8 0.490757
\(100\) −4.72390e8 −0.472390
\(101\) 1.89413e9 1.81119 0.905593 0.424147i \(-0.139426\pi\)
0.905593 + 0.424147i \(0.139426\pi\)
\(102\) 3.94142e8 0.360539
\(103\) 1.69630e9 1.48503 0.742516 0.669828i \(-0.233632\pi\)
0.742516 + 0.669828i \(0.233632\pi\)
\(104\) 0 0
\(105\) −6.25452e8 −0.502160
\(106\) −1.26867e9 −0.976052
\(107\) 8.82869e8 0.651132 0.325566 0.945519i \(-0.394445\pi\)
0.325566 + 0.945519i \(0.394445\pi\)
\(108\) −5.25769e8 −0.371867
\(109\) 2.06960e9 1.40432 0.702161 0.712018i \(-0.252219\pi\)
0.702161 + 0.712018i \(0.252219\pi\)
\(110\) −3.45011e8 −0.224681
\(111\) 2.91403e9 1.82196
\(112\) 7.62033e8 0.457607
\(113\) 1.50809e9 0.870110 0.435055 0.900404i \(-0.356729\pi\)
0.435055 + 0.900404i \(0.356729\pi\)
\(114\) −4.72241e8 −0.261874
\(115\) −3.33308e8 −0.177707
\(116\) 1.19193e9 0.611209
\(117\) 0 0
\(118\) −1.23307e9 −0.585487
\(119\) 1.74881e9 0.799432
\(120\) −2.20323e8 −0.0969939
\(121\) 1.95321e9 0.828350
\(122\) 1.69117e9 0.691143
\(123\) 1.86791e9 0.735839
\(124\) 1.15106e8 0.0437222
\(125\) 1.24743e9 0.457005
\(126\) 1.32905e9 0.469759
\(127\) 1.34579e9 0.459052 0.229526 0.973303i \(-0.426282\pi\)
0.229526 + 0.973303i \(0.426282\pi\)
\(128\) 2.68435e8 0.0883883
\(129\) −6.60757e9 −2.10081
\(130\) 0 0
\(131\) −4.65874e9 −1.38213 −0.691064 0.722794i \(-0.742858\pi\)
−0.691064 + 0.722794i \(0.742858\pi\)
\(132\) 2.75309e9 0.789293
\(133\) −2.09534e9 −0.580659
\(134\) −1.67827e9 −0.449667
\(135\) 6.74482e8 0.174771
\(136\) 6.16040e8 0.154413
\(137\) 2.76109e8 0.0669634 0.0334817 0.999439i \(-0.489340\pi\)
0.0334817 + 0.999439i \(0.489340\pi\)
\(138\) 2.65971e9 0.624279
\(139\) −1.76402e9 −0.400809 −0.200405 0.979713i \(-0.564226\pi\)
−0.200405 + 0.979713i \(0.564226\pi\)
\(140\) −9.77574e8 −0.215067
\(141\) −1.74778e9 −0.372393
\(142\) 2.30793e9 0.476350
\(143\) 0 0
\(144\) 4.68175e8 0.0907355
\(145\) −1.52907e9 −0.287257
\(146\) 3.14619e8 0.0573055
\(147\) 1.55353e10 2.74406
\(148\) 4.55459e9 0.780317
\(149\) 4.88939e8 0.0812675 0.0406337 0.999174i \(-0.487062\pi\)
0.0406337 + 0.999174i \(0.487062\pi\)
\(150\) −4.83576e9 −0.779927
\(151\) −9.14820e9 −1.43199 −0.715994 0.698107i \(-0.754026\pi\)
−0.715994 + 0.698107i \(0.754026\pi\)
\(152\) −7.38108e8 −0.112156
\(153\) 1.07443e9 0.158513
\(154\) 1.22155e10 1.75012
\(155\) −1.47664e8 −0.0205486
\(156\) 0 0
\(157\) 7.52516e9 0.988478 0.494239 0.869326i \(-0.335447\pi\)
0.494239 + 0.869326i \(0.335447\pi\)
\(158\) −8.84746e9 −1.12944
\(159\) −1.29871e10 −1.61149
\(160\) −3.44362e8 −0.0415409
\(161\) 1.18011e10 1.38423
\(162\) −7.63197e9 −0.870601
\(163\) −9.93974e9 −1.10289 −0.551443 0.834212i \(-0.685923\pi\)
−0.551443 + 0.834212i \(0.685923\pi\)
\(164\) 2.91952e9 0.315148
\(165\) −3.53181e9 −0.370953
\(166\) −1.16778e10 −1.19365
\(167\) −6.44084e9 −0.640793 −0.320397 0.947283i \(-0.603816\pi\)
−0.320397 + 0.947283i \(0.603816\pi\)
\(168\) 7.80078e9 0.755521
\(169\) 0 0
\(170\) −7.90286e8 −0.0725712
\(171\) −1.28732e9 −0.115135
\(172\) −1.03275e10 −0.899744
\(173\) 2.30296e9 0.195469 0.0977346 0.995213i \(-0.468840\pi\)
0.0977346 + 0.995213i \(0.468840\pi\)
\(174\) 1.22015e10 1.00912
\(175\) −2.14563e10 −1.72935
\(176\) 4.30305e9 0.338041
\(177\) −1.26227e10 −0.966654
\(178\) −3.94938e9 −0.294875
\(179\) 1.97601e10 1.43864 0.719318 0.694681i \(-0.244454\pi\)
0.719318 + 0.694681i \(0.244454\pi\)
\(180\) −6.00598e8 −0.0426440
\(181\) −1.91454e10 −1.32590 −0.662950 0.748664i \(-0.730696\pi\)
−0.662950 + 0.748664i \(0.730696\pi\)
\(182\) 0 0
\(183\) 1.73122e10 1.14109
\(184\) 4.15710e9 0.267368
\(185\) −5.84285e9 −0.366735
\(186\) 1.17832e9 0.0721864
\(187\) 9.87519e9 0.590552
\(188\) −2.73177e9 −0.159490
\(189\) −2.38808e10 −1.36135
\(190\) 9.46881e8 0.0527114
\(191\) 2.75444e10 1.49756 0.748778 0.662821i \(-0.230641\pi\)
0.748778 + 0.662821i \(0.230641\pi\)
\(192\) 2.74792e9 0.145931
\(193\) −3.71081e9 −0.192513 −0.0962567 0.995357i \(-0.530687\pi\)
−0.0962567 + 0.995357i \(0.530687\pi\)
\(194\) −1.15506e10 −0.585461
\(195\) 0 0
\(196\) 2.42816e10 1.17523
\(197\) 1.79150e10 0.847460 0.423730 0.905789i \(-0.360721\pi\)
0.423730 + 0.905789i \(0.360721\pi\)
\(198\) 7.50491e9 0.347018
\(199\) 3.66919e9 0.165856 0.0829281 0.996556i \(-0.473573\pi\)
0.0829281 + 0.996556i \(0.473573\pi\)
\(200\) −7.55823e9 −0.334030
\(201\) −1.71802e10 −0.742412
\(202\) 3.03061e10 1.28070
\(203\) 5.41383e10 2.23755
\(204\) 6.30628e9 0.254940
\(205\) −3.74530e9 −0.148114
\(206\) 2.71408e10 1.05008
\(207\) 7.25035e9 0.274468
\(208\) 0 0
\(209\) −1.18320e10 −0.428942
\(210\) −1.00072e10 −0.355081
\(211\) 5.95397e9 0.206793 0.103396 0.994640i \(-0.467029\pi\)
0.103396 + 0.994640i \(0.467029\pi\)
\(212\) −2.02987e10 −0.690173
\(213\) 2.36259e10 0.786465
\(214\) 1.41259e10 0.460420
\(215\) 1.32487e10 0.422863
\(216\) −8.41230e9 −0.262950
\(217\) 5.22821e9 0.160061
\(218\) 3.31136e10 0.993006
\(219\) 3.22069e9 0.0946129
\(220\) −5.52017e9 −0.158873
\(221\) 0 0
\(222\) 4.66244e10 1.28832
\(223\) −3.50622e10 −0.949438 −0.474719 0.880137i \(-0.657450\pi\)
−0.474719 + 0.880137i \(0.657450\pi\)
\(224\) 1.21925e10 0.323577
\(225\) −1.31822e10 −0.342900
\(226\) 2.41294e10 0.615261
\(227\) −4.96849e10 −1.24196 −0.620980 0.783826i \(-0.713265\pi\)
−0.620980 + 0.783826i \(0.713265\pi\)
\(228\) −7.55586e9 −0.185173
\(229\) 7.62879e10 1.83314 0.916571 0.399872i \(-0.130945\pi\)
0.916571 + 0.399872i \(0.130945\pi\)
\(230\) −5.33293e9 −0.125658
\(231\) 1.25047e11 2.88949
\(232\) 1.90709e10 0.432190
\(233\) −3.39395e10 −0.754404 −0.377202 0.926131i \(-0.623114\pi\)
−0.377202 + 0.926131i \(0.623114\pi\)
\(234\) 0 0
\(235\) 3.50444e9 0.0749573
\(236\) −1.97291e10 −0.414002
\(237\) −9.05697e10 −1.86473
\(238\) 2.79810e10 0.565283
\(239\) −6.71629e10 −1.33149 −0.665747 0.746178i \(-0.731887\pi\)
−0.665747 + 0.746178i \(0.731887\pi\)
\(240\) −3.52517e9 −0.0685850
\(241\) −7.95207e10 −1.51846 −0.759230 0.650822i \(-0.774424\pi\)
−0.759230 + 0.650822i \(0.774424\pi\)
\(242\) 3.12513e10 0.585732
\(243\) −3.77023e10 −0.693649
\(244\) 2.70587e10 0.488712
\(245\) −3.11496e10 −0.552338
\(246\) 2.98865e10 0.520317
\(247\) 0 0
\(248\) 1.84170e9 0.0309162
\(249\) −1.19544e11 −1.97074
\(250\) 1.99589e10 0.323151
\(251\) 1.11412e11 1.77174 0.885868 0.463938i \(-0.153564\pi\)
0.885868 + 0.463938i \(0.153564\pi\)
\(252\) 2.12649e10 0.332170
\(253\) 6.66388e10 1.02255
\(254\) 2.15327e10 0.324599
\(255\) −8.09000e9 −0.119817
\(256\) 4.29497e9 0.0625000
\(257\) 1.14075e11 1.63114 0.815571 0.578657i \(-0.196423\pi\)
0.815571 + 0.578657i \(0.196423\pi\)
\(258\) −1.05721e11 −1.48550
\(259\) 2.06873e11 2.85663
\(260\) 0 0
\(261\) 3.32613e10 0.443666
\(262\) −7.45399e10 −0.977312
\(263\) 3.77214e10 0.486168 0.243084 0.970005i \(-0.421841\pi\)
0.243084 + 0.970005i \(0.421841\pi\)
\(264\) 4.40495e10 0.558115
\(265\) 2.60402e10 0.324368
\(266\) −3.35254e10 −0.410588
\(267\) −4.04290e10 −0.486847
\(268\) −2.68524e10 −0.317963
\(269\) −2.91455e8 −0.00339379 −0.00169690 0.999999i \(-0.500540\pi\)
−0.00169690 + 0.999999i \(0.500540\pi\)
\(270\) 1.07917e10 0.123581
\(271\) 1.41433e11 1.59290 0.796450 0.604705i \(-0.206709\pi\)
0.796450 + 0.604705i \(0.206709\pi\)
\(272\) 9.85663e9 0.109186
\(273\) 0 0
\(274\) 4.41774e9 0.0473503
\(275\) −1.21159e11 −1.27750
\(276\) 4.25554e10 0.441432
\(277\) −5.00160e10 −0.510446 −0.255223 0.966882i \(-0.582149\pi\)
−0.255223 + 0.966882i \(0.582149\pi\)
\(278\) −2.82244e10 −0.283415
\(279\) 3.21209e9 0.0317372
\(280\) −1.56412e10 −0.152075
\(281\) 6.67975e10 0.639119 0.319560 0.947566i \(-0.396465\pi\)
0.319560 + 0.947566i \(0.396465\pi\)
\(282\) −2.79645e10 −0.263322
\(283\) −1.19718e11 −1.10948 −0.554742 0.832022i \(-0.687183\pi\)
−0.554742 + 0.832022i \(0.687183\pi\)
\(284\) 3.69269e10 0.336830
\(285\) 9.69304e9 0.0870278
\(286\) 0 0
\(287\) 1.32607e11 1.15371
\(288\) 7.49080e9 0.0641597
\(289\) −9.59676e10 −0.809253
\(290\) −2.44651e10 −0.203121
\(291\) −1.18241e11 −0.966610
\(292\) 5.03390e9 0.0405211
\(293\) 1.43370e10 0.113646 0.0568230 0.998384i \(-0.481903\pi\)
0.0568230 + 0.998384i \(0.481903\pi\)
\(294\) 2.48566e11 1.94034
\(295\) 2.53094e10 0.194573
\(296\) 7.28734e10 0.551768
\(297\) −1.34850e11 −1.00565
\(298\) 7.82303e9 0.0574648
\(299\) 0 0
\(300\) −7.73722e10 −0.551492
\(301\) −4.69084e11 −3.29383
\(302\) −1.46371e11 −1.01257
\(303\) 3.10237e11 2.11447
\(304\) −1.18097e10 −0.0793064
\(305\) −3.47122e10 −0.229685
\(306\) 1.71908e10 0.112086
\(307\) 9.85124e10 0.632948 0.316474 0.948601i \(-0.397501\pi\)
0.316474 + 0.948601i \(0.397501\pi\)
\(308\) 1.95448e11 1.23752
\(309\) 2.77835e11 1.73370
\(310\) −2.36263e9 −0.0145301
\(311\) −1.88850e11 −1.14471 −0.572355 0.820006i \(-0.693970\pi\)
−0.572355 + 0.820006i \(0.693970\pi\)
\(312\) 0 0
\(313\) 2.57591e11 1.51698 0.758492 0.651683i \(-0.225937\pi\)
0.758492 + 0.651683i \(0.225937\pi\)
\(314\) 1.20402e11 0.698960
\(315\) −2.72796e10 −0.156114
\(316\) −1.41559e11 −0.798632
\(317\) 1.91020e11 1.06246 0.531231 0.847227i \(-0.321730\pi\)
0.531231 + 0.847227i \(0.321730\pi\)
\(318\) −2.07794e11 −1.13949
\(319\) 3.05708e11 1.65291
\(320\) −5.50980e9 −0.0293738
\(321\) 1.44604e11 0.760165
\(322\) 1.88818e11 0.978797
\(323\) −2.71024e10 −0.138547
\(324\) −1.22111e11 −0.615608
\(325\) 0 0
\(326\) −1.59036e11 −0.779859
\(327\) 3.38977e11 1.63948
\(328\) 4.67123e10 0.222843
\(329\) −1.24079e11 −0.583870
\(330\) −5.65089e10 −0.262304
\(331\) −3.87909e11 −1.77625 −0.888126 0.459601i \(-0.847992\pi\)
−0.888126 + 0.459601i \(0.847992\pi\)
\(332\) −1.86845e11 −0.844035
\(333\) 1.27098e11 0.566420
\(334\) −1.03053e11 −0.453109
\(335\) 3.44476e10 0.149437
\(336\) 1.24813e11 0.534234
\(337\) 1.65154e11 0.697515 0.348757 0.937213i \(-0.386604\pi\)
0.348757 + 0.937213i \(0.386604\pi\)
\(338\) 0 0
\(339\) 2.47008e11 1.01581
\(340\) −1.26446e10 −0.0513156
\(341\) 2.95227e10 0.118239
\(342\) −2.05972e10 −0.0814124
\(343\) 6.33666e11 2.47193
\(344\) −1.65241e11 −0.636215
\(345\) −5.45922e10 −0.207465
\(346\) 3.68473e10 0.138218
\(347\) −2.12668e11 −0.787445 −0.393723 0.919229i \(-0.628813\pi\)
−0.393723 + 0.919229i \(0.628813\pi\)
\(348\) 1.95225e11 0.713556
\(349\) 3.44314e11 1.24234 0.621169 0.783676i \(-0.286658\pi\)
0.621169 + 0.783676i \(0.286658\pi\)
\(350\) −3.43300e11 −1.22284
\(351\) 0 0
\(352\) 6.88488e10 0.239031
\(353\) −9.65241e10 −0.330864 −0.165432 0.986221i \(-0.552902\pi\)
−0.165432 + 0.986221i \(0.552902\pi\)
\(354\) −2.01963e11 −0.683528
\(355\) −4.73717e10 −0.158304
\(356\) −6.31900e10 −0.208508
\(357\) 2.86436e11 0.933297
\(358\) 3.16162e11 1.01727
\(359\) −4.68238e11 −1.48779 −0.743894 0.668297i \(-0.767024\pi\)
−0.743894 + 0.668297i \(0.767024\pi\)
\(360\) −9.60958e9 −0.0301539
\(361\) −2.90215e11 −0.899368
\(362\) −3.06326e11 −0.937553
\(363\) 3.19913e11 0.967058
\(364\) 0 0
\(365\) −6.45773e9 −0.0190442
\(366\) 2.76995e11 0.806875
\(367\) 7.99775e10 0.230129 0.115064 0.993358i \(-0.463293\pi\)
0.115064 + 0.993358i \(0.463293\pi\)
\(368\) 6.65136e10 0.189058
\(369\) 8.14704e10 0.228761
\(370\) −9.34856e10 −0.259321
\(371\) −9.21983e11 −2.52662
\(372\) 1.88531e10 0.0510435
\(373\) 1.93642e11 0.517977 0.258988 0.965880i \(-0.416611\pi\)
0.258988 + 0.965880i \(0.416611\pi\)
\(374\) 1.58003e11 0.417583
\(375\) 2.04315e11 0.533531
\(376\) −4.37082e10 −0.112776
\(377\) 0 0
\(378\) −3.82092e11 −0.962621
\(379\) 1.39160e11 0.346448 0.173224 0.984882i \(-0.444582\pi\)
0.173224 + 0.984882i \(0.444582\pi\)
\(380\) 1.51501e10 0.0372726
\(381\) 2.20426e11 0.535921
\(382\) 4.40710e11 1.05893
\(383\) 1.09951e11 0.261099 0.130550 0.991442i \(-0.458326\pi\)
0.130550 + 0.991442i \(0.458326\pi\)
\(384\) 4.39667e10 0.103189
\(385\) −2.50730e11 −0.581612
\(386\) −5.93730e10 −0.136128
\(387\) −2.88194e11 −0.653110
\(388\) −1.84810e11 −0.413983
\(389\) −3.65716e11 −0.809787 −0.404893 0.914364i \(-0.632691\pi\)
−0.404893 + 0.914364i \(0.632691\pi\)
\(390\) 0 0
\(391\) 1.52644e11 0.330281
\(392\) 3.88505e11 0.831016
\(393\) −7.63050e11 −1.61357
\(394\) 2.86640e11 0.599245
\(395\) 1.81599e11 0.375342
\(396\) 1.20078e11 0.245379
\(397\) −3.46976e11 −0.701039 −0.350519 0.936555i \(-0.613995\pi\)
−0.350519 + 0.936555i \(0.613995\pi\)
\(398\) 5.87071e10 0.117278
\(399\) −3.43193e11 −0.677891
\(400\) −1.20932e11 −0.236195
\(401\) 1.36930e11 0.264453 0.132226 0.991220i \(-0.457787\pi\)
0.132226 + 0.991220i \(0.457787\pi\)
\(402\) −2.74883e11 −0.524964
\(403\) 0 0
\(404\) 4.84897e11 0.905593
\(405\) 1.56651e11 0.289324
\(406\) 8.66212e11 1.58218
\(407\) 1.16817e12 2.11024
\(408\) 1.00900e11 0.180269
\(409\) 5.61335e11 0.991899 0.495949 0.868351i \(-0.334820\pi\)
0.495949 + 0.868351i \(0.334820\pi\)
\(410\) −5.99249e10 −0.104732
\(411\) 4.52235e10 0.0781765
\(412\) 4.34253e11 0.742516
\(413\) −8.96108e11 −1.51560
\(414\) 1.16006e11 0.194078
\(415\) 2.39694e11 0.396681
\(416\) 0 0
\(417\) −2.88927e11 −0.467925
\(418\) −1.89311e11 −0.303308
\(419\) −1.23264e12 −1.95376 −0.976882 0.213778i \(-0.931423\pi\)
−0.976882 + 0.213778i \(0.931423\pi\)
\(420\) −1.60116e11 −0.251080
\(421\) −1.31000e11 −0.203236 −0.101618 0.994823i \(-0.532402\pi\)
−0.101618 + 0.994823i \(0.532402\pi\)
\(422\) 9.52636e10 0.146225
\(423\) −7.62311e10 −0.115771
\(424\) −3.24780e11 −0.488026
\(425\) −2.77529e11 −0.412628
\(426\) 3.78014e11 0.556115
\(427\) 1.22903e12 1.78910
\(428\) 2.26014e11 0.325566
\(429\) 0 0
\(430\) 2.11979e11 0.299009
\(431\) −8.26151e11 −1.15322 −0.576609 0.817020i \(-0.695625\pi\)
−0.576609 + 0.817020i \(0.695625\pi\)
\(432\) −1.34597e11 −0.185934
\(433\) −1.10299e12 −1.50792 −0.753959 0.656922i \(-0.771858\pi\)
−0.753959 + 0.656922i \(0.771858\pi\)
\(434\) 8.36514e10 0.113180
\(435\) −2.50444e11 −0.335358
\(436\) 5.29817e11 0.702161
\(437\) −1.82890e11 −0.239896
\(438\) 5.15310e10 0.0669014
\(439\) −7.44262e11 −0.956391 −0.478196 0.878253i \(-0.658709\pi\)
−0.478196 + 0.878253i \(0.658709\pi\)
\(440\) −8.83227e10 −0.112340
\(441\) 6.77587e11 0.853083
\(442\) 0 0
\(443\) −1.48555e12 −1.83262 −0.916309 0.400473i \(-0.868846\pi\)
−0.916309 + 0.400473i \(0.868846\pi\)
\(444\) 7.45991e11 0.910982
\(445\) 8.10633e10 0.0979951
\(446\) −5.60995e11 −0.671354
\(447\) 8.00828e10 0.0948758
\(448\) 1.95080e11 0.228804
\(449\) 7.99853e11 0.928756 0.464378 0.885637i \(-0.346278\pi\)
0.464378 + 0.885637i \(0.346278\pi\)
\(450\) −2.10916e11 −0.242467
\(451\) 7.48804e11 0.852263
\(452\) 3.86071e11 0.435055
\(453\) −1.49837e12 −1.67178
\(454\) −7.94958e11 −0.878199
\(455\) 0 0
\(456\) −1.20894e11 −0.130937
\(457\) 3.25370e11 0.348943 0.174472 0.984662i \(-0.444178\pi\)
0.174472 + 0.984662i \(0.444178\pi\)
\(458\) 1.22061e12 1.29623
\(459\) −3.08890e11 −0.324823
\(460\) −8.53269e10 −0.0888537
\(461\) 3.59994e11 0.371229 0.185614 0.982623i \(-0.440573\pi\)
0.185614 + 0.982623i \(0.440573\pi\)
\(462\) 2.00076e12 2.04318
\(463\) −5.79365e11 −0.585919 −0.292960 0.956125i \(-0.594640\pi\)
−0.292960 + 0.956125i \(0.594640\pi\)
\(464\) 3.05134e11 0.305604
\(465\) −2.41857e10 −0.0239895
\(466\) −5.43032e11 −0.533444
\(467\) 2.20112e11 0.214150 0.107075 0.994251i \(-0.465852\pi\)
0.107075 + 0.994251i \(0.465852\pi\)
\(468\) 0 0
\(469\) −1.21965e12 −1.16402
\(470\) 5.60711e10 0.0530028
\(471\) 1.23254e12 1.15400
\(472\) −3.15665e11 −0.292744
\(473\) −2.64883e12 −2.43321
\(474\) −1.44912e12 −1.31856
\(475\) 3.32522e11 0.299708
\(476\) 4.47695e11 0.399716
\(477\) −5.66445e11 −0.500985
\(478\) −1.07461e12 −0.941508
\(479\) −2.07550e12 −1.80141 −0.900706 0.434428i \(-0.856950\pi\)
−0.900706 + 0.434428i \(0.856950\pi\)
\(480\) −5.64027e10 −0.0484970
\(481\) 0 0
\(482\) −1.27233e12 −1.07371
\(483\) 1.93290e12 1.61602
\(484\) 5.00021e11 0.414175
\(485\) 2.37084e11 0.194564
\(486\) −6.03237e11 −0.490484
\(487\) 1.00844e12 0.812400 0.406200 0.913784i \(-0.366854\pi\)
0.406200 + 0.913784i \(0.366854\pi\)
\(488\) 4.32939e11 0.345571
\(489\) −1.62802e12 −1.28757
\(490\) −4.98394e11 −0.390562
\(491\) −2.60858e11 −0.202553 −0.101276 0.994858i \(-0.532293\pi\)
−0.101276 + 0.994858i \(0.532293\pi\)
\(492\) 4.78185e11 0.367919
\(493\) 7.00260e11 0.533885
\(494\) 0 0
\(495\) −1.54043e11 −0.115323
\(496\) 2.94672e10 0.0218611
\(497\) 1.67725e12 1.23309
\(498\) −1.91270e12 −1.39352
\(499\) −3.53821e11 −0.255465 −0.127732 0.991809i \(-0.540770\pi\)
−0.127732 + 0.991809i \(0.540770\pi\)
\(500\) 3.19342e11 0.228503
\(501\) −1.05494e12 −0.748095
\(502\) 1.78259e12 1.25281
\(503\) 1.10638e12 0.770634 0.385317 0.922784i \(-0.374092\pi\)
0.385317 + 0.922784i \(0.374092\pi\)
\(504\) 3.40238e11 0.234879
\(505\) −6.22050e11 −0.425612
\(506\) 1.06622e12 0.723052
\(507\) 0 0
\(508\) 3.44523e11 0.229526
\(509\) −1.92581e12 −1.27170 −0.635848 0.771814i \(-0.719349\pi\)
−0.635848 + 0.771814i \(0.719349\pi\)
\(510\) −1.29440e11 −0.0847233
\(511\) 2.28643e11 0.148342
\(512\) 6.87195e10 0.0441942
\(513\) 3.70096e11 0.235932
\(514\) 1.82520e12 1.15339
\(515\) −5.57082e11 −0.348969
\(516\) −1.69154e12 −1.05041
\(517\) −7.00649e11 −0.431313
\(518\) 3.30996e12 2.01994
\(519\) 3.77199e11 0.228201
\(520\) 0 0
\(521\) 1.72837e12 1.02770 0.513851 0.857879i \(-0.328218\pi\)
0.513851 + 0.857879i \(0.328218\pi\)
\(522\) 5.32180e11 0.313720
\(523\) −1.62219e11 −0.0948080 −0.0474040 0.998876i \(-0.515095\pi\)
−0.0474040 + 0.998876i \(0.515095\pi\)
\(524\) −1.19264e12 −0.691064
\(525\) −3.51430e12 −2.01893
\(526\) 6.03542e11 0.343773
\(527\) 6.76251e10 0.0381909
\(528\) 7.04792e11 0.394647
\(529\) −7.71097e11 −0.428113
\(530\) 4.16644e11 0.229363
\(531\) −5.50548e11 −0.300517
\(532\) −5.36406e11 −0.290330
\(533\) 0 0
\(534\) −6.46864e11 −0.344253
\(535\) −2.89943e11 −0.153010
\(536\) −4.29638e11 −0.224834
\(537\) 3.23649e12 1.67954
\(538\) −4.66327e9 −0.00239978
\(539\) 6.22778e12 3.17822
\(540\) 1.72667e11 0.0873853
\(541\) 3.99004e11 0.200258 0.100129 0.994974i \(-0.468074\pi\)
0.100129 + 0.994974i \(0.468074\pi\)
\(542\) 2.26293e12 1.12635
\(543\) −3.13580e12 −1.54792
\(544\) 1.57706e11 0.0772064
\(545\) −6.79676e11 −0.330003
\(546\) 0 0
\(547\) −2.72848e12 −1.30310 −0.651551 0.758605i \(-0.725881\pi\)
−0.651551 + 0.758605i \(0.725881\pi\)
\(548\) 7.06839e10 0.0334817
\(549\) 7.55084e11 0.354748
\(550\) −1.93855e12 −0.903327
\(551\) −8.39016e11 −0.387782
\(552\) 6.80886e11 0.312139
\(553\) −6.42973e12 −2.92368
\(554\) −8.00256e11 −0.360940
\(555\) −9.56994e11 −0.428145
\(556\) −4.51590e11 −0.200405
\(557\) −6.68129e11 −0.294111 −0.147056 0.989128i \(-0.546980\pi\)
−0.147056 + 0.989128i \(0.546980\pi\)
\(558\) 5.13934e10 0.0224416
\(559\) 0 0
\(560\) −2.50259e11 −0.107533
\(561\) 1.61745e12 0.689441
\(562\) 1.06876e12 0.451926
\(563\) −2.16253e12 −0.907139 −0.453570 0.891221i \(-0.649850\pi\)
−0.453570 + 0.891221i \(0.649850\pi\)
\(564\) −4.47433e11 −0.186197
\(565\) −4.95271e11 −0.204468
\(566\) −1.91549e12 −0.784524
\(567\) −5.54639e12 −2.25365
\(568\) 5.90831e11 0.238175
\(569\) −1.17553e12 −0.470140 −0.235070 0.971978i \(-0.575532\pi\)
−0.235070 + 0.971978i \(0.575532\pi\)
\(570\) 1.55089e11 0.0615379
\(571\) −1.68861e11 −0.0664761 −0.0332381 0.999447i \(-0.510582\pi\)
−0.0332381 + 0.999447i \(0.510582\pi\)
\(572\) 0 0
\(573\) 4.51146e12 1.74832
\(574\) 2.12171e12 0.815796
\(575\) −1.87280e12 −0.714472
\(576\) 1.19853e11 0.0453677
\(577\) −2.62228e12 −0.984890 −0.492445 0.870344i \(-0.663897\pi\)
−0.492445 + 0.870344i \(0.663897\pi\)
\(578\) −1.53548e12 −0.572228
\(579\) −6.07789e11 −0.224750
\(580\) −3.91441e11 −0.143628
\(581\) −8.48664e12 −3.08989
\(582\) −1.89186e12 −0.683497
\(583\) −5.20626e12 −1.86645
\(584\) 8.05424e10 0.0286528
\(585\) 0 0
\(586\) 2.29392e11 0.0803598
\(587\) −7.63488e11 −0.265418 −0.132709 0.991155i \(-0.542368\pi\)
−0.132709 + 0.991155i \(0.542368\pi\)
\(588\) 3.97705e12 1.37203
\(589\) −8.10250e10 −0.0277396
\(590\) 4.04951e11 0.137584
\(591\) 2.93428e12 0.989368
\(592\) 1.16597e12 0.390159
\(593\) −1.98675e12 −0.659776 −0.329888 0.944020i \(-0.607011\pi\)
−0.329888 + 0.944020i \(0.607011\pi\)
\(594\) −2.15760e12 −0.711103
\(595\) −5.74326e11 −0.187859
\(596\) 1.25168e11 0.0406337
\(597\) 6.00973e11 0.193629
\(598\) 0 0
\(599\) −3.57967e12 −1.13611 −0.568057 0.822989i \(-0.692305\pi\)
−0.568057 + 0.822989i \(0.692305\pi\)
\(600\) −1.23795e12 −0.389964
\(601\) 4.51274e11 0.141093 0.0705465 0.997508i \(-0.477526\pi\)
0.0705465 + 0.997508i \(0.477526\pi\)
\(602\) −7.50535e12 −2.32909
\(603\) −7.49327e11 −0.230804
\(604\) −2.34194e12 −0.715994
\(605\) −6.41452e11 −0.194655
\(606\) 4.96379e12 1.49516
\(607\) 5.29060e12 1.58181 0.790907 0.611936i \(-0.209609\pi\)
0.790907 + 0.611936i \(0.209609\pi\)
\(608\) −1.88956e11 −0.0560781
\(609\) 8.86724e12 2.61223
\(610\) −5.55396e11 −0.162412
\(611\) 0 0
\(612\) 2.75053e11 0.0792567
\(613\) 3.73141e12 1.06734 0.533668 0.845694i \(-0.320813\pi\)
0.533668 + 0.845694i \(0.320813\pi\)
\(614\) 1.57620e12 0.447562
\(615\) −6.13439e11 −0.172915
\(616\) 3.12716e12 0.875059
\(617\) −5.22525e12 −1.45152 −0.725761 0.687947i \(-0.758512\pi\)
−0.725761 + 0.687947i \(0.758512\pi\)
\(618\) 4.44537e12 1.22591
\(619\) −3.68332e11 −0.100840 −0.0504198 0.998728i \(-0.516056\pi\)
−0.0504198 + 0.998728i \(0.516056\pi\)
\(620\) −3.78020e10 −0.0102743
\(621\) −2.08442e12 −0.562435
\(622\) −3.02160e12 −0.809432
\(623\) −2.87014e12 −0.763319
\(624\) 0 0
\(625\) 3.19438e12 0.837387
\(626\) 4.12145e12 1.07267
\(627\) −1.93794e12 −0.500768
\(628\) 1.92644e12 0.494239
\(629\) 2.67582e12 0.681600
\(630\) −4.36474e11 −0.110389
\(631\) −5.66616e12 −1.42284 −0.711421 0.702766i \(-0.751948\pi\)
−0.711421 + 0.702766i \(0.751948\pi\)
\(632\) −2.26495e12 −0.564718
\(633\) 9.75194e11 0.241421
\(634\) 3.05633e12 0.751274
\(635\) −4.41971e11 −0.107873
\(636\) −3.32471e12 −0.805743
\(637\) 0 0
\(638\) 4.89133e12 1.16878
\(639\) 1.03046e12 0.244499
\(640\) −8.81568e10 −0.0207704
\(641\) −4.18212e12 −0.978443 −0.489221 0.872160i \(-0.662719\pi\)
−0.489221 + 0.872160i \(0.662719\pi\)
\(642\) 2.31366e12 0.537518
\(643\) −4.59095e12 −1.05914 −0.529569 0.848267i \(-0.677646\pi\)
−0.529569 + 0.848267i \(0.677646\pi\)
\(644\) 3.02109e12 0.692114
\(645\) 2.16999e12 0.493672
\(646\) −4.33639e11 −0.0979675
\(647\) −1.21485e12 −0.272555 −0.136277 0.990671i \(-0.543514\pi\)
−0.136277 + 0.990671i \(0.543514\pi\)
\(648\) −1.95378e12 −0.435300
\(649\) −5.06015e12 −1.11960
\(650\) 0 0
\(651\) 8.56323e11 0.186863
\(652\) −2.54457e12 −0.551443
\(653\) 9.26075e11 0.199314 0.0996568 0.995022i \(-0.468226\pi\)
0.0996568 + 0.995022i \(0.468226\pi\)
\(654\) 5.42363e12 1.15929
\(655\) 1.52998e12 0.324787
\(656\) 7.47397e11 0.157574
\(657\) 1.40473e11 0.0294136
\(658\) −1.98526e12 −0.412858
\(659\) 2.76107e11 0.0570286 0.0285143 0.999593i \(-0.490922\pi\)
0.0285143 + 0.999593i \(0.490922\pi\)
\(660\) −9.04142e11 −0.185477
\(661\) −6.62032e12 −1.34888 −0.674438 0.738331i \(-0.735614\pi\)
−0.674438 + 0.738331i \(0.735614\pi\)
\(662\) −6.20655e12 −1.25600
\(663\) 0 0
\(664\) −2.98952e12 −0.596823
\(665\) 6.88128e11 0.136450
\(666\) 2.03356e12 0.400519
\(667\) 4.72542e12 0.924431
\(668\) −1.64885e12 −0.320397
\(669\) −5.74279e12 −1.10842
\(670\) 5.51161e11 0.105668
\(671\) 6.94007e12 1.32164
\(672\) 1.99700e12 0.377760
\(673\) −9.49262e11 −0.178369 −0.0891843 0.996015i \(-0.528426\pi\)
−0.0891843 + 0.996015i \(0.528426\pi\)
\(674\) 2.64246e12 0.493217
\(675\) 3.78979e12 0.702665
\(676\) 0 0
\(677\) −4.09158e12 −0.748586 −0.374293 0.927311i \(-0.622115\pi\)
−0.374293 + 0.927311i \(0.622115\pi\)
\(678\) 3.95213e12 0.718287
\(679\) −8.39420e12 −1.51553
\(680\) −2.02313e11 −0.0362856
\(681\) −8.13783e12 −1.44993
\(682\) 4.72363e11 0.0836077
\(683\) 9.22255e12 1.62165 0.810826 0.585287i \(-0.199018\pi\)
0.810826 + 0.585287i \(0.199018\pi\)
\(684\) −3.29555e11 −0.0575673
\(685\) −9.06768e10 −0.0157358
\(686\) 1.01387e13 1.74792
\(687\) 1.24951e13 2.14010
\(688\) −2.64385e12 −0.449872
\(689\) 0 0
\(690\) −8.73475e11 −0.146700
\(691\) −5.56624e12 −0.928775 −0.464388 0.885632i \(-0.653726\pi\)
−0.464388 + 0.885632i \(0.653726\pi\)
\(692\) 5.89557e11 0.0977346
\(693\) 5.45405e12 0.898296
\(694\) −3.40270e12 −0.556808
\(695\) 5.79322e11 0.0941865
\(696\) 3.12359e12 0.504560
\(697\) 1.71522e12 0.275279
\(698\) 5.50902e12 0.878466
\(699\) −5.55891e12 −0.880730
\(700\) −5.49281e12 −0.864675
\(701\) 6.38372e12 0.998487 0.499244 0.866462i \(-0.333611\pi\)
0.499244 + 0.866462i \(0.333611\pi\)
\(702\) 0 0
\(703\) −3.20604e12 −0.495074
\(704\) 1.10158e12 0.169021
\(705\) 5.73989e11 0.0875090
\(706\) −1.54439e12 −0.233956
\(707\) 2.20244e13 3.31525
\(708\) −3.23140e12 −0.483327
\(709\) −4.57498e12 −0.679957 −0.339979 0.940433i \(-0.610420\pi\)
−0.339979 + 0.940433i \(0.610420\pi\)
\(710\) −7.57947e11 −0.111938
\(711\) −3.95027e12 −0.579714
\(712\) −1.01104e12 −0.147438
\(713\) 4.56341e11 0.0661282
\(714\) 4.58297e12 0.659941
\(715\) 0 0
\(716\) 5.05859e12 0.719318
\(717\) −1.10005e13 −1.55445
\(718\) −7.49180e12 −1.05203
\(719\) 2.81561e12 0.392910 0.196455 0.980513i \(-0.437057\pi\)
0.196455 + 0.980513i \(0.437057\pi\)
\(720\) −1.53753e11 −0.0213220
\(721\) 1.97241e13 2.71824
\(722\) −4.64344e12 −0.635949
\(723\) −1.30246e13 −1.77273
\(724\) −4.90122e12 −0.662950
\(725\) −8.59154e12 −1.15491
\(726\) 5.11861e12 0.683813
\(727\) 8.80768e12 1.16938 0.584692 0.811256i \(-0.301216\pi\)
0.584692 + 0.811256i \(0.301216\pi\)
\(728\) 0 0
\(729\) 3.21353e12 0.421413
\(730\) −1.03324e11 −0.0134663
\(731\) −6.06744e12 −0.785919
\(732\) 4.43191e12 0.570547
\(733\) 9.56473e11 0.122378 0.0611892 0.998126i \(-0.480511\pi\)
0.0611892 + 0.998126i \(0.480511\pi\)
\(734\) 1.27964e12 0.162726
\(735\) −5.10196e12 −0.644828
\(736\) 1.06422e12 0.133684
\(737\) −6.88715e12 −0.859876
\(738\) 1.30353e12 0.161758
\(739\) −8.07521e12 −0.995988 −0.497994 0.867181i \(-0.665930\pi\)
−0.497994 + 0.867181i \(0.665930\pi\)
\(740\) −1.49577e12 −0.183367
\(741\) 0 0
\(742\) −1.47517e13 −1.78659
\(743\) −8.34279e12 −1.00430 −0.502148 0.864782i \(-0.667457\pi\)
−0.502148 + 0.864782i \(0.667457\pi\)
\(744\) 3.01650e11 0.0360932
\(745\) −1.60572e11 −0.0190971
\(746\) 3.09827e12 0.366265
\(747\) −5.21399e12 −0.612671
\(748\) 2.52805e12 0.295276
\(749\) 1.02657e13 1.19185
\(750\) 3.26904e12 0.377263
\(751\) 1.37838e13 1.58121 0.790605 0.612327i \(-0.209766\pi\)
0.790605 + 0.612327i \(0.209766\pi\)
\(752\) −6.99332e11 −0.0797449
\(753\) 1.82480e13 2.06841
\(754\) 0 0
\(755\) 3.00436e12 0.336504
\(756\) −6.11348e12 −0.680676
\(757\) 5.99121e12 0.663107 0.331553 0.943437i \(-0.392427\pi\)
0.331553 + 0.943437i \(0.392427\pi\)
\(758\) 2.22656e12 0.244976
\(759\) 1.09147e13 1.19378
\(760\) 2.42402e11 0.0263557
\(761\) −5.19855e12 −0.561890 −0.280945 0.959724i \(-0.590648\pi\)
−0.280945 + 0.959724i \(0.590648\pi\)
\(762\) 3.52682e12 0.378953
\(763\) 2.40647e13 2.57051
\(764\) 7.05136e12 0.748778
\(765\) −3.52852e11 −0.0372492
\(766\) 1.75922e12 0.184625
\(767\) 0 0
\(768\) 7.03468e11 0.0729657
\(769\) −6.67066e12 −0.687860 −0.343930 0.938995i \(-0.611758\pi\)
−0.343930 + 0.938995i \(0.611758\pi\)
\(770\) −4.01168e12 −0.411262
\(771\) 1.86842e13 1.90428
\(772\) −9.49968e11 −0.0962567
\(773\) 5.10637e12 0.514404 0.257202 0.966358i \(-0.417199\pi\)
0.257202 + 0.966358i \(0.417199\pi\)
\(774\) −4.61111e12 −0.461818
\(775\) −8.29697e11 −0.0826156
\(776\) −2.95696e12 −0.292730
\(777\) 3.38834e13 3.33498
\(778\) −5.85146e12 −0.572606
\(779\) −2.05509e12 −0.199946
\(780\) 0 0
\(781\) 9.47109e12 0.910899
\(782\) 2.44230e12 0.233544
\(783\) −9.56236e12 −0.909153
\(784\) 6.21608e12 0.587617
\(785\) −2.47133e12 −0.232283
\(786\) −1.22088e13 −1.14096
\(787\) 1.64204e13 1.52580 0.762899 0.646518i \(-0.223775\pi\)
0.762899 + 0.646518i \(0.223775\pi\)
\(788\) 4.58624e12 0.423730
\(789\) 6.17834e12 0.567578
\(790\) 2.90559e12 0.265407
\(791\) 1.75356e13 1.59267
\(792\) 1.92126e12 0.173509
\(793\) 0 0
\(794\) −5.55162e12 −0.495709
\(795\) 4.26510e12 0.378684
\(796\) 9.39314e11 0.0829281
\(797\) 1.12683e12 0.0989230 0.0494615 0.998776i \(-0.484249\pi\)
0.0494615 + 0.998776i \(0.484249\pi\)
\(798\) −5.49108e12 −0.479341
\(799\) −1.60492e12 −0.139313
\(800\) −1.93491e12 −0.167015
\(801\) −1.76334e12 −0.151353
\(802\) 2.19088e12 0.186997
\(803\) 1.29110e12 0.109583
\(804\) −4.39812e12 −0.371206
\(805\) −3.87561e12 −0.325281
\(806\) 0 0
\(807\) −4.77370e10 −0.00396209
\(808\) 7.75835e12 0.640351
\(809\) −7.36603e12 −0.604596 −0.302298 0.953214i \(-0.597754\pi\)
−0.302298 + 0.953214i \(0.597754\pi\)
\(810\) 2.50641e12 0.204583
\(811\) 3.01694e12 0.244891 0.122446 0.992475i \(-0.460926\pi\)
0.122446 + 0.992475i \(0.460926\pi\)
\(812\) 1.38594e13 1.11877
\(813\) 2.31651e13 1.85963
\(814\) 1.86907e13 1.49216
\(815\) 3.26431e12 0.259168
\(816\) 1.61441e12 0.127470
\(817\) 7.26971e12 0.570844
\(818\) 8.98136e12 0.701378
\(819\) 0 0
\(820\) −9.58798e11 −0.0740568
\(821\) −1.95823e13 −1.50425 −0.752125 0.659021i \(-0.770971\pi\)
−0.752125 + 0.659021i \(0.770971\pi\)
\(822\) 7.23577e11 0.0552792
\(823\) −3.88389e12 −0.295099 −0.147549 0.989055i \(-0.547139\pi\)
−0.147549 + 0.989055i \(0.547139\pi\)
\(824\) 6.94805e12 0.525038
\(825\) −1.98446e13 −1.49142
\(826\) −1.43377e13 −1.07169
\(827\) 8.71895e12 0.648171 0.324085 0.946028i \(-0.394943\pi\)
0.324085 + 0.946028i \(0.394943\pi\)
\(828\) 1.85609e12 0.137234
\(829\) 4.28594e12 0.315174 0.157587 0.987505i \(-0.449628\pi\)
0.157587 + 0.987505i \(0.449628\pi\)
\(830\) 3.83511e12 0.280496
\(831\) −8.19206e12 −0.595921
\(832\) 0 0
\(833\) 1.42654e13 1.02656
\(834\) −4.62284e12 −0.330873
\(835\) 2.11523e12 0.150581
\(836\) −3.02898e12 −0.214471
\(837\) −9.23451e11 −0.0650353
\(838\) −1.97222e13 −1.38152
\(839\) 1.39822e13 0.974198 0.487099 0.873347i \(-0.338055\pi\)
0.487099 + 0.873347i \(0.338055\pi\)
\(840\) −2.56185e12 −0.177540
\(841\) 7.17094e12 0.494304
\(842\) −2.09599e12 −0.143710
\(843\) 1.09407e13 0.746141
\(844\) 1.52422e12 0.103396
\(845\) 0 0
\(846\) −1.21970e12 −0.0818625
\(847\) 2.27113e13 1.51624
\(848\) −5.19648e12 −0.345086
\(849\) −1.96085e13 −1.29527
\(850\) −4.44047e12 −0.291772
\(851\) 1.80567e13 1.18020
\(852\) 6.04822e12 0.393233
\(853\) 1.97610e13 1.27802 0.639012 0.769197i \(-0.279343\pi\)
0.639012 + 0.769197i \(0.279343\pi\)
\(854\) 1.96644e13 1.26509
\(855\) 4.22770e11 0.0270556
\(856\) 3.61623e12 0.230210
\(857\) −2.36152e13 −1.49547 −0.747736 0.663996i \(-0.768859\pi\)
−0.747736 + 0.663996i \(0.768859\pi\)
\(858\) 0 0
\(859\) 1.78743e13 1.12011 0.560054 0.828456i \(-0.310781\pi\)
0.560054 + 0.828456i \(0.310781\pi\)
\(860\) 3.39166e12 0.211432
\(861\) 2.17195e13 1.34690
\(862\) −1.32184e13 −0.815449
\(863\) −8.93009e12 −0.548033 −0.274017 0.961725i \(-0.588352\pi\)
−0.274017 + 0.961725i \(0.588352\pi\)
\(864\) −2.15355e12 −0.131475
\(865\) −7.56313e11 −0.0459334
\(866\) −1.76479e13 −1.06626
\(867\) −1.57184e13 −0.944764
\(868\) 1.33842e12 0.0800303
\(869\) −3.63074e13 −2.15976
\(870\) −4.00710e12 −0.237134
\(871\) 0 0
\(872\) 8.47708e12 0.496503
\(873\) −5.15720e12 −0.300504
\(874\) −2.92624e12 −0.169632
\(875\) 1.45047e13 0.836515
\(876\) 8.24496e11 0.0473064
\(877\) −1.36331e13 −0.778209 −0.389104 0.921194i \(-0.627215\pi\)
−0.389104 + 0.921194i \(0.627215\pi\)
\(878\) −1.19082e13 −0.676271
\(879\) 2.34824e12 0.132676
\(880\) −1.41316e12 −0.0794366
\(881\) 2.21086e13 1.23643 0.618214 0.786010i \(-0.287857\pi\)
0.618214 + 0.786010i \(0.287857\pi\)
\(882\) 1.08414e13 0.603221
\(883\) −2.18016e12 −0.120688 −0.0603442 0.998178i \(-0.519220\pi\)
−0.0603442 + 0.998178i \(0.519220\pi\)
\(884\) 0 0
\(885\) 4.14540e12 0.227155
\(886\) −2.37689e13 −1.29586
\(887\) 8.98386e11 0.0487312 0.0243656 0.999703i \(-0.492243\pi\)
0.0243656 + 0.999703i \(0.492243\pi\)
\(888\) 1.19358e13 0.644162
\(889\) 1.56485e13 0.840262
\(890\) 1.29701e12 0.0692930
\(891\) −3.13194e13 −1.66481
\(892\) −8.97591e12 −0.474719
\(893\) 1.92293e12 0.101189
\(894\) 1.28133e12 0.0670873
\(895\) −6.48941e12 −0.338066
\(896\) 3.12129e12 0.161789
\(897\) 0 0
\(898\) 1.27976e13 0.656730
\(899\) 2.09348e12 0.106893
\(900\) −3.37465e12 −0.171450
\(901\) −1.19255e13 −0.602860
\(902\) 1.19809e13 0.602641
\(903\) −7.68308e13 −3.84539
\(904\) 6.17713e12 0.307630
\(905\) 6.28753e12 0.311574
\(906\) −2.39740e13 −1.18212
\(907\) 4.12871e12 0.202573 0.101286 0.994857i \(-0.467704\pi\)
0.101286 + 0.994857i \(0.467704\pi\)
\(908\) −1.27193e13 −0.620980
\(909\) 1.35312e13 0.657356
\(910\) 0 0
\(911\) −3.43032e13 −1.65007 −0.825034 0.565084i \(-0.808844\pi\)
−0.825034 + 0.565084i \(0.808844\pi\)
\(912\) −1.93430e12 −0.0925864
\(913\) −4.79224e13 −2.28255
\(914\) 5.20592e12 0.246740
\(915\) −5.68548e12 −0.268146
\(916\) 1.95297e13 0.916571
\(917\) −5.41705e13 −2.52989
\(918\) −4.94223e12 −0.229684
\(919\) −1.46188e13 −0.676071 −0.338035 0.941133i \(-0.609762\pi\)
−0.338035 + 0.941133i \(0.609762\pi\)
\(920\) −1.36523e12 −0.0628291
\(921\) 1.61352e13 0.738936
\(922\) 5.75991e12 0.262498
\(923\) 0 0
\(924\) 3.20122e13 1.44474
\(925\) −3.28299e13 −1.47446
\(926\) −9.26984e12 −0.414307
\(927\) 1.21180e13 0.538980
\(928\) 4.88214e12 0.216095
\(929\) 2.82624e13 1.24491 0.622455 0.782656i \(-0.286136\pi\)
0.622455 + 0.782656i \(0.286136\pi\)
\(930\) −3.86972e11 −0.0169631
\(931\) −1.70921e13 −0.745629
\(932\) −8.68851e12 −0.377202
\(933\) −3.09315e13 −1.33639
\(934\) 3.52179e12 0.151427
\(935\) −3.24311e12 −0.138774
\(936\) 0 0
\(937\) 2.56705e13 1.08794 0.543972 0.839103i \(-0.316920\pi\)
0.543972 + 0.839103i \(0.316920\pi\)
\(938\) −1.95145e13 −0.823084
\(939\) 4.21905e13 1.77100
\(940\) 8.97138e11 0.0374786
\(941\) 2.19542e13 0.912774 0.456387 0.889781i \(-0.349143\pi\)
0.456387 + 0.889781i \(0.349143\pi\)
\(942\) 1.97206e13 0.816001
\(943\) 1.15745e13 0.476649
\(944\) −5.05064e12 −0.207001
\(945\) 7.84268e12 0.319905
\(946\) −4.23813e13 −1.72054
\(947\) 2.54204e13 1.02709 0.513544 0.858064i \(-0.328332\pi\)
0.513544 + 0.858064i \(0.328332\pi\)
\(948\) −2.31858e13 −0.932364
\(949\) 0 0
\(950\) 5.32035e12 0.211926
\(951\) 3.12870e13 1.24037
\(952\) 7.16313e12 0.282642
\(953\) −2.37513e13 −0.932760 −0.466380 0.884585i \(-0.654442\pi\)
−0.466380 + 0.884585i \(0.654442\pi\)
\(954\) −9.06312e12 −0.354250
\(955\) −9.04584e12 −0.351912
\(956\) −1.71937e13 −0.665747
\(957\) 5.00716e13 1.92969
\(958\) −3.32080e13 −1.27379
\(959\) 3.21051e12 0.122572
\(960\) −9.02443e11 −0.0342925
\(961\) −2.62375e13 −0.992353
\(962\) 0 0
\(963\) 6.30703e12 0.236323
\(964\) −2.03573e13 −0.759230
\(965\) 1.21867e12 0.0452389
\(966\) 3.09263e13 1.14270
\(967\) 1.52013e12 0.0559064 0.0279532 0.999609i \(-0.491101\pi\)
0.0279532 + 0.999609i \(0.491101\pi\)
\(968\) 8.00033e12 0.292866
\(969\) −4.43908e12 −0.161747
\(970\) 3.79334e12 0.137578
\(971\) −3.22330e13 −1.16363 −0.581814 0.813322i \(-0.697657\pi\)
−0.581814 + 0.813322i \(0.697657\pi\)
\(972\) −9.65180e12 −0.346825
\(973\) −2.05115e13 −0.733653
\(974\) 1.61350e13 0.574453
\(975\) 0 0
\(976\) 6.92703e12 0.244356
\(977\) 3.09104e13 1.08537 0.542687 0.839935i \(-0.317407\pi\)
0.542687 + 0.839935i \(0.317407\pi\)
\(978\) −2.60483e13 −0.910447
\(979\) −1.62071e13 −0.563875
\(980\) −7.97430e12 −0.276169
\(981\) 1.47848e13 0.509688
\(982\) −4.17374e12 −0.143226
\(983\) 4.06941e12 0.139008 0.0695042 0.997582i \(-0.477858\pi\)
0.0695042 + 0.997582i \(0.477858\pi\)
\(984\) 7.65096e12 0.260158
\(985\) −5.88346e12 −0.199145
\(986\) 1.12042e13 0.377514
\(987\) −2.03227e13 −0.681639
\(988\) 0 0
\(989\) −4.09437e13 −1.36083
\(990\) −2.46468e12 −0.0815460
\(991\) 2.35584e13 0.775914 0.387957 0.921677i \(-0.373181\pi\)
0.387957 + 0.921677i \(0.373181\pi\)
\(992\) 4.71476e11 0.0154581
\(993\) −6.35352e13 −2.07369
\(994\) 2.68360e13 0.871924
\(995\) −1.20500e12 −0.0389747
\(996\) −3.06032e13 −0.985370
\(997\) −2.00207e13 −0.641727 −0.320863 0.947125i \(-0.603973\pi\)
−0.320863 + 0.947125i \(0.603973\pi\)
\(998\) −5.66114e12 −0.180641
\(999\) −3.65396e13 −1.16070
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.r.1.12 yes 15
13.12 even 2 338.10.a.q.1.12 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.10.a.q.1.12 15 13.12 even 2
338.10.a.r.1.12 yes 15 1.1 even 1 trivial