Properties

Label 338.10.a.q.1.7
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-240,324,3840,-2164] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 4 x^{14} - 189447 x^{13} - 2075910 x^{12} + 13427724566 x^{11} + 240902663602 x^{10} + \cdots - 13\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{3}\cdot 13^{13} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.89394\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} -28.8911 q^{3} +256.000 q^{4} -815.982 q^{5} +462.257 q^{6} +7673.39 q^{7} -4096.00 q^{8} -18848.3 q^{9} +13055.7 q^{10} +38192.3 q^{11} -7396.11 q^{12} -122774. q^{14} +23574.6 q^{15} +65536.0 q^{16} -341529. q^{17} +301573. q^{18} +348100. q^{19} -208891. q^{20} -221692. q^{21} -611077. q^{22} -200977. q^{23} +118338. q^{24} -1.28730e6 q^{25} +1.11321e6 q^{27} +1.96439e6 q^{28} +6.49458e6 q^{29} -377193. q^{30} +5.56460e6 q^{31} -1.04858e6 q^{32} -1.10342e6 q^{33} +5.46446e6 q^{34} -6.26134e6 q^{35} -4.82517e6 q^{36} -1.70812e7 q^{37} -5.56960e6 q^{38} +3.34226e6 q^{40} -1.21887e7 q^{41} +3.54708e6 q^{42} +1.52205e6 q^{43} +9.77723e6 q^{44} +1.53799e7 q^{45} +3.21563e6 q^{46} +2.38449e7 q^{47} -1.89341e6 q^{48} +1.85272e7 q^{49} +2.05968e7 q^{50} +9.86713e6 q^{51} +7.97086e7 q^{53} -1.78114e7 q^{54} -3.11642e7 q^{55} -3.14302e7 q^{56} -1.00570e7 q^{57} -1.03913e8 q^{58} -8.94548e7 q^{59} +6.03509e6 q^{60} +7.49352e7 q^{61} -8.90335e7 q^{62} -1.44630e8 q^{63} +1.67772e7 q^{64} +1.76547e7 q^{66} +1.88079e8 q^{67} -8.74313e7 q^{68} +5.80643e6 q^{69} +1.00181e8 q^{70} -1.03633e8 q^{71} +7.72027e7 q^{72} -3.04172e8 q^{73} +2.73299e8 q^{74} +3.71914e7 q^{75} +8.91137e7 q^{76} +2.93064e8 q^{77} -3.28625e8 q^{79} -5.34762e7 q^{80} +3.38829e8 q^{81} +1.95019e8 q^{82} -2.55837e8 q^{83} -5.67532e7 q^{84} +2.78681e8 q^{85} -2.43529e7 q^{86} -1.87635e8 q^{87} -1.56436e8 q^{88} -6.14853e8 q^{89} -2.46078e8 q^{90} -5.14500e7 q^{92} -1.60767e8 q^{93} -3.81519e8 q^{94} -2.84043e8 q^{95} +3.02945e7 q^{96} +6.50813e8 q^{97} -2.96436e8 q^{98} -7.19860e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 240 q^{2} + 324 q^{3} + 3840 q^{4} - 2164 q^{5} - 5184 q^{6} - 4227 q^{7} - 61440 q^{8} + 112199 q^{9} + 34624 q^{10} + 58782 q^{11} + 82944 q^{12} + 67632 q^{14} - 488672 q^{15} + 983040 q^{16}+ \cdots - 3437295177 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) −28.8911 −0.205929 −0.102965 0.994685i \(-0.532833\pi\)
−0.102965 + 0.994685i \(0.532833\pi\)
\(4\) 256.000 0.500000
\(5\) −815.982 −0.583869 −0.291934 0.956438i \(-0.594299\pi\)
−0.291934 + 0.956438i \(0.594299\pi\)
\(6\) 462.257 0.145614
\(7\) 7673.39 1.20794 0.603971 0.797007i \(-0.293584\pi\)
0.603971 + 0.797007i \(0.293584\pi\)
\(8\) −4096.00 −0.353553
\(9\) −18848.3 −0.957593
\(10\) 13055.7 0.412858
\(11\) 38192.3 0.786518 0.393259 0.919428i \(-0.371348\pi\)
0.393259 + 0.919428i \(0.371348\pi\)
\(12\) −7396.11 −0.102965
\(13\) 0 0
\(14\) −122774. −0.854143
\(15\) 23574.6 0.120236
\(16\) 65536.0 0.250000
\(17\) −341529. −0.991761 −0.495880 0.868391i \(-0.665155\pi\)
−0.495880 + 0.868391i \(0.665155\pi\)
\(18\) 301573. 0.677121
\(19\) 348100. 0.612792 0.306396 0.951904i \(-0.400877\pi\)
0.306396 + 0.951904i \(0.400877\pi\)
\(20\) −208891. −0.291934
\(21\) −221692. −0.248750
\(22\) −611077. −0.556152
\(23\) −200977. −0.149751 −0.0748756 0.997193i \(-0.523856\pi\)
−0.0748756 + 0.997193i \(0.523856\pi\)
\(24\) 118338. 0.0728070
\(25\) −1.28730e6 −0.659097
\(26\) 0 0
\(27\) 1.11321e6 0.403126
\(28\) 1.96439e6 0.603971
\(29\) 6.49458e6 1.70514 0.852570 0.522613i \(-0.175043\pi\)
0.852570 + 0.522613i \(0.175043\pi\)
\(30\) −377193. −0.0850195
\(31\) 5.56460e6 1.08220 0.541098 0.840959i \(-0.318009\pi\)
0.541098 + 0.840959i \(0.318009\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) −1.10342e6 −0.161967
\(34\) 5.46446e6 0.701281
\(35\) −6.26134e6 −0.705279
\(36\) −4.82517e6 −0.478797
\(37\) −1.70812e7 −1.49834 −0.749171 0.662377i \(-0.769548\pi\)
−0.749171 + 0.662377i \(0.769548\pi\)
\(38\) −5.56960e6 −0.433309
\(39\) 0 0
\(40\) 3.34226e6 0.206429
\(41\) −1.21887e7 −0.673642 −0.336821 0.941569i \(-0.609352\pi\)
−0.336821 + 0.941569i \(0.609352\pi\)
\(42\) 3.54708e6 0.175893
\(43\) 1.52205e6 0.0678925 0.0339463 0.999424i \(-0.489192\pi\)
0.0339463 + 0.999424i \(0.489192\pi\)
\(44\) 9.77723e6 0.393259
\(45\) 1.53799e7 0.559109
\(46\) 3.21563e6 0.105890
\(47\) 2.38449e7 0.712781 0.356390 0.934337i \(-0.384007\pi\)
0.356390 + 0.934337i \(0.384007\pi\)
\(48\) −1.89341e6 −0.0514823
\(49\) 1.85272e7 0.459122
\(50\) 2.05968e7 0.466052
\(51\) 9.86713e6 0.204233
\(52\) 0 0
\(53\) 7.97086e7 1.38760 0.693799 0.720168i \(-0.255936\pi\)
0.693799 + 0.720168i \(0.255936\pi\)
\(54\) −1.78114e7 −0.285053
\(55\) −3.11642e7 −0.459224
\(56\) −3.14302e7 −0.427072
\(57\) −1.00570e7 −0.126192
\(58\) −1.03913e8 −1.20572
\(59\) −8.94548e7 −0.961103 −0.480551 0.876967i \(-0.659563\pi\)
−0.480551 + 0.876967i \(0.659563\pi\)
\(60\) 6.03509e6 0.0601178
\(61\) 7.49352e7 0.692950 0.346475 0.938059i \(-0.387379\pi\)
0.346475 + 0.938059i \(0.387379\pi\)
\(62\) −8.90335e7 −0.765228
\(63\) −1.44630e8 −1.15672
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) 1.76547e7 0.114528
\(67\) 1.88079e8 1.14026 0.570128 0.821556i \(-0.306893\pi\)
0.570128 + 0.821556i \(0.306893\pi\)
\(68\) −8.74313e7 −0.495880
\(69\) 5.80643e6 0.0308381
\(70\) 1.00181e8 0.498708
\(71\) −1.03633e8 −0.483988 −0.241994 0.970278i \(-0.577801\pi\)
−0.241994 + 0.970278i \(0.577801\pi\)
\(72\) 7.72027e7 0.338560
\(73\) −3.04172e8 −1.25362 −0.626812 0.779171i \(-0.715640\pi\)
−0.626812 + 0.779171i \(0.715640\pi\)
\(74\) 2.73299e8 1.05949
\(75\) 3.71914e7 0.135727
\(76\) 8.91137e7 0.306396
\(77\) 2.93064e8 0.950068
\(78\) 0 0
\(79\) −3.28625e8 −0.949246 −0.474623 0.880189i \(-0.657416\pi\)
−0.474623 + 0.880189i \(0.657416\pi\)
\(80\) −5.34762e7 −0.145967
\(81\) 3.38829e8 0.874578
\(82\) 1.95019e8 0.476337
\(83\) −2.55837e8 −0.591715 −0.295857 0.955232i \(-0.595605\pi\)
−0.295857 + 0.955232i \(0.595605\pi\)
\(84\) −5.67532e7 −0.124375
\(85\) 2.78681e8 0.579058
\(86\) −2.43529e7 −0.0480073
\(87\) −1.87635e8 −0.351138
\(88\) −1.56436e8 −0.278076
\(89\) −6.14853e8 −1.03876 −0.519381 0.854543i \(-0.673837\pi\)
−0.519381 + 0.854543i \(0.673837\pi\)
\(90\) −2.46078e8 −0.395350
\(91\) 0 0
\(92\) −5.14500e7 −0.0748756
\(93\) −1.60767e8 −0.222856
\(94\) −3.81519e8 −0.504012
\(95\) −2.84043e8 −0.357790
\(96\) 3.02945e7 0.0364035
\(97\) 6.50813e8 0.746420 0.373210 0.927747i \(-0.378257\pi\)
0.373210 + 0.927747i \(0.378257\pi\)
\(98\) −2.96436e8 −0.324648
\(99\) −7.19860e8 −0.753165
\(100\) −3.29549e8 −0.329549
\(101\) −1.42733e9 −1.36483 −0.682416 0.730964i \(-0.739071\pi\)
−0.682416 + 0.730964i \(0.739071\pi\)
\(102\) −1.57874e8 −0.144414
\(103\) 1.57282e8 0.137693 0.0688465 0.997627i \(-0.478068\pi\)
0.0688465 + 0.997627i \(0.478068\pi\)
\(104\) 0 0
\(105\) 1.80897e8 0.145238
\(106\) −1.27534e9 −0.981180
\(107\) 1.01227e9 0.746565 0.373282 0.927718i \(-0.378232\pi\)
0.373282 + 0.927718i \(0.378232\pi\)
\(108\) 2.84982e8 0.201563
\(109\) 1.09459e9 0.742732 0.371366 0.928487i \(-0.378890\pi\)
0.371366 + 0.928487i \(0.378890\pi\)
\(110\) 4.98628e8 0.324720
\(111\) 4.93495e8 0.308552
\(112\) 5.02883e8 0.301985
\(113\) −7.62256e7 −0.0439792 −0.0219896 0.999758i \(-0.507000\pi\)
−0.0219896 + 0.999758i \(0.507000\pi\)
\(114\) 1.60912e8 0.0892311
\(115\) 1.63993e8 0.0874350
\(116\) 1.66261e9 0.852570
\(117\) 0 0
\(118\) 1.43128e9 0.679602
\(119\) −2.62068e9 −1.19799
\(120\) −9.65615e7 −0.0425097
\(121\) −8.99295e8 −0.381389
\(122\) −1.19896e9 −0.489990
\(123\) 3.52144e8 0.138723
\(124\) 1.42454e9 0.541098
\(125\) 2.64413e9 0.968695
\(126\) 2.31408e9 0.817922
\(127\) −2.67334e9 −0.911879 −0.455939 0.890011i \(-0.650697\pi\)
−0.455939 + 0.890011i \(0.650697\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) −4.39738e7 −0.0139811
\(130\) 0 0
\(131\) −3.38556e9 −1.00441 −0.502203 0.864750i \(-0.667477\pi\)
−0.502203 + 0.864750i \(0.667477\pi\)
\(132\) −2.82475e8 −0.0809836
\(133\) 2.67111e9 0.740217
\(134\) −3.00926e9 −0.806283
\(135\) −9.08359e8 −0.235373
\(136\) 1.39890e9 0.350640
\(137\) 4.00232e9 0.970664 0.485332 0.874330i \(-0.338699\pi\)
0.485332 + 0.874330i \(0.338699\pi\)
\(138\) −9.29029e7 −0.0218059
\(139\) 6.07493e9 1.38030 0.690152 0.723664i \(-0.257543\pi\)
0.690152 + 0.723664i \(0.257543\pi\)
\(140\) −1.60290e9 −0.352640
\(141\) −6.88906e8 −0.146782
\(142\) 1.65813e9 0.342231
\(143\) 0 0
\(144\) −1.23524e9 −0.239398
\(145\) −5.29946e9 −0.995578
\(146\) 4.86676e9 0.886446
\(147\) −5.35272e8 −0.0945466
\(148\) −4.37279e9 −0.749171
\(149\) −5.82004e9 −0.967360 −0.483680 0.875245i \(-0.660700\pi\)
−0.483680 + 0.875245i \(0.660700\pi\)
\(150\) −5.95063e8 −0.0959737
\(151\) −8.12500e9 −1.27182 −0.635912 0.771762i \(-0.719376\pi\)
−0.635912 + 0.771762i \(0.719376\pi\)
\(152\) −1.42582e9 −0.216655
\(153\) 6.43724e9 0.949703
\(154\) −4.68903e9 −0.671800
\(155\) −4.54061e9 −0.631861
\(156\) 0 0
\(157\) 2.22705e9 0.292537 0.146268 0.989245i \(-0.453274\pi\)
0.146268 + 0.989245i \(0.453274\pi\)
\(158\) 5.25800e9 0.671218
\(159\) −2.30287e9 −0.285747
\(160\) 8.55619e8 0.103214
\(161\) −1.54217e9 −0.180891
\(162\) −5.42127e9 −0.618420
\(163\) 5.24174e9 0.581609 0.290804 0.956783i \(-0.406077\pi\)
0.290804 + 0.956783i \(0.406077\pi\)
\(164\) −3.12030e9 −0.336821
\(165\) 9.00368e8 0.0945676
\(166\) 4.09340e9 0.418405
\(167\) −1.86372e10 −1.85420 −0.927100 0.374814i \(-0.877707\pi\)
−0.927100 + 0.374814i \(0.877707\pi\)
\(168\) 9.08052e8 0.0879465
\(169\) 0 0
\(170\) −4.45890e9 −0.409456
\(171\) −6.56110e9 −0.586805
\(172\) 3.89646e8 0.0339463
\(173\) 7.29382e9 0.619081 0.309541 0.950886i \(-0.399825\pi\)
0.309541 + 0.950886i \(0.399825\pi\)
\(174\) 3.00216e9 0.248292
\(175\) −9.87794e9 −0.796151
\(176\) 2.50297e9 0.196630
\(177\) 2.58445e9 0.197919
\(178\) 9.83765e9 0.734516
\(179\) −1.61500e10 −1.17580 −0.587900 0.808933i \(-0.700045\pi\)
−0.587900 + 0.808933i \(0.700045\pi\)
\(180\) 3.93725e9 0.279554
\(181\) 1.30952e10 0.906899 0.453450 0.891282i \(-0.350193\pi\)
0.453450 + 0.891282i \(0.350193\pi\)
\(182\) 0 0
\(183\) −2.16496e9 −0.142699
\(184\) 8.23200e8 0.0529450
\(185\) 1.39380e10 0.874835
\(186\) 2.57227e9 0.157583
\(187\) −1.30438e10 −0.780038
\(188\) 6.10431e9 0.356390
\(189\) 8.54209e9 0.486952
\(190\) 4.54469e9 0.252996
\(191\) −2.68447e9 −0.145951 −0.0729756 0.997334i \(-0.523250\pi\)
−0.0729756 + 0.997334i \(0.523250\pi\)
\(192\) −4.84712e8 −0.0257412
\(193\) 4.17224e9 0.216452 0.108226 0.994126i \(-0.465483\pi\)
0.108226 + 0.994126i \(0.465483\pi\)
\(194\) −1.04130e10 −0.527798
\(195\) 0 0
\(196\) 4.74297e9 0.229561
\(197\) −2.04253e10 −0.966207 −0.483103 0.875563i \(-0.660490\pi\)
−0.483103 + 0.875563i \(0.660490\pi\)
\(198\) 1.15178e10 0.532568
\(199\) 3.71251e10 1.67814 0.839071 0.544022i \(-0.183099\pi\)
0.839071 + 0.544022i \(0.183099\pi\)
\(200\) 5.27278e9 0.233026
\(201\) −5.43379e9 −0.234812
\(202\) 2.28373e10 0.965082
\(203\) 4.98354e10 2.05971
\(204\) 2.52598e9 0.102116
\(205\) 9.94574e9 0.393319
\(206\) −2.51652e9 −0.0973637
\(207\) 3.78807e9 0.143401
\(208\) 0 0
\(209\) 1.32948e10 0.481972
\(210\) −2.89435e9 −0.102699
\(211\) 5.25381e10 1.82475 0.912375 0.409355i \(-0.134246\pi\)
0.912375 + 0.409355i \(0.134246\pi\)
\(212\) 2.04054e10 0.693799
\(213\) 2.99406e9 0.0996673
\(214\) −1.61962e10 −0.527901
\(215\) −1.24197e9 −0.0396403
\(216\) −4.55971e9 −0.142526
\(217\) 4.26993e10 1.30723
\(218\) −1.75134e10 −0.525191
\(219\) 8.78787e9 0.258158
\(220\) −7.97804e9 −0.229612
\(221\) 0 0
\(222\) −7.89591e9 −0.218180
\(223\) 6.55392e10 1.77472 0.887359 0.461078i \(-0.152537\pi\)
0.887359 + 0.461078i \(0.152537\pi\)
\(224\) −8.04613e9 −0.213536
\(225\) 2.42634e10 0.631147
\(226\) 1.21961e9 0.0310980
\(227\) 2.97318e10 0.743199 0.371600 0.928393i \(-0.378809\pi\)
0.371600 + 0.928393i \(0.378809\pi\)
\(228\) −2.57459e9 −0.0630959
\(229\) 6.46117e10 1.55257 0.776286 0.630381i \(-0.217102\pi\)
0.776286 + 0.630381i \(0.217102\pi\)
\(230\) −2.62389e9 −0.0618259
\(231\) −8.46694e9 −0.195647
\(232\) −2.66018e10 −0.602858
\(233\) 5.29218e10 1.17634 0.588170 0.808737i \(-0.299849\pi\)
0.588170 + 0.808737i \(0.299849\pi\)
\(234\) 0 0
\(235\) −1.94570e10 −0.416171
\(236\) −2.29004e10 −0.480551
\(237\) 9.49433e9 0.195478
\(238\) 4.19309e10 0.847106
\(239\) −2.47807e10 −0.491274 −0.245637 0.969362i \(-0.578997\pi\)
−0.245637 + 0.969362i \(0.578997\pi\)
\(240\) 1.54498e9 0.0300589
\(241\) 6.69599e10 1.27861 0.639305 0.768953i \(-0.279222\pi\)
0.639305 + 0.768953i \(0.279222\pi\)
\(242\) 1.43887e10 0.269683
\(243\) −3.17005e10 −0.583227
\(244\) 1.91834e10 0.346475
\(245\) −1.51179e10 −0.268067
\(246\) −5.63430e9 −0.0980917
\(247\) 0 0
\(248\) −2.27926e10 −0.382614
\(249\) 7.39141e9 0.121851
\(250\) −4.23060e10 −0.684971
\(251\) 9.58602e10 1.52443 0.762214 0.647325i \(-0.224113\pi\)
0.762214 + 0.647325i \(0.224113\pi\)
\(252\) −3.70254e10 −0.578358
\(253\) −7.67576e9 −0.117782
\(254\) 4.27734e10 0.644796
\(255\) −8.05139e9 −0.119245
\(256\) 4.29497e9 0.0625000
\(257\) 8.61439e10 1.23176 0.615879 0.787841i \(-0.288801\pi\)
0.615879 + 0.787841i \(0.288801\pi\)
\(258\) 7.03580e8 0.00988610
\(259\) −1.31071e11 −1.80991
\(260\) 0 0
\(261\) −1.22412e11 −1.63283
\(262\) 5.41689e10 0.710222
\(263\) 1.06196e11 1.36870 0.684352 0.729152i \(-0.260085\pi\)
0.684352 + 0.729152i \(0.260085\pi\)
\(264\) 4.51960e9 0.0572640
\(265\) −6.50408e10 −0.810176
\(266\) −4.27377e10 −0.523412
\(267\) 1.77638e10 0.213911
\(268\) 4.81481e10 0.570128
\(269\) 1.11963e11 1.30373 0.651866 0.758334i \(-0.273987\pi\)
0.651866 + 0.758334i \(0.273987\pi\)
\(270\) 1.45337e10 0.166433
\(271\) −9.81374e10 −1.10528 −0.552641 0.833420i \(-0.686380\pi\)
−0.552641 + 0.833420i \(0.686380\pi\)
\(272\) −2.23824e10 −0.247940
\(273\) 0 0
\(274\) −6.40371e10 −0.686363
\(275\) −4.91649e10 −0.518392
\(276\) 1.48645e9 0.0154191
\(277\) 1.15497e11 1.17872 0.589362 0.807869i \(-0.299379\pi\)
0.589362 + 0.807869i \(0.299379\pi\)
\(278\) −9.71989e10 −0.976023
\(279\) −1.04883e11 −1.03630
\(280\) 2.56465e10 0.249354
\(281\) 1.88548e11 1.80403 0.902015 0.431704i \(-0.142087\pi\)
0.902015 + 0.431704i \(0.142087\pi\)
\(282\) 1.10225e10 0.103791
\(283\) −3.54780e10 −0.328792 −0.164396 0.986394i \(-0.552567\pi\)
−0.164396 + 0.986394i \(0.552567\pi\)
\(284\) −2.65300e10 −0.241994
\(285\) 8.20632e9 0.0736795
\(286\) 0 0
\(287\) −9.35284e10 −0.813720
\(288\) 1.97639e10 0.169280
\(289\) −1.94607e9 −0.0164104
\(290\) 8.47913e10 0.703980
\(291\) −1.88027e10 −0.153710
\(292\) −7.78682e10 −0.626812
\(293\) 2.08674e10 0.165411 0.0827054 0.996574i \(-0.473644\pi\)
0.0827054 + 0.996574i \(0.473644\pi\)
\(294\) 8.56434e9 0.0668546
\(295\) 7.29935e10 0.561158
\(296\) 6.99647e10 0.529744
\(297\) 4.25161e10 0.317066
\(298\) 9.31207e10 0.684027
\(299\) 0 0
\(300\) 9.52101e9 0.0678637
\(301\) 1.16793e10 0.0820102
\(302\) 1.30000e11 0.899315
\(303\) 4.12372e10 0.281059
\(304\) 2.28131e10 0.153198
\(305\) −6.11458e10 −0.404592
\(306\) −1.02996e11 −0.671542
\(307\) 1.94493e11 1.24963 0.624815 0.780772i \(-0.285174\pi\)
0.624815 + 0.780772i \(0.285174\pi\)
\(308\) 7.50245e10 0.475034
\(309\) −4.54405e9 −0.0283550
\(310\) 7.26497e10 0.446793
\(311\) −1.37275e11 −0.832091 −0.416045 0.909344i \(-0.636584\pi\)
−0.416045 + 0.909344i \(0.636584\pi\)
\(312\) 0 0
\(313\) 2.20790e11 1.30026 0.650129 0.759824i \(-0.274715\pi\)
0.650129 + 0.759824i \(0.274715\pi\)
\(314\) −3.56327e10 −0.206855
\(315\) 1.18016e11 0.675371
\(316\) −8.41280e10 −0.474623
\(317\) 5.96826e10 0.331956 0.165978 0.986129i \(-0.446922\pi\)
0.165978 + 0.986129i \(0.446922\pi\)
\(318\) 3.68459e10 0.202054
\(319\) 2.48043e11 1.34112
\(320\) −1.36899e10 −0.0729836
\(321\) −2.92454e10 −0.153739
\(322\) 2.46747e10 0.127909
\(323\) −1.18886e11 −0.607743
\(324\) 8.67403e10 0.437289
\(325\) 0 0
\(326\) −8.38678e10 −0.411260
\(327\) −3.16238e10 −0.152950
\(328\) 4.99248e10 0.238169
\(329\) 1.82971e11 0.860997
\(330\) −1.44059e10 −0.0668694
\(331\) 2.40129e11 1.09956 0.549779 0.835310i \(-0.314712\pi\)
0.549779 + 0.835310i \(0.314712\pi\)
\(332\) −6.54943e10 −0.295857
\(333\) 3.21952e11 1.43480
\(334\) 2.98195e11 1.31112
\(335\) −1.53469e11 −0.665760
\(336\) −1.45288e10 −0.0621876
\(337\) −9.68586e10 −0.409075 −0.204538 0.978859i \(-0.565569\pi\)
−0.204538 + 0.978859i \(0.565569\pi\)
\(338\) 0 0
\(339\) 2.20224e9 0.00905661
\(340\) 7.13424e10 0.289529
\(341\) 2.12525e11 0.851167
\(342\) 1.04978e11 0.414934
\(343\) −1.67482e11 −0.653349
\(344\) −6.23433e9 −0.0240036
\(345\) −4.73794e9 −0.0180054
\(346\) −1.16701e11 −0.437757
\(347\) −4.30745e11 −1.59492 −0.797458 0.603374i \(-0.793823\pi\)
−0.797458 + 0.603374i \(0.793823\pi\)
\(348\) −4.80346e10 −0.175569
\(349\) −1.95307e11 −0.704700 −0.352350 0.935868i \(-0.614617\pi\)
−0.352350 + 0.935868i \(0.614617\pi\)
\(350\) 1.58047e11 0.562964
\(351\) 0 0
\(352\) −4.00475e10 −0.139038
\(353\) −4.01046e11 −1.37470 −0.687349 0.726327i \(-0.741226\pi\)
−0.687349 + 0.726327i \(0.741226\pi\)
\(354\) −4.13511e10 −0.139950
\(355\) 8.45625e10 0.282586
\(356\) −1.57402e11 −0.519381
\(357\) 7.57143e10 0.246701
\(358\) 2.58400e11 0.831417
\(359\) −2.81095e11 −0.893156 −0.446578 0.894745i \(-0.647358\pi\)
−0.446578 + 0.894745i \(0.647358\pi\)
\(360\) −6.29959e10 −0.197675
\(361\) −2.01514e11 −0.624486
\(362\) −2.09523e11 −0.641275
\(363\) 2.59816e10 0.0785391
\(364\) 0 0
\(365\) 2.48199e11 0.731952
\(366\) 3.46393e10 0.100903
\(367\) 2.18648e11 0.629142 0.314571 0.949234i \(-0.398139\pi\)
0.314571 + 0.949234i \(0.398139\pi\)
\(368\) −1.31712e10 −0.0374378
\(369\) 2.29736e11 0.645075
\(370\) −2.23007e11 −0.618602
\(371\) 6.11635e11 1.67614
\(372\) −4.11564e10 −0.111428
\(373\) 4.99475e11 1.33605 0.668027 0.744137i \(-0.267139\pi\)
0.668027 + 0.744137i \(0.267139\pi\)
\(374\) 2.08700e11 0.551570
\(375\) −7.63916e10 −0.199483
\(376\) −9.76689e10 −0.252006
\(377\) 0 0
\(378\) −1.36674e11 −0.344327
\(379\) 3.58093e11 0.891496 0.445748 0.895158i \(-0.352938\pi\)
0.445748 + 0.895158i \(0.352938\pi\)
\(380\) −7.27151e10 −0.178895
\(381\) 7.72356e10 0.187782
\(382\) 4.29515e10 0.103203
\(383\) −4.93579e11 −1.17209 −0.586047 0.810277i \(-0.699317\pi\)
−0.586047 + 0.810277i \(0.699317\pi\)
\(384\) 7.75539e9 0.0182017
\(385\) −2.39135e11 −0.554715
\(386\) −6.67558e10 −0.153055
\(387\) −2.86881e10 −0.0650134
\(388\) 1.66608e11 0.373210
\(389\) 5.35975e11 1.18678 0.593391 0.804914i \(-0.297789\pi\)
0.593391 + 0.804914i \(0.297789\pi\)
\(390\) 0 0
\(391\) 6.86393e10 0.148517
\(392\) −7.58875e10 −0.162324
\(393\) 9.78124e10 0.206837
\(394\) 3.26804e11 0.683211
\(395\) 2.68152e11 0.554235
\(396\) −1.84284e11 −0.376582
\(397\) −2.04946e11 −0.414078 −0.207039 0.978333i \(-0.566383\pi\)
−0.207039 + 0.978333i \(0.566383\pi\)
\(398\) −5.94001e11 −1.18663
\(399\) −7.71711e10 −0.152432
\(400\) −8.43644e10 −0.164774
\(401\) −1.92115e10 −0.0371032 −0.0185516 0.999828i \(-0.505905\pi\)
−0.0185516 + 0.999828i \(0.505905\pi\)
\(402\) 8.69406e10 0.166037
\(403\) 0 0
\(404\) −3.65397e11 −0.682416
\(405\) −2.76479e11 −0.510639
\(406\) −7.97366e11 −1.45643
\(407\) −6.52371e11 −1.17847
\(408\) −4.04158e10 −0.0722071
\(409\) 1.05664e12 1.86712 0.933560 0.358422i \(-0.116685\pi\)
0.933560 + 0.358422i \(0.116685\pi\)
\(410\) −1.59132e11 −0.278118
\(411\) −1.15631e11 −0.199888
\(412\) 4.02643e10 0.0688465
\(413\) −6.86421e11 −1.16096
\(414\) −6.06091e10 −0.101400
\(415\) 2.08758e11 0.345484
\(416\) 0 0
\(417\) −1.75511e11 −0.284245
\(418\) −2.12716e11 −0.340806
\(419\) 1.70461e11 0.270185 0.135092 0.990833i \(-0.456867\pi\)
0.135092 + 0.990833i \(0.456867\pi\)
\(420\) 4.63096e10 0.0726188
\(421\) 2.08001e11 0.322698 0.161349 0.986897i \(-0.448416\pi\)
0.161349 + 0.986897i \(0.448416\pi\)
\(422\) −8.40610e11 −1.29029
\(423\) −4.49437e11 −0.682554
\(424\) −3.26486e11 −0.490590
\(425\) 4.39650e11 0.653667
\(426\) −4.79050e10 −0.0704754
\(427\) 5.75007e11 0.837043
\(428\) 2.59140e11 0.373282
\(429\) 0 0
\(430\) 1.98715e10 0.0280300
\(431\) −4.80660e11 −0.670950 −0.335475 0.942049i \(-0.608897\pi\)
−0.335475 + 0.942049i \(0.608897\pi\)
\(432\) 7.29554e10 0.100781
\(433\) −1.11441e12 −1.52353 −0.761763 0.647856i \(-0.775666\pi\)
−0.761763 + 0.647856i \(0.775666\pi\)
\(434\) −6.83189e11 −0.924351
\(435\) 1.53107e11 0.205019
\(436\) 2.80215e11 0.371366
\(437\) −6.99600e10 −0.0917663
\(438\) −1.40606e11 −0.182545
\(439\) 7.67141e11 0.985791 0.492896 0.870088i \(-0.335938\pi\)
0.492896 + 0.870088i \(0.335938\pi\)
\(440\) 1.27649e11 0.162360
\(441\) −3.49207e11 −0.439652
\(442\) 0 0
\(443\) 8.64963e11 1.06704 0.533520 0.845787i \(-0.320869\pi\)
0.533520 + 0.845787i \(0.320869\pi\)
\(444\) 1.26335e11 0.154276
\(445\) 5.01709e11 0.606501
\(446\) −1.04863e12 −1.25492
\(447\) 1.68147e11 0.199208
\(448\) 1.28738e11 0.150993
\(449\) −1.32420e12 −1.53761 −0.768805 0.639483i \(-0.779148\pi\)
−0.768805 + 0.639483i \(0.779148\pi\)
\(450\) −3.88215e11 −0.446288
\(451\) −4.65514e11 −0.529832
\(452\) −1.95137e10 −0.0219896
\(453\) 2.34740e11 0.261906
\(454\) −4.75709e11 −0.525521
\(455\) 0 0
\(456\) 4.11934e10 0.0446155
\(457\) −4.86188e11 −0.521412 −0.260706 0.965418i \(-0.583955\pi\)
−0.260706 + 0.965418i \(0.583955\pi\)
\(458\) −1.03379e12 −1.09783
\(459\) −3.80193e11 −0.399804
\(460\) 4.19823e10 0.0437175
\(461\) 5.88880e11 0.607257 0.303629 0.952790i \(-0.401802\pi\)
0.303629 + 0.952790i \(0.401802\pi\)
\(462\) 1.35471e11 0.138343
\(463\) 1.75155e12 1.77136 0.885680 0.464296i \(-0.153693\pi\)
0.885680 + 0.464296i \(0.153693\pi\)
\(464\) 4.25629e11 0.426285
\(465\) 1.31183e11 0.130119
\(466\) −8.46749e11 −0.831798
\(467\) 2.03830e11 0.198309 0.0991544 0.995072i \(-0.468386\pi\)
0.0991544 + 0.995072i \(0.468386\pi\)
\(468\) 0 0
\(469\) 1.44320e12 1.37736
\(470\) 3.11313e11 0.294277
\(471\) −6.43417e10 −0.0602419
\(472\) 3.66407e11 0.339801
\(473\) 5.81308e10 0.0533987
\(474\) −1.51909e11 −0.138223
\(475\) −4.48109e11 −0.403889
\(476\) −6.70894e11 −0.598994
\(477\) −1.50237e12 −1.32875
\(478\) 3.96492e11 0.347383
\(479\) −5.74049e11 −0.498241 −0.249120 0.968473i \(-0.580141\pi\)
−0.249120 + 0.968473i \(0.580141\pi\)
\(480\) −2.47197e10 −0.0212549
\(481\) 0 0
\(482\) −1.07136e12 −0.904114
\(483\) 4.45550e10 0.0372507
\(484\) −2.30219e11 −0.190694
\(485\) −5.31051e11 −0.435811
\(486\) 5.07207e11 0.412404
\(487\) 1.61943e12 1.30461 0.652307 0.757955i \(-0.273801\pi\)
0.652307 + 0.757955i \(0.273801\pi\)
\(488\) −3.06935e11 −0.244995
\(489\) −1.51439e11 −0.119770
\(490\) 2.41886e11 0.189552
\(491\) −2.15980e12 −1.67705 −0.838526 0.544861i \(-0.816582\pi\)
−0.838526 + 0.544861i \(0.816582\pi\)
\(492\) 9.01489e10 0.0693613
\(493\) −2.21808e12 −1.69109
\(494\) 0 0
\(495\) 5.87393e11 0.439749
\(496\) 3.64681e11 0.270549
\(497\) −7.95215e11 −0.584629
\(498\) −1.18263e11 −0.0861619
\(499\) 1.86557e12 1.34698 0.673488 0.739198i \(-0.264795\pi\)
0.673488 + 0.739198i \(0.264795\pi\)
\(500\) 6.76896e11 0.484348
\(501\) 5.38449e11 0.381834
\(502\) −1.53376e12 −1.07793
\(503\) −2.04860e12 −1.42693 −0.713464 0.700692i \(-0.752875\pi\)
−0.713464 + 0.700692i \(0.752875\pi\)
\(504\) 5.92406e11 0.408961
\(505\) 1.16468e12 0.796883
\(506\) 1.22812e11 0.0832845
\(507\) 0 0
\(508\) −6.84375e11 −0.455939
\(509\) 7.21209e11 0.476246 0.238123 0.971235i \(-0.423468\pi\)
0.238123 + 0.971235i \(0.423468\pi\)
\(510\) 1.28822e11 0.0843190
\(511\) −2.33403e12 −1.51430
\(512\) −6.87195e10 −0.0441942
\(513\) 3.87509e11 0.247032
\(514\) −1.37830e12 −0.870984
\(515\) −1.28339e11 −0.0803947
\(516\) −1.12573e10 −0.00699053
\(517\) 9.10694e11 0.560615
\(518\) 2.09713e12 1.27980
\(519\) −2.10726e11 −0.127487
\(520\) 0 0
\(521\) 4.04211e11 0.240347 0.120173 0.992753i \(-0.461655\pi\)
0.120173 + 0.992753i \(0.461655\pi\)
\(522\) 1.95859e12 1.15459
\(523\) −2.44658e12 −1.42989 −0.714944 0.699181i \(-0.753548\pi\)
−0.714944 + 0.699181i \(0.753548\pi\)
\(524\) −8.66703e11 −0.502203
\(525\) 2.85384e11 0.163951
\(526\) −1.69914e12 −0.967819
\(527\) −1.90047e12 −1.07328
\(528\) −7.23135e10 −0.0404918
\(529\) −1.76076e12 −0.977575
\(530\) 1.04065e12 0.572881
\(531\) 1.68607e12 0.920345
\(532\) 6.83803e11 0.370108
\(533\) 0 0
\(534\) −2.84220e11 −0.151258
\(535\) −8.25990e11 −0.435896
\(536\) −7.70370e11 −0.403142
\(537\) 4.66591e11 0.242132
\(538\) −1.79140e12 −0.921877
\(539\) 7.07598e11 0.361108
\(540\) −2.32540e11 −0.117686
\(541\) −1.63374e12 −0.819967 −0.409984 0.912093i \(-0.634466\pi\)
−0.409984 + 0.912093i \(0.634466\pi\)
\(542\) 1.57020e12 0.781552
\(543\) −3.78335e11 −0.186757
\(544\) 3.58119e11 0.175320
\(545\) −8.93164e11 −0.433658
\(546\) 0 0
\(547\) −1.38347e11 −0.0660735 −0.0330367 0.999454i \(-0.510518\pi\)
−0.0330367 + 0.999454i \(0.510518\pi\)
\(548\) 1.02459e12 0.485332
\(549\) −1.41240e12 −0.663564
\(550\) 7.86639e11 0.366559
\(551\) 2.26076e12 1.04490
\(552\) −2.37831e10 −0.0109029
\(553\) −2.52167e12 −1.14663
\(554\) −1.84795e12 −0.833483
\(555\) −4.02682e11 −0.180154
\(556\) 1.55518e12 0.690152
\(557\) 5.83560e11 0.256884 0.128442 0.991717i \(-0.459002\pi\)
0.128442 + 0.991717i \(0.459002\pi\)
\(558\) 1.67813e12 0.732777
\(559\) 0 0
\(560\) −4.10343e11 −0.176320
\(561\) 3.76848e11 0.160633
\(562\) −3.01677e12 −1.27564
\(563\) 5.33198e11 0.223666 0.111833 0.993727i \(-0.464328\pi\)
0.111833 + 0.993727i \(0.464328\pi\)
\(564\) −1.76360e11 −0.0733912
\(565\) 6.21986e10 0.0256781
\(566\) 5.67649e11 0.232491
\(567\) 2.59997e12 1.05644
\(568\) 4.24480e11 0.171116
\(569\) −1.82651e11 −0.0730494 −0.0365247 0.999333i \(-0.511629\pi\)
−0.0365247 + 0.999333i \(0.511629\pi\)
\(570\) −1.31301e11 −0.0520992
\(571\) 2.65065e12 1.04349 0.521746 0.853101i \(-0.325281\pi\)
0.521746 + 0.853101i \(0.325281\pi\)
\(572\) 0 0
\(573\) 7.75571e10 0.0300556
\(574\) 1.49645e12 0.575387
\(575\) 2.58717e11 0.0987006
\(576\) −3.16222e11 −0.119699
\(577\) 3.32134e12 1.24745 0.623724 0.781645i \(-0.285619\pi\)
0.623724 + 0.781645i \(0.285619\pi\)
\(578\) 3.11371e10 0.0116039
\(579\) −1.20540e11 −0.0445738
\(580\) −1.35666e12 −0.497789
\(581\) −1.96314e12 −0.714756
\(582\) 3.00843e11 0.108689
\(583\) 3.04426e12 1.09137
\(584\) 1.24589e12 0.443223
\(585\) 0 0
\(586\) −3.33878e11 −0.116963
\(587\) 2.68083e12 0.931960 0.465980 0.884795i \(-0.345702\pi\)
0.465980 + 0.884795i \(0.345702\pi\)
\(588\) −1.37030e11 −0.0472733
\(589\) 1.93704e12 0.663161
\(590\) −1.16790e12 −0.396799
\(591\) 5.90108e11 0.198970
\(592\) −1.11943e12 −0.374586
\(593\) −1.08037e12 −0.358780 −0.179390 0.983778i \(-0.557412\pi\)
−0.179390 + 0.983778i \(0.557412\pi\)
\(594\) −6.80257e11 −0.224199
\(595\) 2.13843e12 0.699468
\(596\) −1.48993e12 −0.483680
\(597\) −1.07258e12 −0.345578
\(598\) 0 0
\(599\) 5.79175e12 1.83818 0.919092 0.394043i \(-0.128924\pi\)
0.919092 + 0.394043i \(0.128924\pi\)
\(600\) −1.52336e11 −0.0479869
\(601\) 2.08361e12 0.651452 0.325726 0.945464i \(-0.394391\pi\)
0.325726 + 0.945464i \(0.394391\pi\)
\(602\) −1.86869e11 −0.0579900
\(603\) −3.54496e12 −1.09190
\(604\) −2.08000e12 −0.635912
\(605\) 7.33808e11 0.222681
\(606\) −6.59795e11 −0.198739
\(607\) −2.97950e12 −0.890830 −0.445415 0.895324i \(-0.646944\pi\)
−0.445415 + 0.895324i \(0.646944\pi\)
\(608\) −3.65010e11 −0.108327
\(609\) −1.43980e12 −0.424154
\(610\) 9.78332e11 0.286090
\(611\) 0 0
\(612\) 1.64793e12 0.474852
\(613\) −4.05649e11 −0.116032 −0.0580160 0.998316i \(-0.518477\pi\)
−0.0580160 + 0.998316i \(0.518477\pi\)
\(614\) −3.11189e12 −0.883622
\(615\) −2.87343e11 −0.0809958
\(616\) −1.20039e12 −0.335900
\(617\) 4.28512e12 1.19036 0.595182 0.803591i \(-0.297080\pi\)
0.595182 + 0.803591i \(0.297080\pi\)
\(618\) 7.27048e10 0.0200500
\(619\) 2.19256e12 0.600266 0.300133 0.953897i \(-0.402969\pi\)
0.300133 + 0.953897i \(0.402969\pi\)
\(620\) −1.16240e12 −0.315930
\(621\) −2.23729e11 −0.0603685
\(622\) 2.19641e12 0.588377
\(623\) −4.71800e12 −1.25476
\(624\) 0 0
\(625\) 3.56698e11 0.0935062
\(626\) −3.53264e12 −0.919421
\(627\) −3.84100e11 −0.0992522
\(628\) 5.70124e11 0.146268
\(629\) 5.83372e12 1.48600
\(630\) −1.88825e12 −0.477559
\(631\) −4.55941e12 −1.14492 −0.572462 0.819931i \(-0.694012\pi\)
−0.572462 + 0.819931i \(0.694012\pi\)
\(632\) 1.34605e12 0.335609
\(633\) −1.51788e12 −0.375769
\(634\) −9.54921e11 −0.234728
\(635\) 2.18139e12 0.532418
\(636\) −5.89534e11 −0.142874
\(637\) 0 0
\(638\) −3.96869e12 −0.948318
\(639\) 1.95330e12 0.463464
\(640\) 2.19038e11 0.0516072
\(641\) −6.53353e12 −1.52857 −0.764287 0.644876i \(-0.776909\pi\)
−0.764287 + 0.644876i \(0.776909\pi\)
\(642\) 4.67927e11 0.108710
\(643\) 4.54044e12 1.04749 0.523743 0.851876i \(-0.324535\pi\)
0.523743 + 0.851876i \(0.324535\pi\)
\(644\) −3.94796e11 −0.0904453
\(645\) 3.58818e10 0.00816310
\(646\) 1.90218e12 0.429739
\(647\) −2.63894e12 −0.592053 −0.296026 0.955180i \(-0.595662\pi\)
−0.296026 + 0.955180i \(0.595662\pi\)
\(648\) −1.38785e12 −0.309210
\(649\) −3.41649e12 −0.755925
\(650\) 0 0
\(651\) −1.23363e12 −0.269197
\(652\) 1.34188e12 0.290804
\(653\) 8.35055e12 1.79724 0.898620 0.438728i \(-0.144571\pi\)
0.898620 + 0.438728i \(0.144571\pi\)
\(654\) 5.05982e11 0.108152
\(655\) 2.76255e12 0.586441
\(656\) −7.98797e11 −0.168411
\(657\) 5.73314e12 1.20046
\(658\) −2.92754e12 −0.608817
\(659\) 4.16775e12 0.860830 0.430415 0.902631i \(-0.358367\pi\)
0.430415 + 0.902631i \(0.358367\pi\)
\(660\) 2.30494e11 0.0472838
\(661\) −4.65565e12 −0.948580 −0.474290 0.880369i \(-0.657295\pi\)
−0.474290 + 0.880369i \(0.657295\pi\)
\(662\) −3.84206e12 −0.777505
\(663\) 0 0
\(664\) 1.04791e12 0.209203
\(665\) −2.17957e12 −0.432190
\(666\) −5.15123e12 −1.01456
\(667\) −1.30526e12 −0.255347
\(668\) −4.77112e12 −0.927100
\(669\) −1.89350e12 −0.365466
\(670\) 2.45550e12 0.470764
\(671\) 2.86195e12 0.545018
\(672\) 2.32461e11 0.0439733
\(673\) 7.92962e11 0.148999 0.0744997 0.997221i \(-0.476264\pi\)
0.0744997 + 0.997221i \(0.476264\pi\)
\(674\) 1.54974e12 0.289260
\(675\) −1.43304e12 −0.265699
\(676\) 0 0
\(677\) 5.94620e12 1.08790 0.543952 0.839116i \(-0.316927\pi\)
0.543952 + 0.839116i \(0.316927\pi\)
\(678\) −3.52358e10 −0.00640399
\(679\) 4.99394e12 0.901631
\(680\) −1.14148e12 −0.204728
\(681\) −8.58984e11 −0.153046
\(682\) −3.40040e12 −0.601866
\(683\) 3.42571e11 0.0602362 0.0301181 0.999546i \(-0.490412\pi\)
0.0301181 + 0.999546i \(0.490412\pi\)
\(684\) −1.67964e12 −0.293403
\(685\) −3.26582e12 −0.566740
\(686\) 2.67972e12 0.461987
\(687\) −1.86670e12 −0.319720
\(688\) 9.97493e10 0.0169731
\(689\) 0 0
\(690\) 7.58070e10 0.0127318
\(691\) −7.76689e12 −1.29597 −0.647986 0.761652i \(-0.724389\pi\)
−0.647986 + 0.761652i \(0.724389\pi\)
\(692\) 1.86722e12 0.309541
\(693\) −5.52377e12 −0.909779
\(694\) 6.89193e12 1.12778
\(695\) −4.95703e12 −0.805917
\(696\) 7.68554e11 0.124146
\(697\) 4.16278e12 0.668092
\(698\) 3.12492e12 0.498298
\(699\) −1.52897e12 −0.242243
\(700\) −2.52875e12 −0.398075
\(701\) 9.74048e12 1.52352 0.761762 0.647857i \(-0.224335\pi\)
0.761762 + 0.647857i \(0.224335\pi\)
\(702\) 0 0
\(703\) −5.94598e12 −0.918172
\(704\) 6.40761e11 0.0983148
\(705\) 5.62135e11 0.0857017
\(706\) 6.41673e12 0.972059
\(707\) −1.09525e13 −1.64864
\(708\) 6.61618e11 0.0989596
\(709\) 1.76320e12 0.262055 0.131027 0.991379i \(-0.458172\pi\)
0.131027 + 0.991379i \(0.458172\pi\)
\(710\) −1.35300e12 −0.199818
\(711\) 6.19403e12 0.908992
\(712\) 2.51844e12 0.367258
\(713\) −1.11835e12 −0.162060
\(714\) −1.21143e12 −0.174444
\(715\) 0 0
\(716\) −4.13440e12 −0.587900
\(717\) 7.15942e11 0.101168
\(718\) 4.49751e12 0.631557
\(719\) 1.16806e13 1.62999 0.814993 0.579471i \(-0.196741\pi\)
0.814993 + 0.579471i \(0.196741\pi\)
\(720\) 1.00794e12 0.139777
\(721\) 1.20689e12 0.166325
\(722\) 3.22422e12 0.441578
\(723\) −1.93454e12 −0.263303
\(724\) 3.35237e12 0.453450
\(725\) −8.36046e12 −1.12385
\(726\) −4.15705e11 −0.0555355
\(727\) 9.17677e12 1.21839 0.609193 0.793022i \(-0.291493\pi\)
0.609193 + 0.793022i \(0.291493\pi\)
\(728\) 0 0
\(729\) −5.75332e12 −0.754474
\(730\) −3.97119e12 −0.517568
\(731\) −5.19825e11 −0.0673332
\(732\) −5.54230e11 −0.0713493
\(733\) −9.38950e12 −1.20136 −0.600682 0.799488i \(-0.705104\pi\)
−0.600682 + 0.799488i \(0.705104\pi\)
\(734\) −3.49837e12 −0.444871
\(735\) 4.36772e11 0.0552028
\(736\) 2.10739e11 0.0264725
\(737\) 7.18315e12 0.896833
\(738\) −3.67578e12 −0.456137
\(739\) −5.47910e12 −0.675786 −0.337893 0.941184i \(-0.609714\pi\)
−0.337893 + 0.941184i \(0.609714\pi\)
\(740\) 3.56812e12 0.437418
\(741\) 0 0
\(742\) −9.78616e12 −1.18521
\(743\) −5.75985e12 −0.693364 −0.346682 0.937983i \(-0.612692\pi\)
−0.346682 + 0.937983i \(0.612692\pi\)
\(744\) 6.58502e11 0.0787914
\(745\) 4.74905e12 0.564811
\(746\) −7.99160e12 −0.944733
\(747\) 4.82210e12 0.566622
\(748\) −3.33920e12 −0.390019
\(749\) 7.76750e12 0.901806
\(750\) 1.22227e12 0.141056
\(751\) 4.48697e12 0.514723 0.257361 0.966315i \(-0.417147\pi\)
0.257361 + 0.966315i \(0.417147\pi\)
\(752\) 1.56270e12 0.178195
\(753\) −2.76950e12 −0.313924
\(754\) 0 0
\(755\) 6.62985e12 0.742578
\(756\) 2.18678e12 0.243476
\(757\) −7.23491e12 −0.800759 −0.400380 0.916349i \(-0.631122\pi\)
−0.400380 + 0.916349i \(0.631122\pi\)
\(758\) −5.72949e12 −0.630383
\(759\) 2.21761e11 0.0242548
\(760\) 1.16344e12 0.126498
\(761\) 9.84424e12 1.06402 0.532012 0.846737i \(-0.321436\pi\)
0.532012 + 0.846737i \(0.321436\pi\)
\(762\) −1.23577e12 −0.132782
\(763\) 8.39920e12 0.897176
\(764\) −6.87223e11 −0.0729756
\(765\) −5.25267e12 −0.554502
\(766\) 7.89727e12 0.828796
\(767\) 0 0
\(768\) −1.24086e11 −0.0128706
\(769\) −1.01086e13 −1.04237 −0.521186 0.853443i \(-0.674510\pi\)
−0.521186 + 0.853443i \(0.674510\pi\)
\(770\) 3.82616e12 0.392243
\(771\) −2.48879e12 −0.253655
\(772\) 1.06809e12 0.108226
\(773\) −6.85077e12 −0.690131 −0.345065 0.938579i \(-0.612143\pi\)
−0.345065 + 0.938579i \(0.612143\pi\)
\(774\) 4.59010e11 0.0459714
\(775\) −7.16330e12 −0.713273
\(776\) −2.66573e12 −0.263899
\(777\) 3.78677e12 0.372713
\(778\) −8.57560e12 −0.839182
\(779\) −4.24288e12 −0.412803
\(780\) 0 0
\(781\) −3.95798e12 −0.380666
\(782\) −1.09823e12 −0.105018
\(783\) 7.22983e12 0.687385
\(784\) 1.21420e12 0.114781
\(785\) −1.81723e12 −0.170803
\(786\) −1.56500e12 −0.146256
\(787\) 1.48436e13 1.37928 0.689642 0.724150i \(-0.257768\pi\)
0.689642 + 0.724150i \(0.257768\pi\)
\(788\) −5.22887e12 −0.483103
\(789\) −3.06813e12 −0.281856
\(790\) −4.29043e12 −0.391904
\(791\) −5.84908e11 −0.0531243
\(792\) 2.94855e12 0.266284
\(793\) 0 0
\(794\) 3.27914e12 0.292798
\(795\) 1.87910e12 0.166839
\(796\) 9.50402e12 0.839071
\(797\) 1.35901e13 1.19306 0.596529 0.802591i \(-0.296546\pi\)
0.596529 + 0.802591i \(0.296546\pi\)
\(798\) 1.23474e12 0.107786
\(799\) −8.14373e12 −0.706908
\(800\) 1.34983e12 0.116513
\(801\) 1.15889e13 0.994712
\(802\) 3.07384e11 0.0262359
\(803\) −1.16171e13 −0.985998
\(804\) −1.39105e12 −0.117406
\(805\) 1.25838e12 0.105616
\(806\) 0 0
\(807\) −3.23472e12 −0.268476
\(808\) 5.84636e12 0.482541
\(809\) 8.74933e12 0.718135 0.359068 0.933312i \(-0.383095\pi\)
0.359068 + 0.933312i \(0.383095\pi\)
\(810\) 4.42366e12 0.361076
\(811\) 1.93959e13 1.57441 0.787203 0.616694i \(-0.211529\pi\)
0.787203 + 0.616694i \(0.211529\pi\)
\(812\) 1.27579e13 1.02985
\(813\) 2.83530e12 0.227610
\(814\) 1.04379e13 0.833307
\(815\) −4.27716e12 −0.339583
\(816\) 6.46652e11 0.0510581
\(817\) 5.29827e11 0.0416040
\(818\) −1.69062e13 −1.32025
\(819\) 0 0
\(820\) 2.54611e12 0.196659
\(821\) 1.16762e13 0.896926 0.448463 0.893801i \(-0.351972\pi\)
0.448463 + 0.893801i \(0.351972\pi\)
\(822\) 1.85010e12 0.141342
\(823\) 1.98052e13 1.50481 0.752404 0.658702i \(-0.228894\pi\)
0.752404 + 0.658702i \(0.228894\pi\)
\(824\) −6.44228e11 −0.0486819
\(825\) 1.42043e12 0.106752
\(826\) 1.09827e13 0.820919
\(827\) 5.97356e12 0.444077 0.222039 0.975038i \(-0.428729\pi\)
0.222039 + 0.975038i \(0.428729\pi\)
\(828\) 9.69746e11 0.0717003
\(829\) −1.84814e13 −1.35906 −0.679532 0.733646i \(-0.737817\pi\)
−0.679532 + 0.733646i \(0.737817\pi\)
\(830\) −3.34013e12 −0.244294
\(831\) −3.33683e12 −0.242734
\(832\) 0 0
\(833\) −6.32758e12 −0.455339
\(834\) 2.80818e12 0.200992
\(835\) 1.52076e13 1.08261
\(836\) 3.40346e12 0.240986
\(837\) 6.19457e12 0.436261
\(838\) −2.72737e12 −0.191049
\(839\) 6.40888e12 0.446533 0.223266 0.974757i \(-0.428328\pi\)
0.223266 + 0.974757i \(0.428328\pi\)
\(840\) −7.40953e11 −0.0513493
\(841\) 2.76724e13 1.90750
\(842\) −3.32802e12 −0.228182
\(843\) −5.44736e12 −0.371503
\(844\) 1.34498e13 0.912375
\(845\) 0 0
\(846\) 7.19099e12 0.482639
\(847\) −6.90064e12 −0.460695
\(848\) 5.22378e12 0.346900
\(849\) 1.02500e12 0.0677078
\(850\) −7.03439e12 −0.462212
\(851\) 3.43292e12 0.224378
\(852\) 7.66480e11 0.0498337
\(853\) 7.28518e12 0.471162 0.235581 0.971855i \(-0.424301\pi\)
0.235581 + 0.971855i \(0.424301\pi\)
\(854\) −9.20011e12 −0.591879
\(855\) 5.35374e12 0.342617
\(856\) −4.14624e12 −0.263950
\(857\) 1.86647e12 0.118197 0.0590987 0.998252i \(-0.481177\pi\)
0.0590987 + 0.998252i \(0.481177\pi\)
\(858\) 0 0
\(859\) 8.88125e12 0.556551 0.278276 0.960501i \(-0.410237\pi\)
0.278276 + 0.960501i \(0.410237\pi\)
\(860\) −3.17944e11 −0.0198202
\(861\) 2.70214e12 0.167569
\(862\) 7.69055e12 0.474433
\(863\) −1.79949e13 −1.10434 −0.552168 0.833733i \(-0.686199\pi\)
−0.552168 + 0.833733i \(0.686199\pi\)
\(864\) −1.16729e12 −0.0712632
\(865\) −5.95163e12 −0.361462
\(866\) 1.78306e13 1.07730
\(867\) 5.62241e10 0.00337937
\(868\) 1.09310e13 0.653615
\(869\) −1.25510e13 −0.746600
\(870\) −2.44971e12 −0.144970
\(871\) 0 0
\(872\) −4.48344e12 −0.262595
\(873\) −1.22667e13 −0.714766
\(874\) 1.11936e12 0.0648886
\(875\) 2.02894e13 1.17013
\(876\) 2.24969e12 0.129079
\(877\) −2.11553e13 −1.20759 −0.603797 0.797138i \(-0.706346\pi\)
−0.603797 + 0.797138i \(0.706346\pi\)
\(878\) −1.22743e13 −0.697060
\(879\) −6.02882e11 −0.0340629
\(880\) −2.04238e12 −0.114806
\(881\) 1.86075e13 1.04063 0.520315 0.853974i \(-0.325815\pi\)
0.520315 + 0.853974i \(0.325815\pi\)
\(882\) 5.58731e12 0.310881
\(883\) −2.69048e13 −1.48938 −0.744691 0.667410i \(-0.767403\pi\)
−0.744691 + 0.667410i \(0.767403\pi\)
\(884\) 0 0
\(885\) −2.10886e12 −0.115559
\(886\) −1.38394e13 −0.754512
\(887\) −2.00183e12 −0.108585 −0.0542927 0.998525i \(-0.517290\pi\)
−0.0542927 + 0.998525i \(0.517290\pi\)
\(888\) −2.02135e12 −0.109090
\(889\) −2.05136e13 −1.10150
\(890\) −8.02734e12 −0.428861
\(891\) 1.29407e13 0.687872
\(892\) 1.67780e13 0.887359
\(893\) 8.30043e12 0.436786
\(894\) −2.69036e12 −0.140861
\(895\) 1.31781e13 0.686513
\(896\) −2.05981e12 −0.106768
\(897\) 0 0
\(898\) 2.11873e13 1.08725
\(899\) 3.61397e13 1.84530
\(900\) 6.21143e12 0.315573
\(901\) −2.72228e13 −1.37617
\(902\) 7.44822e12 0.374648
\(903\) −3.37428e11 −0.0168883
\(904\) 3.12220e11 0.0155490
\(905\) −1.06855e13 −0.529510
\(906\) −3.75584e12 −0.185195
\(907\) 2.68431e13 1.31704 0.658522 0.752561i \(-0.271182\pi\)
0.658522 + 0.752561i \(0.271182\pi\)
\(908\) 7.61135e12 0.371600
\(909\) 2.69028e13 1.30695
\(910\) 0 0
\(911\) −3.41130e13 −1.64092 −0.820459 0.571705i \(-0.806282\pi\)
−0.820459 + 0.571705i \(0.806282\pi\)
\(912\) −6.59095e11 −0.0315479
\(913\) −9.77101e12 −0.465394
\(914\) 7.77900e12 0.368694
\(915\) 1.76657e12 0.0833173
\(916\) 1.65406e13 0.776286
\(917\) −2.59787e13 −1.21326
\(918\) 6.08309e12 0.282704
\(919\) −1.94780e13 −0.900792 −0.450396 0.892829i \(-0.648717\pi\)
−0.450396 + 0.892829i \(0.648717\pi\)
\(920\) −6.71716e11 −0.0309130
\(921\) −5.61912e12 −0.257336
\(922\) −9.42208e12 −0.429396
\(923\) 0 0
\(924\) −2.16754e12 −0.0978234
\(925\) 2.19886e13 0.987553
\(926\) −2.80247e13 −1.25254
\(927\) −2.96450e12 −0.131854
\(928\) −6.81006e12 −0.301429
\(929\) −2.59976e13 −1.14515 −0.572575 0.819852i \(-0.694056\pi\)
−0.572575 + 0.819852i \(0.694056\pi\)
\(930\) −2.09893e12 −0.0920077
\(931\) 6.44933e12 0.281346
\(932\) 1.35480e13 0.588170
\(933\) 3.96603e12 0.171352
\(934\) −3.26128e12 −0.140225
\(935\) 1.06435e13 0.455440
\(936\) 0 0
\(937\) 1.79203e12 0.0759483 0.0379741 0.999279i \(-0.487910\pi\)
0.0379741 + 0.999279i \(0.487910\pi\)
\(938\) −2.30912e13 −0.973943
\(939\) −6.37885e12 −0.267761
\(940\) −4.98100e12 −0.208085
\(941\) −2.98098e13 −1.23938 −0.619692 0.784845i \(-0.712743\pi\)
−0.619692 + 0.784845i \(0.712743\pi\)
\(942\) 1.02947e12 0.0425975
\(943\) 2.44964e12 0.100879
\(944\) −5.86251e12 −0.240276
\(945\) −6.97019e12 −0.284316
\(946\) −9.30092e11 −0.0377586
\(947\) −6.69825e12 −0.270637 −0.135318 0.990802i \(-0.543206\pi\)
−0.135318 + 0.990802i \(0.543206\pi\)
\(948\) 2.43055e12 0.0977388
\(949\) 0 0
\(950\) 7.16975e12 0.285593
\(951\) −1.72429e12 −0.0683595
\(952\) 1.07343e13 0.423553
\(953\) 4.18156e13 1.64218 0.821090 0.570799i \(-0.193366\pi\)
0.821090 + 0.570799i \(0.193366\pi\)
\(954\) 2.40380e13 0.939572
\(955\) 2.19047e12 0.0852164
\(956\) −6.34387e12 −0.245637
\(957\) −7.16623e12 −0.276177
\(958\) 9.18479e12 0.352309
\(959\) 3.07113e13 1.17250
\(960\) 3.95516e11 0.0150295
\(961\) 4.52511e12 0.171149
\(962\) 0 0
\(963\) −1.90795e13 −0.714905
\(964\) 1.71417e13 0.639305
\(965\) −3.40447e12 −0.126380
\(966\) −7.12879e11 −0.0263402
\(967\) 1.10527e13 0.406489 0.203244 0.979128i \(-0.434851\pi\)
0.203244 + 0.979128i \(0.434851\pi\)
\(968\) 3.68351e12 0.134841
\(969\) 3.43475e12 0.125152
\(970\) 8.49682e12 0.308165
\(971\) 6.36275e12 0.229699 0.114849 0.993383i \(-0.463361\pi\)
0.114849 + 0.993383i \(0.463361\pi\)
\(972\) −8.11532e12 −0.291613
\(973\) 4.66153e13 1.66733
\(974\) −2.59109e13 −0.922501
\(975\) 0 0
\(976\) 4.91096e12 0.173237
\(977\) −2.24005e12 −0.0786559 −0.0393279 0.999226i \(-0.512522\pi\)
−0.0393279 + 0.999226i \(0.512522\pi\)
\(978\) 2.42303e12 0.0846904
\(979\) −2.34827e13 −0.817006
\(980\) −3.87018e12 −0.134034
\(981\) −2.06311e13 −0.711235
\(982\) 3.45568e13 1.18586
\(983\) −3.13907e13 −1.07228 −0.536142 0.844128i \(-0.680119\pi\)
−0.536142 + 0.844128i \(0.680119\pi\)
\(984\) −1.44238e12 −0.0490459
\(985\) 1.66667e13 0.564138
\(986\) 3.54893e13 1.19578
\(987\) −5.28624e12 −0.177305
\(988\) 0 0
\(989\) −3.05897e11 −0.0101670
\(990\) −9.39828e12 −0.310950
\(991\) −2.85083e13 −0.938943 −0.469472 0.882948i \(-0.655556\pi\)
−0.469472 + 0.882948i \(0.655556\pi\)
\(992\) −5.83490e12 −0.191307
\(993\) −6.93757e12 −0.226431
\(994\) 1.27234e13 0.413395
\(995\) −3.02934e13 −0.979815
\(996\) 1.89220e12 0.0609257
\(997\) −2.38039e13 −0.762993 −0.381496 0.924370i \(-0.624591\pi\)
−0.381496 + 0.924370i \(0.624591\pi\)
\(998\) −2.98492e13 −0.952456
\(999\) −1.90150e13 −0.604020
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.q.1.7 15
13.12 even 2 338.10.a.r.1.7 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.10.a.q.1.7 15 1.1 even 1 trivial
338.10.a.r.1.7 yes 15 13.12 even 2