Properties

Label 338.10.a.q.1.12
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-240,324,3840,-2164] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 4 x^{14} - 189447 x^{13} - 2075910 x^{12} + 13427724566 x^{11} + 240902663602 x^{10} + \cdots - 13\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{3}\cdot 13^{13} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(96.2913\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +163.789 q^{3} +256.000 q^{4} +328.410 q^{5} -2620.62 q^{6} -11627.7 q^{7} -4096.00 q^{8} +7143.79 q^{9} -5254.55 q^{10} -65659.4 q^{11} +41929.9 q^{12} +186043. q^{14} +53789.8 q^{15} +65536.0 q^{16} +150400. q^{17} -114301. q^{18} +180202. q^{19} +84072.8 q^{20} -1.90449e6 q^{21} +1.05055e6 q^{22} +1.01492e6 q^{23} -670879. q^{24} -1.84527e6 q^{25} -2.05378e6 q^{27} -2.97669e6 q^{28} +4.65597e6 q^{29} -860637. q^{30} -449634. q^{31} -1.04858e6 q^{32} -1.07543e7 q^{33} -2.40640e6 q^{34} -3.81865e6 q^{35} +1.82881e6 q^{36} -1.77914e7 q^{37} -2.88323e6 q^{38} -1.34517e6 q^{40} -1.14044e7 q^{41} +3.04718e7 q^{42} -4.03420e7 q^{43} -1.68088e7 q^{44} +2.34609e6 q^{45} -1.62387e7 q^{46} +1.06710e7 q^{47} +1.07341e7 q^{48} +9.48499e7 q^{49} +2.95244e7 q^{50} +2.46339e7 q^{51} -7.92920e7 q^{53} +3.28605e7 q^{54} -2.15632e7 q^{55} +4.76271e7 q^{56} +2.95151e7 q^{57} -7.44956e7 q^{58} +7.70667e7 q^{59} +1.37702e7 q^{60} +1.05698e8 q^{61} +7.19415e6 q^{62} -8.30658e7 q^{63} +1.67772e7 q^{64} +1.72068e8 q^{66} +1.04892e8 q^{67} +3.85025e7 q^{68} +1.66232e8 q^{69} +6.10984e7 q^{70} -1.44246e8 q^{71} -2.92610e7 q^{72} -1.96637e7 q^{73} +2.84662e8 q^{74} -3.02235e8 q^{75} +4.61317e7 q^{76} +7.63468e8 q^{77} -5.52966e8 q^{79} +2.15226e7 q^{80} -4.76998e8 q^{81} +1.82470e8 q^{82} +7.29864e8 q^{83} -4.87549e8 q^{84} +4.93929e7 q^{85} +6.45472e8 q^{86} +7.62596e8 q^{87} +2.68941e8 q^{88} +2.46836e8 q^{89} -3.75374e7 q^{90} +2.59819e8 q^{92} -7.36451e7 q^{93} -1.70735e8 q^{94} +5.91801e7 q^{95} -1.71745e8 q^{96} +7.21914e8 q^{97} -1.51760e9 q^{98} -4.69057e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 240 q^{2} + 324 q^{3} + 3840 q^{4} - 2164 q^{5} - 5184 q^{6} - 4227 q^{7} - 61440 q^{8} + 112199 q^{9} + 34624 q^{10} + 58782 q^{11} + 82944 q^{12} + 67632 q^{14} - 488672 q^{15} + 983040 q^{16}+ \cdots - 3437295177 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 163.789 1.16745 0.583726 0.811951i \(-0.301594\pi\)
0.583726 + 0.811951i \(0.301594\pi\)
\(4\) 256.000 0.500000
\(5\) 328.410 0.234991 0.117495 0.993073i \(-0.462513\pi\)
0.117495 + 0.993073i \(0.462513\pi\)
\(6\) −2620.62 −0.825513
\(7\) −11627.7 −1.83043 −0.915214 0.402968i \(-0.867979\pi\)
−0.915214 + 0.402968i \(0.867979\pi\)
\(8\) −4096.00 −0.353553
\(9\) 7143.79 0.362942
\(10\) −5254.55 −0.166164
\(11\) −65659.4 −1.35216 −0.676082 0.736826i \(-0.736324\pi\)
−0.676082 + 0.736826i \(0.736324\pi\)
\(12\) 41929.9 0.583726
\(13\) 0 0
\(14\) 186043. 1.29431
\(15\) 53789.8 0.274340
\(16\) 65536.0 0.250000
\(17\) 150400. 0.436746 0.218373 0.975865i \(-0.429925\pi\)
0.218373 + 0.975865i \(0.429925\pi\)
\(18\) −114301. −0.256639
\(19\) 180202. 0.317226 0.158613 0.987341i \(-0.449298\pi\)
0.158613 + 0.987341i \(0.449298\pi\)
\(20\) 84072.8 0.117495
\(21\) −1.90449e6 −2.13694
\(22\) 1.05055e6 0.956125
\(23\) 1.01492e6 0.756232 0.378116 0.925758i \(-0.376572\pi\)
0.378116 + 0.925758i \(0.376572\pi\)
\(24\) −670879. −0.412756
\(25\) −1.84527e6 −0.944779
\(26\) 0 0
\(27\) −2.05378e6 −0.743734
\(28\) −2.97669e6 −0.915214
\(29\) 4.65597e6 1.22242 0.611209 0.791470i \(-0.290684\pi\)
0.611209 + 0.791470i \(0.290684\pi\)
\(30\) −860637. −0.193988
\(31\) −449634. −0.0874443 −0.0437222 0.999044i \(-0.513922\pi\)
−0.0437222 + 0.999044i \(0.513922\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) −1.07543e7 −1.57859
\(34\) −2.40640e6 −0.308826
\(35\) −3.81865e6 −0.430134
\(36\) 1.82881e6 0.181471
\(37\) −1.77914e7 −1.56063 −0.780317 0.625384i \(-0.784942\pi\)
−0.780317 + 0.625384i \(0.784942\pi\)
\(38\) −2.88323e6 −0.224313
\(39\) 0 0
\(40\) −1.34517e6 −0.0830818
\(41\) −1.14044e7 −0.630295 −0.315148 0.949043i \(-0.602054\pi\)
−0.315148 + 0.949043i \(0.602054\pi\)
\(42\) 3.04718e7 1.51104
\(43\) −4.03420e7 −1.79949 −0.899744 0.436418i \(-0.856247\pi\)
−0.899744 + 0.436418i \(0.856247\pi\)
\(44\) −1.68088e7 −0.676082
\(45\) 2.34609e6 0.0852880
\(46\) −1.62387e7 −0.534737
\(47\) 1.06710e7 0.318980 0.159490 0.987200i \(-0.449015\pi\)
0.159490 + 0.987200i \(0.449015\pi\)
\(48\) 1.07341e7 0.291863
\(49\) 9.48499e7 2.35047
\(50\) 2.95244e7 0.668060
\(51\) 2.46339e7 0.509879
\(52\) 0 0
\(53\) −7.92920e7 −1.38035 −0.690173 0.723645i \(-0.742465\pi\)
−0.690173 + 0.723645i \(0.742465\pi\)
\(54\) 3.28605e7 0.525899
\(55\) −2.15632e7 −0.317746
\(56\) 4.76271e7 0.647154
\(57\) 2.95151e7 0.370346
\(58\) −7.44956e7 −0.864379
\(59\) 7.70667e7 0.828004 0.414002 0.910276i \(-0.364131\pi\)
0.414002 + 0.910276i \(0.364131\pi\)
\(60\) 1.37702e7 0.137170
\(61\) 1.05698e8 0.977423 0.488712 0.872445i \(-0.337467\pi\)
0.488712 + 0.872445i \(0.337467\pi\)
\(62\) 7.19415e6 0.0618325
\(63\) −8.30658e7 −0.664339
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) 1.72068e8 1.11623
\(67\) 1.04892e8 0.635925 0.317963 0.948103i \(-0.397001\pi\)
0.317963 + 0.948103i \(0.397001\pi\)
\(68\) 3.85025e7 0.218373
\(69\) 1.66232e8 0.882864
\(70\) 6.10984e7 0.304150
\(71\) −1.44246e8 −0.673660 −0.336830 0.941565i \(-0.609355\pi\)
−0.336830 + 0.941565i \(0.609355\pi\)
\(72\) −2.92610e7 −0.128319
\(73\) −1.96637e7 −0.0810423 −0.0405211 0.999179i \(-0.512902\pi\)
−0.0405211 + 0.999179i \(0.512902\pi\)
\(74\) 2.84662e8 1.10354
\(75\) −3.02235e8 −1.10298
\(76\) 4.61317e7 0.158613
\(77\) 7.63468e8 2.47504
\(78\) 0 0
\(79\) −5.52966e8 −1.59726 −0.798632 0.601820i \(-0.794443\pi\)
−0.798632 + 0.601820i \(0.794443\pi\)
\(80\) 2.15226e7 0.0587477
\(81\) −4.76998e8 −1.23122
\(82\) 1.82470e8 0.445686
\(83\) 7.29864e8 1.68807 0.844035 0.536288i \(-0.180174\pi\)
0.844035 + 0.536288i \(0.180174\pi\)
\(84\) −4.87549e8 −1.06847
\(85\) 4.93929e7 0.102631
\(86\) 6.45472e8 1.27243
\(87\) 7.62596e8 1.42711
\(88\) 2.68941e8 0.478063
\(89\) 2.46836e8 0.417017 0.208508 0.978021i \(-0.433139\pi\)
0.208508 + 0.978021i \(0.433139\pi\)
\(90\) −3.75374e7 −0.0603077
\(91\) 0 0
\(92\) 2.59819e8 0.378116
\(93\) −7.36451e7 −0.102087
\(94\) −1.70735e8 −0.225553
\(95\) 5.91801e7 0.0745451
\(96\) −1.71745e8 −0.206378
\(97\) 7.21914e8 0.827966 0.413983 0.910284i \(-0.364137\pi\)
0.413983 + 0.910284i \(0.364137\pi\)
\(98\) −1.51760e9 −1.66203
\(99\) −4.69057e8 −0.490757
\(100\) −4.72390e8 −0.472390
\(101\) 1.89413e9 1.81119 0.905593 0.424147i \(-0.139426\pi\)
0.905593 + 0.424147i \(0.139426\pi\)
\(102\) −3.94142e8 −0.360539
\(103\) 1.69630e9 1.48503 0.742516 0.669828i \(-0.233632\pi\)
0.742516 + 0.669828i \(0.233632\pi\)
\(104\) 0 0
\(105\) −6.25452e8 −0.502160
\(106\) 1.26867e9 0.976052
\(107\) 8.82869e8 0.651132 0.325566 0.945519i \(-0.394445\pi\)
0.325566 + 0.945519i \(0.394445\pi\)
\(108\) −5.25769e8 −0.371867
\(109\) −2.06960e9 −1.40432 −0.702161 0.712018i \(-0.747781\pi\)
−0.702161 + 0.712018i \(0.747781\pi\)
\(110\) 3.45011e8 0.224681
\(111\) −2.91403e9 −1.82196
\(112\) −7.62033e8 −0.457607
\(113\) 1.50809e9 0.870110 0.435055 0.900404i \(-0.356729\pi\)
0.435055 + 0.900404i \(0.356729\pi\)
\(114\) −4.72241e8 −0.261874
\(115\) 3.33308e8 0.177707
\(116\) 1.19193e9 0.611209
\(117\) 0 0
\(118\) −1.23307e9 −0.585487
\(119\) −1.74881e9 −0.799432
\(120\) −2.20323e8 −0.0969939
\(121\) 1.95321e9 0.828350
\(122\) −1.69117e9 −0.691143
\(123\) −1.86791e9 −0.735839
\(124\) −1.15106e8 −0.0437222
\(125\) −1.24743e9 −0.457005
\(126\) 1.32905e9 0.469759
\(127\) 1.34579e9 0.459052 0.229526 0.973303i \(-0.426282\pi\)
0.229526 + 0.973303i \(0.426282\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) −6.60757e9 −2.10081
\(130\) 0 0
\(131\) −4.65874e9 −1.38213 −0.691064 0.722794i \(-0.742858\pi\)
−0.691064 + 0.722794i \(0.742858\pi\)
\(132\) −2.75309e9 −0.789293
\(133\) −2.09534e9 −0.580659
\(134\) −1.67827e9 −0.449667
\(135\) −6.74482e8 −0.174771
\(136\) −6.16040e8 −0.154413
\(137\) −2.76109e8 −0.0669634 −0.0334817 0.999439i \(-0.510660\pi\)
−0.0334817 + 0.999439i \(0.510660\pi\)
\(138\) −2.65971e9 −0.624279
\(139\) −1.76402e9 −0.400809 −0.200405 0.979713i \(-0.564226\pi\)
−0.200405 + 0.979713i \(0.564226\pi\)
\(140\) −9.77574e8 −0.215067
\(141\) 1.74778e9 0.372393
\(142\) 2.30793e9 0.476350
\(143\) 0 0
\(144\) 4.68175e8 0.0907355
\(145\) 1.52907e9 0.287257
\(146\) 3.14619e8 0.0573055
\(147\) 1.55353e10 2.74406
\(148\) −4.55459e9 −0.780317
\(149\) −4.88939e8 −0.0812675 −0.0406337 0.999174i \(-0.512938\pi\)
−0.0406337 + 0.999174i \(0.512938\pi\)
\(150\) 4.83576e9 0.779927
\(151\) 9.14820e9 1.43199 0.715994 0.698107i \(-0.245974\pi\)
0.715994 + 0.698107i \(0.245974\pi\)
\(152\) −7.38108e8 −0.112156
\(153\) 1.07443e9 0.158513
\(154\) −1.22155e10 −1.75012
\(155\) −1.47664e8 −0.0205486
\(156\) 0 0
\(157\) 7.52516e9 0.988478 0.494239 0.869326i \(-0.335447\pi\)
0.494239 + 0.869326i \(0.335447\pi\)
\(158\) 8.84746e9 1.12944
\(159\) −1.29871e10 −1.61149
\(160\) −3.44362e8 −0.0415409
\(161\) −1.18011e10 −1.38423
\(162\) 7.63197e9 0.870601
\(163\) 9.93974e9 1.10289 0.551443 0.834212i \(-0.314077\pi\)
0.551443 + 0.834212i \(0.314077\pi\)
\(164\) −2.91952e9 −0.315148
\(165\) −3.53181e9 −0.370953
\(166\) −1.16778e10 −1.19365
\(167\) 6.44084e9 0.640793 0.320397 0.947283i \(-0.396184\pi\)
0.320397 + 0.947283i \(0.396184\pi\)
\(168\) 7.80078e9 0.755521
\(169\) 0 0
\(170\) −7.90286e8 −0.0725712
\(171\) 1.28732e9 0.115135
\(172\) −1.03275e10 −0.899744
\(173\) 2.30296e9 0.195469 0.0977346 0.995213i \(-0.468840\pi\)
0.0977346 + 0.995213i \(0.468840\pi\)
\(174\) −1.22015e10 −1.00912
\(175\) 2.14563e10 1.72935
\(176\) −4.30305e9 −0.338041
\(177\) 1.26227e10 0.966654
\(178\) −3.94938e9 −0.294875
\(179\) 1.97601e10 1.43864 0.719318 0.694681i \(-0.244454\pi\)
0.719318 + 0.694681i \(0.244454\pi\)
\(180\) 6.00598e8 0.0426440
\(181\) −1.91454e10 −1.32590 −0.662950 0.748664i \(-0.730696\pi\)
−0.662950 + 0.748664i \(0.730696\pi\)
\(182\) 0 0
\(183\) 1.73122e10 1.14109
\(184\) −4.15710e9 −0.267368
\(185\) −5.84285e9 −0.366735
\(186\) 1.17832e9 0.0721864
\(187\) −9.87519e9 −0.590552
\(188\) 2.73177e9 0.159490
\(189\) 2.38808e10 1.36135
\(190\) −9.46881e8 −0.0527114
\(191\) 2.75444e10 1.49756 0.748778 0.662821i \(-0.230641\pi\)
0.748778 + 0.662821i \(0.230641\pi\)
\(192\) 2.74792e9 0.145931
\(193\) 3.71081e9 0.192513 0.0962567 0.995357i \(-0.469313\pi\)
0.0962567 + 0.995357i \(0.469313\pi\)
\(194\) −1.15506e10 −0.585461
\(195\) 0 0
\(196\) 2.42816e10 1.17523
\(197\) −1.79150e10 −0.847460 −0.423730 0.905789i \(-0.639279\pi\)
−0.423730 + 0.905789i \(0.639279\pi\)
\(198\) 7.50491e9 0.347018
\(199\) 3.66919e9 0.165856 0.0829281 0.996556i \(-0.473573\pi\)
0.0829281 + 0.996556i \(0.473573\pi\)
\(200\) 7.55823e9 0.334030
\(201\) 1.71802e10 0.742412
\(202\) −3.03061e10 −1.28070
\(203\) −5.41383e10 −2.23755
\(204\) 6.30628e9 0.254940
\(205\) −3.74530e9 −0.148114
\(206\) −2.71408e10 −1.05008
\(207\) 7.25035e9 0.274468
\(208\) 0 0
\(209\) −1.18320e10 −0.428942
\(210\) 1.00072e10 0.355081
\(211\) 5.95397e9 0.206793 0.103396 0.994640i \(-0.467029\pi\)
0.103396 + 0.994640i \(0.467029\pi\)
\(212\) −2.02987e10 −0.690173
\(213\) −2.36259e10 −0.786465
\(214\) −1.41259e10 −0.460420
\(215\) −1.32487e10 −0.422863
\(216\) 8.41230e9 0.262950
\(217\) 5.22821e9 0.160061
\(218\) 3.31136e10 0.993006
\(219\) −3.22069e9 −0.0946129
\(220\) −5.52017e9 −0.158873
\(221\) 0 0
\(222\) 4.66244e10 1.28832
\(223\) 3.50622e10 0.949438 0.474719 0.880137i \(-0.342550\pi\)
0.474719 + 0.880137i \(0.342550\pi\)
\(224\) 1.21925e10 0.323577
\(225\) −1.31822e10 −0.342900
\(226\) −2.41294e10 −0.615261
\(227\) 4.96849e10 1.24196 0.620980 0.783826i \(-0.286735\pi\)
0.620980 + 0.783826i \(0.286735\pi\)
\(228\) 7.55586e9 0.185173
\(229\) −7.62879e10 −1.83314 −0.916571 0.399872i \(-0.869055\pi\)
−0.916571 + 0.399872i \(0.869055\pi\)
\(230\) −5.33293e9 −0.125658
\(231\) 1.25047e11 2.88949
\(232\) −1.90709e10 −0.432190
\(233\) −3.39395e10 −0.754404 −0.377202 0.926131i \(-0.623114\pi\)
−0.377202 + 0.926131i \(0.623114\pi\)
\(234\) 0 0
\(235\) 3.50444e9 0.0749573
\(236\) 1.97291e10 0.414002
\(237\) −9.05697e10 −1.86473
\(238\) 2.79810e10 0.565283
\(239\) 6.71629e10 1.33149 0.665747 0.746178i \(-0.268113\pi\)
0.665747 + 0.746178i \(0.268113\pi\)
\(240\) 3.52517e9 0.0685850
\(241\) 7.95207e10 1.51846 0.759230 0.650822i \(-0.225576\pi\)
0.759230 + 0.650822i \(0.225576\pi\)
\(242\) −3.12513e10 −0.585732
\(243\) −3.77023e10 −0.693649
\(244\) 2.70587e10 0.488712
\(245\) 3.11496e10 0.552338
\(246\) 2.98865e10 0.520317
\(247\) 0 0
\(248\) 1.84170e9 0.0309162
\(249\) 1.19544e11 1.97074
\(250\) 1.99589e10 0.323151
\(251\) 1.11412e11 1.77174 0.885868 0.463938i \(-0.153564\pi\)
0.885868 + 0.463938i \(0.153564\pi\)
\(252\) −2.12649e10 −0.332170
\(253\) −6.66388e10 −1.02255
\(254\) −2.15327e10 −0.324599
\(255\) 8.09000e9 0.119817
\(256\) 4.29497e9 0.0625000
\(257\) 1.14075e11 1.63114 0.815571 0.578657i \(-0.196423\pi\)
0.815571 + 0.578657i \(0.196423\pi\)
\(258\) 1.05721e11 1.48550
\(259\) 2.06873e11 2.85663
\(260\) 0 0
\(261\) 3.32613e10 0.443666
\(262\) 7.45399e10 0.977312
\(263\) 3.77214e10 0.486168 0.243084 0.970005i \(-0.421841\pi\)
0.243084 + 0.970005i \(0.421841\pi\)
\(264\) 4.40495e10 0.558115
\(265\) −2.60402e10 −0.324368
\(266\) 3.35254e10 0.410588
\(267\) 4.04290e10 0.486847
\(268\) 2.68524e10 0.317963
\(269\) −2.91455e8 −0.00339379 −0.00169690 0.999999i \(-0.500540\pi\)
−0.00169690 + 0.999999i \(0.500540\pi\)
\(270\) 1.07917e10 0.123581
\(271\) −1.41433e11 −1.59290 −0.796450 0.604705i \(-0.793291\pi\)
−0.796450 + 0.604705i \(0.793291\pi\)
\(272\) 9.85663e9 0.109186
\(273\) 0 0
\(274\) 4.41774e9 0.0473503
\(275\) 1.21159e11 1.27750
\(276\) 4.25554e10 0.441432
\(277\) −5.00160e10 −0.510446 −0.255223 0.966882i \(-0.582149\pi\)
−0.255223 + 0.966882i \(0.582149\pi\)
\(278\) 2.82244e10 0.283415
\(279\) −3.21209e9 −0.0317372
\(280\) 1.56412e10 0.152075
\(281\) −6.67975e10 −0.639119 −0.319560 0.947566i \(-0.603535\pi\)
−0.319560 + 0.947566i \(0.603535\pi\)
\(282\) −2.79645e10 −0.263322
\(283\) −1.19718e11 −1.10948 −0.554742 0.832022i \(-0.687183\pi\)
−0.554742 + 0.832022i \(0.687183\pi\)
\(284\) −3.69269e10 −0.336830
\(285\) 9.69304e9 0.0870278
\(286\) 0 0
\(287\) 1.32607e11 1.15371
\(288\) −7.49080e9 −0.0641597
\(289\) −9.59676e10 −0.809253
\(290\) −2.44651e10 −0.203121
\(291\) 1.18241e11 0.966610
\(292\) −5.03390e9 −0.0405211
\(293\) −1.43370e10 −0.113646 −0.0568230 0.998384i \(-0.518097\pi\)
−0.0568230 + 0.998384i \(0.518097\pi\)
\(294\) −2.48566e11 −1.94034
\(295\) 2.53094e10 0.194573
\(296\) 7.28734e10 0.551768
\(297\) 1.34850e11 1.00565
\(298\) 7.82303e9 0.0574648
\(299\) 0 0
\(300\) −7.73722e10 −0.551492
\(301\) 4.69084e11 3.29383
\(302\) −1.46371e11 −1.01257
\(303\) 3.10237e11 2.11447
\(304\) 1.18097e10 0.0793064
\(305\) 3.47122e10 0.229685
\(306\) −1.71908e10 −0.112086
\(307\) −9.85124e10 −0.632948 −0.316474 0.948601i \(-0.602499\pi\)
−0.316474 + 0.948601i \(0.602499\pi\)
\(308\) 1.95448e11 1.23752
\(309\) 2.77835e11 1.73370
\(310\) 2.36263e9 0.0145301
\(311\) −1.88850e11 −1.14471 −0.572355 0.820006i \(-0.693970\pi\)
−0.572355 + 0.820006i \(0.693970\pi\)
\(312\) 0 0
\(313\) 2.57591e11 1.51698 0.758492 0.651683i \(-0.225937\pi\)
0.758492 + 0.651683i \(0.225937\pi\)
\(314\) −1.20402e11 −0.698960
\(315\) −2.72796e10 −0.156114
\(316\) −1.41559e11 −0.798632
\(317\) −1.91020e11 −1.06246 −0.531231 0.847227i \(-0.678270\pi\)
−0.531231 + 0.847227i \(0.678270\pi\)
\(318\) 2.07794e11 1.13949
\(319\) −3.05708e11 −1.65291
\(320\) 5.50980e9 0.0293738
\(321\) 1.44604e11 0.760165
\(322\) 1.88818e11 0.978797
\(323\) 2.71024e10 0.138547
\(324\) −1.22111e11 −0.615608
\(325\) 0 0
\(326\) −1.59036e11 −0.779859
\(327\) −3.38977e11 −1.63948
\(328\) 4.67123e10 0.222843
\(329\) −1.24079e11 −0.583870
\(330\) 5.65089e10 0.262304
\(331\) 3.87909e11 1.77625 0.888126 0.459601i \(-0.152008\pi\)
0.888126 + 0.459601i \(0.152008\pi\)
\(332\) 1.86845e11 0.844035
\(333\) −1.27098e11 −0.566420
\(334\) −1.03053e11 −0.453109
\(335\) 3.44476e10 0.149437
\(336\) −1.24813e11 −0.534234
\(337\) 1.65154e11 0.697515 0.348757 0.937213i \(-0.386604\pi\)
0.348757 + 0.937213i \(0.386604\pi\)
\(338\) 0 0
\(339\) 2.47008e11 1.01581
\(340\) 1.26446e10 0.0513156
\(341\) 2.95227e10 0.118239
\(342\) −2.05972e10 −0.0814124
\(343\) −6.33666e11 −2.47193
\(344\) 1.65241e11 0.636215
\(345\) 5.45922e10 0.207465
\(346\) −3.68473e10 −0.138218
\(347\) −2.12668e11 −0.787445 −0.393723 0.919229i \(-0.628813\pi\)
−0.393723 + 0.919229i \(0.628813\pi\)
\(348\) 1.95225e11 0.713556
\(349\) −3.44314e11 −1.24234 −0.621169 0.783676i \(-0.713342\pi\)
−0.621169 + 0.783676i \(0.713342\pi\)
\(350\) −3.43300e11 −1.22284
\(351\) 0 0
\(352\) 6.88488e10 0.239031
\(353\) 9.65241e10 0.330864 0.165432 0.986221i \(-0.447098\pi\)
0.165432 + 0.986221i \(0.447098\pi\)
\(354\) −2.01963e11 −0.683528
\(355\) −4.73717e10 −0.158304
\(356\) 6.31900e10 0.208508
\(357\) −2.86436e11 −0.933297
\(358\) −3.16162e11 −1.01727
\(359\) 4.68238e11 1.48779 0.743894 0.668297i \(-0.232976\pi\)
0.743894 + 0.668297i \(0.232976\pi\)
\(360\) −9.60958e9 −0.0301539
\(361\) −2.90215e11 −0.899368
\(362\) 3.06326e11 0.937553
\(363\) 3.19913e11 0.967058
\(364\) 0 0
\(365\) −6.45773e9 −0.0190442
\(366\) −2.76995e11 −0.806875
\(367\) 7.99775e10 0.230129 0.115064 0.993358i \(-0.463293\pi\)
0.115064 + 0.993358i \(0.463293\pi\)
\(368\) 6.65136e10 0.189058
\(369\) −8.14704e10 −0.228761
\(370\) 9.34856e10 0.259321
\(371\) 9.21983e11 2.52662
\(372\) −1.88531e10 −0.0510435
\(373\) 1.93642e11 0.517977 0.258988 0.965880i \(-0.416611\pi\)
0.258988 + 0.965880i \(0.416611\pi\)
\(374\) 1.58003e11 0.417583
\(375\) −2.04315e11 −0.533531
\(376\) −4.37082e10 −0.112776
\(377\) 0 0
\(378\) −3.82092e11 −0.962621
\(379\) −1.39160e11 −0.346448 −0.173224 0.984882i \(-0.555418\pi\)
−0.173224 + 0.984882i \(0.555418\pi\)
\(380\) 1.51501e10 0.0372726
\(381\) 2.20426e11 0.535921
\(382\) −4.40710e11 −1.05893
\(383\) −1.09951e11 −0.261099 −0.130550 0.991442i \(-0.541674\pi\)
−0.130550 + 0.991442i \(0.541674\pi\)
\(384\) −4.39667e10 −0.103189
\(385\) 2.50730e11 0.581612
\(386\) −5.93730e10 −0.136128
\(387\) −2.88194e11 −0.653110
\(388\) 1.84810e11 0.413983
\(389\) −3.65716e11 −0.809787 −0.404893 0.914364i \(-0.632691\pi\)
−0.404893 + 0.914364i \(0.632691\pi\)
\(390\) 0 0
\(391\) 1.52644e11 0.330281
\(392\) −3.88505e11 −0.831016
\(393\) −7.63050e11 −1.61357
\(394\) 2.86640e11 0.599245
\(395\) −1.81599e11 −0.375342
\(396\) −1.20078e11 −0.245379
\(397\) 3.46976e11 0.701039 0.350519 0.936555i \(-0.386005\pi\)
0.350519 + 0.936555i \(0.386005\pi\)
\(398\) −5.87071e10 −0.117278
\(399\) −3.43193e11 −0.677891
\(400\) −1.20932e11 −0.236195
\(401\) −1.36930e11 −0.264453 −0.132226 0.991220i \(-0.542213\pi\)
−0.132226 + 0.991220i \(0.542213\pi\)
\(402\) −2.74883e11 −0.524964
\(403\) 0 0
\(404\) 4.84897e11 0.905593
\(405\) −1.56651e11 −0.289324
\(406\) 8.66212e11 1.58218
\(407\) 1.16817e12 2.11024
\(408\) −1.00900e11 −0.180269
\(409\) −5.61335e11 −0.991899 −0.495949 0.868351i \(-0.665180\pi\)
−0.495949 + 0.868351i \(0.665180\pi\)
\(410\) 5.99249e10 0.104732
\(411\) −4.52235e10 −0.0781765
\(412\) 4.34253e11 0.742516
\(413\) −8.96108e11 −1.51560
\(414\) −1.16006e11 −0.194078
\(415\) 2.39694e11 0.396681
\(416\) 0 0
\(417\) −2.88927e11 −0.467925
\(418\) 1.89311e11 0.303308
\(419\) −1.23264e12 −1.95376 −0.976882 0.213778i \(-0.931423\pi\)
−0.976882 + 0.213778i \(0.931423\pi\)
\(420\) −1.60116e11 −0.251080
\(421\) 1.31000e11 0.203236 0.101618 0.994823i \(-0.467598\pi\)
0.101618 + 0.994823i \(0.467598\pi\)
\(422\) −9.52636e10 −0.146225
\(423\) 7.62311e10 0.115771
\(424\) 3.24780e11 0.488026
\(425\) −2.77529e11 −0.412628
\(426\) 3.78014e11 0.556115
\(427\) −1.22903e12 −1.78910
\(428\) 2.26014e11 0.325566
\(429\) 0 0
\(430\) 2.11979e11 0.299009
\(431\) 8.26151e11 1.15322 0.576609 0.817020i \(-0.304375\pi\)
0.576609 + 0.817020i \(0.304375\pi\)
\(432\) −1.34597e11 −0.185934
\(433\) −1.10299e12 −1.50792 −0.753959 0.656922i \(-0.771858\pi\)
−0.753959 + 0.656922i \(0.771858\pi\)
\(434\) −8.36514e10 −0.113180
\(435\) 2.50444e11 0.335358
\(436\) −5.29817e11 −0.702161
\(437\) 1.82890e11 0.239896
\(438\) 5.15310e10 0.0669014
\(439\) −7.44262e11 −0.956391 −0.478196 0.878253i \(-0.658709\pi\)
−0.478196 + 0.878253i \(0.658709\pi\)
\(440\) 8.83227e10 0.112340
\(441\) 6.77587e11 0.853083
\(442\) 0 0
\(443\) −1.48555e12 −1.83262 −0.916309 0.400473i \(-0.868846\pi\)
−0.916309 + 0.400473i \(0.868846\pi\)
\(444\) −7.45991e11 −0.910982
\(445\) 8.10633e10 0.0979951
\(446\) −5.60995e11 −0.671354
\(447\) −8.00828e10 −0.0948758
\(448\) −1.95080e11 −0.228804
\(449\) −7.99853e11 −0.928756 −0.464378 0.885637i \(-0.653722\pi\)
−0.464378 + 0.885637i \(0.653722\pi\)
\(450\) 2.10916e11 0.242467
\(451\) 7.48804e11 0.852263
\(452\) 3.86071e11 0.435055
\(453\) 1.49837e12 1.67178
\(454\) −7.94958e11 −0.878199
\(455\) 0 0
\(456\) −1.20894e11 −0.130937
\(457\) −3.25370e11 −0.348943 −0.174472 0.984662i \(-0.555822\pi\)
−0.174472 + 0.984662i \(0.555822\pi\)
\(458\) 1.22061e12 1.29623
\(459\) −3.08890e11 −0.324823
\(460\) 8.53269e10 0.0888537
\(461\) −3.59994e11 −0.371229 −0.185614 0.982623i \(-0.559427\pi\)
−0.185614 + 0.982623i \(0.559427\pi\)
\(462\) −2.00076e12 −2.04318
\(463\) 5.79365e11 0.585919 0.292960 0.956125i \(-0.405360\pi\)
0.292960 + 0.956125i \(0.405360\pi\)
\(464\) 3.05134e11 0.305604
\(465\) −2.41857e10 −0.0239895
\(466\) 5.43032e11 0.533444
\(467\) 2.20112e11 0.214150 0.107075 0.994251i \(-0.465852\pi\)
0.107075 + 0.994251i \(0.465852\pi\)
\(468\) 0 0
\(469\) −1.21965e12 −1.16402
\(470\) −5.60711e10 −0.0530028
\(471\) 1.23254e12 1.15400
\(472\) −3.15665e11 −0.292744
\(473\) 2.64883e12 2.43321
\(474\) 1.44912e12 1.31856
\(475\) −3.32522e11 −0.299708
\(476\) −4.47695e11 −0.399716
\(477\) −5.66445e11 −0.500985
\(478\) −1.07461e12 −0.941508
\(479\) 2.07550e12 1.80141 0.900706 0.434428i \(-0.143050\pi\)
0.900706 + 0.434428i \(0.143050\pi\)
\(480\) −5.64027e10 −0.0484970
\(481\) 0 0
\(482\) −1.27233e12 −1.07371
\(483\) −1.93290e12 −1.61602
\(484\) 5.00021e11 0.414175
\(485\) 2.37084e11 0.194564
\(486\) 6.03237e11 0.490484
\(487\) −1.00844e12 −0.812400 −0.406200 0.913784i \(-0.633146\pi\)
−0.406200 + 0.913784i \(0.633146\pi\)
\(488\) −4.32939e11 −0.345571
\(489\) 1.62802e12 1.28757
\(490\) −4.98394e11 −0.390562
\(491\) −2.60858e11 −0.202553 −0.101276 0.994858i \(-0.532293\pi\)
−0.101276 + 0.994858i \(0.532293\pi\)
\(492\) −4.78185e11 −0.367919
\(493\) 7.00260e11 0.533885
\(494\) 0 0
\(495\) −1.54043e11 −0.115323
\(496\) −2.94672e10 −0.0218611
\(497\) 1.67725e12 1.23309
\(498\) −1.91270e12 −1.39352
\(499\) 3.53821e11 0.255465 0.127732 0.991809i \(-0.459230\pi\)
0.127732 + 0.991809i \(0.459230\pi\)
\(500\) −3.19342e11 −0.228503
\(501\) 1.05494e12 0.748095
\(502\) −1.78259e12 −1.25281
\(503\) 1.10638e12 0.770634 0.385317 0.922784i \(-0.374092\pi\)
0.385317 + 0.922784i \(0.374092\pi\)
\(504\) 3.40238e11 0.234879
\(505\) 6.22050e11 0.425612
\(506\) 1.06622e12 0.723052
\(507\) 0 0
\(508\) 3.44523e11 0.229526
\(509\) 1.92581e12 1.27170 0.635848 0.771814i \(-0.280651\pi\)
0.635848 + 0.771814i \(0.280651\pi\)
\(510\) −1.29440e11 −0.0847233
\(511\) 2.28643e11 0.148342
\(512\) −6.87195e10 −0.0441942
\(513\) −3.70096e11 −0.235932
\(514\) −1.82520e12 −1.15339
\(515\) 5.57082e11 0.348969
\(516\) −1.69154e12 −1.05041
\(517\) −7.00649e11 −0.431313
\(518\) −3.30996e12 −2.01994
\(519\) 3.77199e11 0.228201
\(520\) 0 0
\(521\) 1.72837e12 1.02770 0.513851 0.857879i \(-0.328218\pi\)
0.513851 + 0.857879i \(0.328218\pi\)
\(522\) −5.32180e11 −0.313720
\(523\) −1.62219e11 −0.0948080 −0.0474040 0.998876i \(-0.515095\pi\)
−0.0474040 + 0.998876i \(0.515095\pi\)
\(524\) −1.19264e12 −0.691064
\(525\) 3.51430e12 2.01893
\(526\) −6.03542e11 −0.343773
\(527\) −6.76251e10 −0.0381909
\(528\) −7.04792e11 −0.394647
\(529\) −7.71097e11 −0.428113
\(530\) 4.16644e11 0.229363
\(531\) 5.50548e11 0.300517
\(532\) −5.36406e11 −0.290330
\(533\) 0 0
\(534\) −6.46864e11 −0.344253
\(535\) 2.89943e11 0.153010
\(536\) −4.29638e11 −0.224834
\(537\) 3.23649e12 1.67954
\(538\) 4.66327e9 0.00239978
\(539\) −6.22778e12 −3.17822
\(540\) −1.72667e11 −0.0873853
\(541\) −3.99004e11 −0.200258 −0.100129 0.994974i \(-0.531926\pi\)
−0.100129 + 0.994974i \(0.531926\pi\)
\(542\) 2.26293e12 1.12635
\(543\) −3.13580e12 −1.54792
\(544\) −1.57706e11 −0.0772064
\(545\) −6.79676e11 −0.330003
\(546\) 0 0
\(547\) −2.72848e12 −1.30310 −0.651551 0.758605i \(-0.725881\pi\)
−0.651551 + 0.758605i \(0.725881\pi\)
\(548\) −7.06839e10 −0.0334817
\(549\) 7.55084e11 0.354748
\(550\) −1.93855e12 −0.903327
\(551\) 8.39016e11 0.387782
\(552\) −6.80886e11 −0.312139
\(553\) 6.42973e12 2.92368
\(554\) 8.00256e11 0.360940
\(555\) −9.56994e11 −0.428145
\(556\) −4.51590e11 −0.200405
\(557\) 6.68129e11 0.294111 0.147056 0.989128i \(-0.453020\pi\)
0.147056 + 0.989128i \(0.453020\pi\)
\(558\) 5.13934e10 0.0224416
\(559\) 0 0
\(560\) −2.50259e11 −0.107533
\(561\) −1.61745e12 −0.689441
\(562\) 1.06876e12 0.451926
\(563\) −2.16253e12 −0.907139 −0.453570 0.891221i \(-0.649850\pi\)
−0.453570 + 0.891221i \(0.649850\pi\)
\(564\) 4.47433e11 0.186197
\(565\) 4.95271e11 0.204468
\(566\) 1.91549e12 0.784524
\(567\) 5.54639e12 2.25365
\(568\) 5.90831e11 0.238175
\(569\) −1.17553e12 −0.470140 −0.235070 0.971978i \(-0.575532\pi\)
−0.235070 + 0.971978i \(0.575532\pi\)
\(570\) −1.55089e11 −0.0615379
\(571\) −1.68861e11 −0.0664761 −0.0332381 0.999447i \(-0.510582\pi\)
−0.0332381 + 0.999447i \(0.510582\pi\)
\(572\) 0 0
\(573\) 4.51146e12 1.74832
\(574\) −2.12171e12 −0.815796
\(575\) −1.87280e12 −0.714472
\(576\) 1.19853e11 0.0453677
\(577\) 2.62228e12 0.984890 0.492445 0.870344i \(-0.336103\pi\)
0.492445 + 0.870344i \(0.336103\pi\)
\(578\) 1.53548e12 0.572228
\(579\) 6.07789e11 0.224750
\(580\) 3.91441e11 0.143628
\(581\) −8.48664e12 −3.08989
\(582\) −1.89186e12 −0.683497
\(583\) 5.20626e12 1.86645
\(584\) 8.05424e10 0.0286528
\(585\) 0 0
\(586\) 2.29392e11 0.0803598
\(587\) 7.63488e11 0.265418 0.132709 0.991155i \(-0.457632\pi\)
0.132709 + 0.991155i \(0.457632\pi\)
\(588\) 3.97705e12 1.37203
\(589\) −8.10250e10 −0.0277396
\(590\) −4.04951e11 −0.137584
\(591\) −2.93428e12 −0.989368
\(592\) −1.16597e12 −0.390159
\(593\) 1.98675e12 0.659776 0.329888 0.944020i \(-0.392989\pi\)
0.329888 + 0.944020i \(0.392989\pi\)
\(594\) −2.15760e12 −0.711103
\(595\) −5.74326e11 −0.187859
\(596\) −1.25168e11 −0.0406337
\(597\) 6.00973e11 0.193629
\(598\) 0 0
\(599\) −3.57967e12 −1.13611 −0.568057 0.822989i \(-0.692305\pi\)
−0.568057 + 0.822989i \(0.692305\pi\)
\(600\) 1.23795e12 0.389964
\(601\) 4.51274e11 0.141093 0.0705465 0.997508i \(-0.477526\pi\)
0.0705465 + 0.997508i \(0.477526\pi\)
\(602\) −7.50535e12 −2.32909
\(603\) 7.49327e11 0.230804
\(604\) 2.34194e12 0.715994
\(605\) 6.41452e11 0.194655
\(606\) −4.96379e12 −1.49516
\(607\) 5.29060e12 1.58181 0.790907 0.611936i \(-0.209609\pi\)
0.790907 + 0.611936i \(0.209609\pi\)
\(608\) −1.88956e11 −0.0560781
\(609\) −8.86724e12 −2.61223
\(610\) −5.55396e11 −0.162412
\(611\) 0 0
\(612\) 2.75053e11 0.0792567
\(613\) −3.73141e12 −1.06734 −0.533668 0.845694i \(-0.679187\pi\)
−0.533668 + 0.845694i \(0.679187\pi\)
\(614\) 1.57620e12 0.447562
\(615\) −6.13439e11 −0.172915
\(616\) −3.12716e12 −0.875059
\(617\) 5.22525e12 1.45152 0.725761 0.687947i \(-0.241488\pi\)
0.725761 + 0.687947i \(0.241488\pi\)
\(618\) −4.44537e12 −1.22591
\(619\) 3.68332e11 0.100840 0.0504198 0.998728i \(-0.483944\pi\)
0.0504198 + 0.998728i \(0.483944\pi\)
\(620\) −3.78020e10 −0.0102743
\(621\) −2.08442e12 −0.562435
\(622\) 3.02160e12 0.809432
\(623\) −2.87014e12 −0.763319
\(624\) 0 0
\(625\) 3.19438e12 0.837387
\(626\) −4.12145e12 −1.07267
\(627\) −1.93794e12 −0.500768
\(628\) 1.92644e12 0.494239
\(629\) −2.67582e12 −0.681600
\(630\) 4.36474e11 0.110389
\(631\) 5.66616e12 1.42284 0.711421 0.702766i \(-0.248052\pi\)
0.711421 + 0.702766i \(0.248052\pi\)
\(632\) 2.26495e12 0.564718
\(633\) 9.75194e11 0.241421
\(634\) 3.05633e12 0.751274
\(635\) 4.41971e11 0.107873
\(636\) −3.32471e12 −0.805743
\(637\) 0 0
\(638\) 4.89133e12 1.16878
\(639\) −1.03046e12 −0.244499
\(640\) −8.81568e10 −0.0207704
\(641\) −4.18212e12 −0.978443 −0.489221 0.872160i \(-0.662719\pi\)
−0.489221 + 0.872160i \(0.662719\pi\)
\(642\) −2.31366e12 −0.537518
\(643\) 4.59095e12 1.05914 0.529569 0.848267i \(-0.322354\pi\)
0.529569 + 0.848267i \(0.322354\pi\)
\(644\) −3.02109e12 −0.692114
\(645\) −2.16999e12 −0.493672
\(646\) −4.33639e11 −0.0979675
\(647\) −1.21485e12 −0.272555 −0.136277 0.990671i \(-0.543514\pi\)
−0.136277 + 0.990671i \(0.543514\pi\)
\(648\) 1.95378e12 0.435300
\(649\) −5.06015e12 −1.11960
\(650\) 0 0
\(651\) 8.56323e11 0.186863
\(652\) 2.54457e12 0.551443
\(653\) 9.26075e11 0.199314 0.0996568 0.995022i \(-0.468226\pi\)
0.0996568 + 0.995022i \(0.468226\pi\)
\(654\) 5.42363e12 1.15929
\(655\) −1.52998e12 −0.324787
\(656\) −7.47397e11 −0.157574
\(657\) −1.40473e11 −0.0294136
\(658\) 1.98526e12 0.412858
\(659\) 2.76107e11 0.0570286 0.0285143 0.999593i \(-0.490922\pi\)
0.0285143 + 0.999593i \(0.490922\pi\)
\(660\) −9.04142e11 −0.185477
\(661\) 6.62032e12 1.34888 0.674438 0.738331i \(-0.264386\pi\)
0.674438 + 0.738331i \(0.264386\pi\)
\(662\) −6.20655e12 −1.25600
\(663\) 0 0
\(664\) −2.98952e12 −0.596823
\(665\) −6.88128e11 −0.136450
\(666\) 2.03356e12 0.400519
\(667\) 4.72542e12 0.924431
\(668\) 1.64885e12 0.320397
\(669\) 5.74279e12 1.10842
\(670\) −5.51161e11 −0.105668
\(671\) −6.94007e12 −1.32164
\(672\) 1.99700e12 0.377760
\(673\) −9.49262e11 −0.178369 −0.0891843 0.996015i \(-0.528426\pi\)
−0.0891843 + 0.996015i \(0.528426\pi\)
\(674\) −2.64246e12 −0.493217
\(675\) 3.78979e12 0.702665
\(676\) 0 0
\(677\) −4.09158e12 −0.748586 −0.374293 0.927311i \(-0.622115\pi\)
−0.374293 + 0.927311i \(0.622115\pi\)
\(678\) −3.95213e12 −0.718287
\(679\) −8.39420e12 −1.51553
\(680\) −2.02313e11 −0.0362856
\(681\) 8.13783e12 1.44993
\(682\) −4.72363e11 −0.0836077
\(683\) −9.22255e12 −1.62165 −0.810826 0.585287i \(-0.800982\pi\)
−0.810826 + 0.585287i \(0.800982\pi\)
\(684\) 3.29555e11 0.0575673
\(685\) −9.06768e10 −0.0157358
\(686\) 1.01387e13 1.74792
\(687\) −1.24951e13 −2.14010
\(688\) −2.64385e12 −0.449872
\(689\) 0 0
\(690\) −8.73475e11 −0.146700
\(691\) 5.56624e12 0.928775 0.464388 0.885632i \(-0.346274\pi\)
0.464388 + 0.885632i \(0.346274\pi\)
\(692\) 5.89557e11 0.0977346
\(693\) 5.45405e12 0.898296
\(694\) 3.40270e12 0.556808
\(695\) −5.79322e11 −0.0941865
\(696\) −3.12359e12 −0.504560
\(697\) −1.71522e12 −0.275279
\(698\) 5.50902e12 0.878466
\(699\) −5.55891e12 −0.880730
\(700\) 5.49281e12 0.864675
\(701\) 6.38372e12 0.998487 0.499244 0.866462i \(-0.333611\pi\)
0.499244 + 0.866462i \(0.333611\pi\)
\(702\) 0 0
\(703\) −3.20604e12 −0.495074
\(704\) −1.10158e12 −0.169021
\(705\) 5.73989e11 0.0875090
\(706\) −1.54439e12 −0.233956
\(707\) −2.20244e13 −3.31525
\(708\) 3.23140e12 0.483327
\(709\) 4.57498e12 0.679957 0.339979 0.940433i \(-0.389580\pi\)
0.339979 + 0.940433i \(0.389580\pi\)
\(710\) 7.57947e11 0.111938
\(711\) −3.95027e12 −0.579714
\(712\) −1.01104e12 −0.147438
\(713\) −4.56341e11 −0.0661282
\(714\) 4.58297e12 0.659941
\(715\) 0 0
\(716\) 5.05859e12 0.719318
\(717\) 1.10005e13 1.55445
\(718\) −7.49180e12 −1.05203
\(719\) 2.81561e12 0.392910 0.196455 0.980513i \(-0.437057\pi\)
0.196455 + 0.980513i \(0.437057\pi\)
\(720\) 1.53753e11 0.0213220
\(721\) −1.97241e13 −2.71824
\(722\) 4.64344e12 0.635949
\(723\) 1.30246e13 1.77273
\(724\) −4.90122e12 −0.662950
\(725\) −8.59154e12 −1.15491
\(726\) −5.11861e12 −0.683813
\(727\) 8.80768e12 1.16938 0.584692 0.811256i \(-0.301216\pi\)
0.584692 + 0.811256i \(0.301216\pi\)
\(728\) 0 0
\(729\) 3.21353e12 0.421413
\(730\) 1.03324e11 0.0134663
\(731\) −6.06744e12 −0.785919
\(732\) 4.43191e12 0.570547
\(733\) −9.56473e11 −0.122378 −0.0611892 0.998126i \(-0.519489\pi\)
−0.0611892 + 0.998126i \(0.519489\pi\)
\(734\) −1.27964e12 −0.162726
\(735\) 5.10196e12 0.644828
\(736\) −1.06422e12 −0.133684
\(737\) −6.88715e12 −0.859876
\(738\) 1.30353e12 0.161758
\(739\) 8.07521e12 0.995988 0.497994 0.867181i \(-0.334070\pi\)
0.497994 + 0.867181i \(0.334070\pi\)
\(740\) −1.49577e12 −0.183367
\(741\) 0 0
\(742\) −1.47517e13 −1.78659
\(743\) 8.34279e12 1.00430 0.502148 0.864782i \(-0.332543\pi\)
0.502148 + 0.864782i \(0.332543\pi\)
\(744\) 3.01650e11 0.0360932
\(745\) −1.60572e11 −0.0190971
\(746\) −3.09827e12 −0.366265
\(747\) 5.21399e12 0.612671
\(748\) −2.52805e12 −0.295276
\(749\) −1.02657e13 −1.19185
\(750\) 3.26904e12 0.377263
\(751\) 1.37838e13 1.58121 0.790605 0.612327i \(-0.209766\pi\)
0.790605 + 0.612327i \(0.209766\pi\)
\(752\) 6.99332e11 0.0797449
\(753\) 1.82480e13 2.06841
\(754\) 0 0
\(755\) 3.00436e12 0.336504
\(756\) 6.11348e12 0.680676
\(757\) 5.99121e12 0.663107 0.331553 0.943437i \(-0.392427\pi\)
0.331553 + 0.943437i \(0.392427\pi\)
\(758\) 2.22656e12 0.244976
\(759\) −1.09147e13 −1.19378
\(760\) −2.42402e11 −0.0263557
\(761\) 5.19855e12 0.561890 0.280945 0.959724i \(-0.409352\pi\)
0.280945 + 0.959724i \(0.409352\pi\)
\(762\) −3.52682e12 −0.378953
\(763\) 2.40647e13 2.57051
\(764\) 7.05136e12 0.748778
\(765\) 3.52852e11 0.0372492
\(766\) 1.75922e12 0.184625
\(767\) 0 0
\(768\) 7.03468e11 0.0729657
\(769\) 6.67066e12 0.687860 0.343930 0.938995i \(-0.388242\pi\)
0.343930 + 0.938995i \(0.388242\pi\)
\(770\) −4.01168e12 −0.411262
\(771\) 1.86842e13 1.90428
\(772\) 9.49968e11 0.0962567
\(773\) −5.10637e12 −0.514404 −0.257202 0.966358i \(-0.582801\pi\)
−0.257202 + 0.966358i \(0.582801\pi\)
\(774\) 4.61111e12 0.461818
\(775\) 8.29697e11 0.0826156
\(776\) −2.95696e12 −0.292730
\(777\) 3.38834e13 3.33498
\(778\) 5.85146e12 0.572606
\(779\) −2.05509e12 −0.199946
\(780\) 0 0
\(781\) 9.47109e12 0.910899
\(782\) −2.44230e12 −0.233544
\(783\) −9.56236e12 −0.909153
\(784\) 6.21608e12 0.587617
\(785\) 2.47133e12 0.232283
\(786\) 1.22088e13 1.14096
\(787\) −1.64204e13 −1.52580 −0.762899 0.646518i \(-0.776225\pi\)
−0.762899 + 0.646518i \(0.776225\pi\)
\(788\) −4.58624e12 −0.423730
\(789\) 6.17834e12 0.567578
\(790\) 2.90559e12 0.265407
\(791\) −1.75356e13 −1.59267
\(792\) 1.92126e12 0.173509
\(793\) 0 0
\(794\) −5.55162e12 −0.495709
\(795\) −4.26510e12 −0.378684
\(796\) 9.39314e11 0.0829281
\(797\) 1.12683e12 0.0989230 0.0494615 0.998776i \(-0.484249\pi\)
0.0494615 + 0.998776i \(0.484249\pi\)
\(798\) 5.49108e12 0.479341
\(799\) 1.60492e12 0.139313
\(800\) 1.93491e12 0.167015
\(801\) 1.76334e12 0.151353
\(802\) 2.19088e12 0.186997
\(803\) 1.29110e12 0.109583
\(804\) 4.39812e12 0.371206
\(805\) −3.87561e12 −0.325281
\(806\) 0 0
\(807\) −4.77370e10 −0.00396209
\(808\) −7.75835e12 −0.640351
\(809\) −7.36603e12 −0.604596 −0.302298 0.953214i \(-0.597754\pi\)
−0.302298 + 0.953214i \(0.597754\pi\)
\(810\) 2.50641e12 0.204583
\(811\) −3.01694e12 −0.244891 −0.122446 0.992475i \(-0.539074\pi\)
−0.122446 + 0.992475i \(0.539074\pi\)
\(812\) −1.38594e13 −1.11877
\(813\) −2.31651e13 −1.85963
\(814\) −1.86907e13 −1.49216
\(815\) 3.26431e12 0.259168
\(816\) 1.61441e12 0.127470
\(817\) −7.26971e12 −0.570844
\(818\) 8.98136e12 0.701378
\(819\) 0 0
\(820\) −9.58798e11 −0.0740568
\(821\) 1.95823e13 1.50425 0.752125 0.659021i \(-0.229029\pi\)
0.752125 + 0.659021i \(0.229029\pi\)
\(822\) 7.23577e11 0.0552792
\(823\) −3.88389e12 −0.295099 −0.147549 0.989055i \(-0.547139\pi\)
−0.147549 + 0.989055i \(0.547139\pi\)
\(824\) −6.94805e12 −0.525038
\(825\) 1.98446e13 1.49142
\(826\) 1.43377e13 1.07169
\(827\) −8.71895e12 −0.648171 −0.324085 0.946028i \(-0.605057\pi\)
−0.324085 + 0.946028i \(0.605057\pi\)
\(828\) 1.85609e12 0.137234
\(829\) 4.28594e12 0.315174 0.157587 0.987505i \(-0.449628\pi\)
0.157587 + 0.987505i \(0.449628\pi\)
\(830\) −3.83511e12 −0.280496
\(831\) −8.19206e12 −0.595921
\(832\) 0 0
\(833\) 1.42654e13 1.02656
\(834\) 4.62284e12 0.330873
\(835\) 2.11523e12 0.150581
\(836\) −3.02898e12 −0.214471
\(837\) 9.23451e11 0.0650353
\(838\) 1.97222e13 1.38152
\(839\) −1.39822e13 −0.974198 −0.487099 0.873347i \(-0.661945\pi\)
−0.487099 + 0.873347i \(0.661945\pi\)
\(840\) 2.56185e12 0.177540
\(841\) 7.17094e12 0.494304
\(842\) −2.09599e12 −0.143710
\(843\) −1.09407e13 −0.746141
\(844\) 1.52422e12 0.103396
\(845\) 0 0
\(846\) −1.21970e12 −0.0818625
\(847\) −2.27113e13 −1.51624
\(848\) −5.19648e12 −0.345086
\(849\) −1.96085e13 −1.29527
\(850\) 4.44047e12 0.291772
\(851\) −1.80567e13 −1.18020
\(852\) −6.04822e12 −0.393233
\(853\) −1.97610e13 −1.27802 −0.639012 0.769197i \(-0.720657\pi\)
−0.639012 + 0.769197i \(0.720657\pi\)
\(854\) 1.96644e13 1.26509
\(855\) 4.22770e11 0.0270556
\(856\) −3.61623e12 −0.230210
\(857\) −2.36152e13 −1.49547 −0.747736 0.663996i \(-0.768859\pi\)
−0.747736 + 0.663996i \(0.768859\pi\)
\(858\) 0 0
\(859\) 1.78743e13 1.12011 0.560054 0.828456i \(-0.310781\pi\)
0.560054 + 0.828456i \(0.310781\pi\)
\(860\) −3.39166e12 −0.211432
\(861\) 2.17195e13 1.34690
\(862\) −1.32184e13 −0.815449
\(863\) 8.93009e12 0.548033 0.274017 0.961725i \(-0.411648\pi\)
0.274017 + 0.961725i \(0.411648\pi\)
\(864\) 2.15355e12 0.131475
\(865\) 7.56313e11 0.0459334
\(866\) 1.76479e13 1.06626
\(867\) −1.57184e13 −0.944764
\(868\) 1.33842e12 0.0800303
\(869\) 3.63074e13 2.15976
\(870\) −4.00710e12 −0.237134
\(871\) 0 0
\(872\) 8.47708e12 0.496503
\(873\) 5.15720e12 0.300504
\(874\) −2.92624e12 −0.169632
\(875\) 1.45047e13 0.836515
\(876\) −8.24496e11 −0.0473064
\(877\) 1.36331e13 0.778209 0.389104 0.921194i \(-0.372785\pi\)
0.389104 + 0.921194i \(0.372785\pi\)
\(878\) 1.19082e13 0.676271
\(879\) −2.34824e12 −0.132676
\(880\) −1.41316e12 −0.0794366
\(881\) 2.21086e13 1.23643 0.618214 0.786010i \(-0.287857\pi\)
0.618214 + 0.786010i \(0.287857\pi\)
\(882\) −1.08414e13 −0.603221
\(883\) −2.18016e12 −0.120688 −0.0603442 0.998178i \(-0.519220\pi\)
−0.0603442 + 0.998178i \(0.519220\pi\)
\(884\) 0 0
\(885\) 4.14540e12 0.227155
\(886\) 2.37689e13 1.29586
\(887\) 8.98386e11 0.0487312 0.0243656 0.999703i \(-0.492243\pi\)
0.0243656 + 0.999703i \(0.492243\pi\)
\(888\) 1.19358e13 0.644162
\(889\) −1.56485e13 −0.840262
\(890\) −1.29701e12 −0.0692930
\(891\) 3.13194e13 1.66481
\(892\) 8.97591e12 0.474719
\(893\) 1.92293e12 0.101189
\(894\) 1.28133e12 0.0670873
\(895\) 6.48941e12 0.338066
\(896\) 3.12129e12 0.161789
\(897\) 0 0
\(898\) 1.27976e13 0.656730
\(899\) −2.09348e12 −0.106893
\(900\) −3.37465e12 −0.171450
\(901\) −1.19255e13 −0.602860
\(902\) −1.19809e13 −0.602641
\(903\) 7.68308e13 3.84539
\(904\) −6.17713e12 −0.307630
\(905\) −6.28753e12 −0.311574
\(906\) −2.39740e13 −1.18212
\(907\) 4.12871e12 0.202573 0.101286 0.994857i \(-0.467704\pi\)
0.101286 + 0.994857i \(0.467704\pi\)
\(908\) 1.27193e13 0.620980
\(909\) 1.35312e13 0.657356
\(910\) 0 0
\(911\) −3.43032e13 −1.65007 −0.825034 0.565084i \(-0.808844\pi\)
−0.825034 + 0.565084i \(0.808844\pi\)
\(912\) 1.93430e12 0.0925864
\(913\) −4.79224e13 −2.28255
\(914\) 5.20592e12 0.246740
\(915\) 5.68548e12 0.268146
\(916\) −1.95297e13 −0.916571
\(917\) 5.41705e13 2.52989
\(918\) 4.94223e12 0.229684
\(919\) −1.46188e13 −0.676071 −0.338035 0.941133i \(-0.609762\pi\)
−0.338035 + 0.941133i \(0.609762\pi\)
\(920\) −1.36523e12 −0.0628291
\(921\) −1.61352e13 −0.738936
\(922\) 5.75991e12 0.262498
\(923\) 0 0
\(924\) 3.20122e13 1.44474
\(925\) 3.28299e13 1.47446
\(926\) −9.26984e12 −0.414307
\(927\) 1.21180e13 0.538980
\(928\) −4.88214e12 −0.216095
\(929\) −2.82624e13 −1.24491 −0.622455 0.782656i \(-0.713864\pi\)
−0.622455 + 0.782656i \(0.713864\pi\)
\(930\) 3.86972e11 0.0169631
\(931\) 1.70921e13 0.745629
\(932\) −8.68851e12 −0.377202
\(933\) −3.09315e13 −1.33639
\(934\) −3.52179e12 −0.151427
\(935\) −3.24311e12 −0.138774
\(936\) 0 0
\(937\) 2.56705e13 1.08794 0.543972 0.839103i \(-0.316920\pi\)
0.543972 + 0.839103i \(0.316920\pi\)
\(938\) 1.95145e13 0.823084
\(939\) 4.21905e13 1.77100
\(940\) 8.97138e11 0.0374786
\(941\) −2.19542e13 −0.912774 −0.456387 0.889781i \(-0.650857\pi\)
−0.456387 + 0.889781i \(0.650857\pi\)
\(942\) −1.97206e13 −0.816001
\(943\) −1.15745e13 −0.476649
\(944\) 5.05064e12 0.207001
\(945\) 7.84268e12 0.319905
\(946\) −4.23813e13 −1.72054
\(947\) −2.54204e13 −1.02709 −0.513544 0.858064i \(-0.671668\pi\)
−0.513544 + 0.858064i \(0.671668\pi\)
\(948\) −2.31858e13 −0.932364
\(949\) 0 0
\(950\) 5.32035e12 0.211926
\(951\) −3.12870e13 −1.24037
\(952\) 7.16313e12 0.282642
\(953\) −2.37513e13 −0.932760 −0.466380 0.884585i \(-0.654442\pi\)
−0.466380 + 0.884585i \(0.654442\pi\)
\(954\) 9.06312e12 0.354250
\(955\) 9.04584e12 0.351912
\(956\) 1.71937e13 0.665747
\(957\) −5.00716e13 −1.92969
\(958\) −3.32080e13 −1.27379
\(959\) 3.21051e12 0.122572
\(960\) 9.02443e11 0.0342925
\(961\) −2.62375e13 −0.992353
\(962\) 0 0
\(963\) 6.30703e12 0.236323
\(964\) 2.03573e13 0.759230
\(965\) 1.21867e12 0.0452389
\(966\) 3.09263e13 1.14270
\(967\) −1.52013e12 −0.0559064 −0.0279532 0.999609i \(-0.508899\pi\)
−0.0279532 + 0.999609i \(0.508899\pi\)
\(968\) −8.00033e12 −0.292866
\(969\) 4.43908e12 0.161747
\(970\) −3.79334e12 −0.137578
\(971\) −3.22330e13 −1.16363 −0.581814 0.813322i \(-0.697657\pi\)
−0.581814 + 0.813322i \(0.697657\pi\)
\(972\) −9.65180e12 −0.346825
\(973\) 2.05115e13 0.733653
\(974\) 1.61350e13 0.574453
\(975\) 0 0
\(976\) 6.92703e12 0.244356
\(977\) −3.09104e13 −1.08537 −0.542687 0.839935i \(-0.682593\pi\)
−0.542687 + 0.839935i \(0.682593\pi\)
\(978\) −2.60483e13 −0.910447
\(979\) −1.62071e13 −0.563875
\(980\) 7.97430e12 0.276169
\(981\) −1.47848e13 −0.509688
\(982\) 4.17374e12 0.143226
\(983\) −4.06941e12 −0.139008 −0.0695042 0.997582i \(-0.522142\pi\)
−0.0695042 + 0.997582i \(0.522142\pi\)
\(984\) 7.65096e12 0.260158
\(985\) −5.88346e12 −0.199145
\(986\) −1.12042e13 −0.377514
\(987\) −2.03227e13 −0.681639
\(988\) 0 0
\(989\) −4.09437e13 −1.36083
\(990\) 2.46468e12 0.0815460
\(991\) 2.35584e13 0.775914 0.387957 0.921677i \(-0.373181\pi\)
0.387957 + 0.921677i \(0.373181\pi\)
\(992\) 4.71476e11 0.0154581
\(993\) 6.35352e13 2.07369
\(994\) −2.68360e13 −0.871924
\(995\) 1.20500e12 0.0389747
\(996\) 3.06032e13 0.985370
\(997\) −2.00207e13 −0.641727 −0.320863 0.947125i \(-0.603973\pi\)
−0.320863 + 0.947125i \(0.603973\pi\)
\(998\) −5.66114e12 −0.180641
\(999\) 3.65396e13 1.16070
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.q.1.12 15
13.12 even 2 338.10.a.r.1.12 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.10.a.q.1.12 15 1.1 even 1 trivial
338.10.a.r.1.12 yes 15 13.12 even 2