Properties

Label 338.10.a.p.1.11
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,192,-399,3072,-562] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 136646 x^{10} - 2261265 x^{9} + 6422687308 x^{8} + 214352365700 x^{7} + \cdots - 14\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{3}\cdot 7\cdot 13^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(230.287\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{2} +171.780 q^{3} +256.000 q^{4} +407.110 q^{5} +2748.49 q^{6} -743.867 q^{7} +4096.00 q^{8} +9825.53 q^{9} +6513.76 q^{10} -30721.0 q^{11} +43975.8 q^{12} -11901.9 q^{14} +69933.5 q^{15} +65536.0 q^{16} -161987. q^{17} +157208. q^{18} -473972. q^{19} +104220. q^{20} -127782. q^{21} -491536. q^{22} -1.55493e6 q^{23} +703613. q^{24} -1.78739e6 q^{25} -1.69332e6 q^{27} -190430. q^{28} +2.77798e6 q^{29} +1.11894e6 q^{30} -2.33732e6 q^{31} +1.04858e6 q^{32} -5.27727e6 q^{33} -2.59179e6 q^{34} -302836. q^{35} +2.51533e6 q^{36} -1.34796e6 q^{37} -7.58356e6 q^{38} +1.66752e6 q^{40} -4.99968e6 q^{41} -2.04451e6 q^{42} -1.99295e6 q^{43} -7.86457e6 q^{44} +4.00007e6 q^{45} -2.48788e7 q^{46} +6.42621e6 q^{47} +1.12578e7 q^{48} -3.98003e7 q^{49} -2.85982e7 q^{50} -2.78262e7 q^{51} -2.02717e7 q^{53} -2.70931e7 q^{54} -1.25068e7 q^{55} -3.04688e6 q^{56} -8.14192e7 q^{57} +4.44477e7 q^{58} -7.38949e7 q^{59} +1.79030e7 q^{60} +1.00486e8 q^{61} -3.73970e7 q^{62} -7.30889e6 q^{63} +1.67772e7 q^{64} -8.44362e7 q^{66} +5.30164e7 q^{67} -4.14687e7 q^{68} -2.67106e8 q^{69} -4.84537e6 q^{70} +7.37635e7 q^{71} +4.02454e7 q^{72} +2.27741e8 q^{73} -2.15674e7 q^{74} -3.07038e8 q^{75} -1.21337e8 q^{76} +2.28523e7 q^{77} -5.63682e8 q^{79} +2.66804e7 q^{80} -4.84275e8 q^{81} -7.99948e7 q^{82} +5.36015e8 q^{83} -3.27122e7 q^{84} -6.59466e7 q^{85} -3.18872e7 q^{86} +4.77203e8 q^{87} -1.25833e8 q^{88} -1.03608e9 q^{89} +6.40011e7 q^{90} -3.98061e8 q^{92} -4.01505e8 q^{93} +1.02819e8 q^{94} -1.92959e8 q^{95} +1.80125e8 q^{96} +1.36454e9 q^{97} -6.36804e8 q^{98} -3.01850e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 192 q^{2} - 399 q^{3} + 3072 q^{4} - 562 q^{5} - 6384 q^{6} + 3161 q^{7} + 49152 q^{8} + 54783 q^{9} - 8992 q^{10} - 164271 q^{11} - 102144 q^{12} + 50576 q^{14} + 434244 q^{15} + 786432 q^{16} - 649529 q^{17}+ \cdots - 4431369848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 0.707107
\(3\) 171.780 1.22441 0.612207 0.790698i \(-0.290282\pi\)
0.612207 + 0.790698i \(0.290282\pi\)
\(4\) 256.000 0.500000
\(5\) 407.110 0.291304 0.145652 0.989336i \(-0.453472\pi\)
0.145652 + 0.989336i \(0.453472\pi\)
\(6\) 2748.49 0.865791
\(7\) −743.867 −0.117099 −0.0585497 0.998284i \(-0.518648\pi\)
−0.0585497 + 0.998284i \(0.518648\pi\)
\(8\) 4096.00 0.353553
\(9\) 9825.53 0.499188
\(10\) 6513.76 0.205983
\(11\) −30721.0 −0.632657 −0.316328 0.948650i \(-0.602450\pi\)
−0.316328 + 0.948650i \(0.602450\pi\)
\(12\) 43975.8 0.612207
\(13\) 0 0
\(14\) −11901.9 −0.0828017
\(15\) 69933.5 0.356677
\(16\) 65536.0 0.250000
\(17\) −161987. −0.470393 −0.235196 0.971948i \(-0.575573\pi\)
−0.235196 + 0.971948i \(0.575573\pi\)
\(18\) 157208. 0.352980
\(19\) −473972. −0.834376 −0.417188 0.908820i \(-0.636984\pi\)
−0.417188 + 0.908820i \(0.636984\pi\)
\(20\) 104220. 0.145652
\(21\) −127782. −0.143378
\(22\) −491536. −0.447356
\(23\) −1.55493e6 −1.15860 −0.579301 0.815113i \(-0.696675\pi\)
−0.579301 + 0.815113i \(0.696675\pi\)
\(24\) 703613. 0.432896
\(25\) −1.78739e6 −0.915142
\(26\) 0 0
\(27\) −1.69332e6 −0.613200
\(28\) −190430. −0.0585497
\(29\) 2.77798e6 0.729354 0.364677 0.931134i \(-0.381179\pi\)
0.364677 + 0.931134i \(0.381179\pi\)
\(30\) 1.11894e6 0.252209
\(31\) −2.33732e6 −0.454558 −0.227279 0.973830i \(-0.572983\pi\)
−0.227279 + 0.973830i \(0.572983\pi\)
\(32\) 1.04858e6 0.176777
\(33\) −5.27727e6 −0.774633
\(34\) −2.59179e6 −0.332618
\(35\) −302836. −0.0341115
\(36\) 2.51533e6 0.249594
\(37\) −1.34796e6 −0.118242 −0.0591208 0.998251i \(-0.518830\pi\)
−0.0591208 + 0.998251i \(0.518830\pi\)
\(38\) −7.58356e6 −0.589993
\(39\) 0 0
\(40\) 1.66752e6 0.102992
\(41\) −4.99968e6 −0.276321 −0.138161 0.990410i \(-0.544119\pi\)
−0.138161 + 0.990410i \(0.544119\pi\)
\(42\) −2.04451e6 −0.101384
\(43\) −1.99295e6 −0.0888974 −0.0444487 0.999012i \(-0.514153\pi\)
−0.0444487 + 0.999012i \(0.514153\pi\)
\(44\) −7.86457e6 −0.316328
\(45\) 4.00007e6 0.145416
\(46\) −2.48788e7 −0.819256
\(47\) 6.42621e6 0.192094 0.0960472 0.995377i \(-0.469380\pi\)
0.0960472 + 0.995377i \(0.469380\pi\)
\(48\) 1.12578e7 0.306103
\(49\) −3.98003e7 −0.986288
\(50\) −2.85982e7 −0.647103
\(51\) −2.78262e7 −0.575955
\(52\) 0 0
\(53\) −2.02717e7 −0.352897 −0.176449 0.984310i \(-0.556461\pi\)
−0.176449 + 0.984310i \(0.556461\pi\)
\(54\) −2.70931e7 −0.433598
\(55\) −1.25068e7 −0.184296
\(56\) −3.04688e6 −0.0414009
\(57\) −8.14192e7 −1.02162
\(58\) 4.44477e7 0.515731
\(59\) −7.38949e7 −0.793926 −0.396963 0.917835i \(-0.629936\pi\)
−0.396963 + 0.917835i \(0.629936\pi\)
\(60\) 1.79030e7 0.178338
\(61\) 1.00486e8 0.929228 0.464614 0.885513i \(-0.346193\pi\)
0.464614 + 0.885513i \(0.346193\pi\)
\(62\) −3.73970e7 −0.321421
\(63\) −7.30889e6 −0.0584546
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) −8.44362e7 −0.547748
\(67\) 5.30164e7 0.321421 0.160710 0.987002i \(-0.448622\pi\)
0.160710 + 0.987002i \(0.448622\pi\)
\(68\) −4.14687e7 −0.235196
\(69\) −2.67106e8 −1.41861
\(70\) −4.84537e6 −0.0241205
\(71\) 7.37635e7 0.344492 0.172246 0.985054i \(-0.444898\pi\)
0.172246 + 0.985054i \(0.444898\pi\)
\(72\) 4.02454e7 0.176490
\(73\) 2.27741e8 0.938615 0.469308 0.883035i \(-0.344504\pi\)
0.469308 + 0.883035i \(0.344504\pi\)
\(74\) −2.15674e7 −0.0836095
\(75\) −3.07038e8 −1.12051
\(76\) −1.21337e8 −0.417188
\(77\) 2.28523e7 0.0740837
\(78\) 0 0
\(79\) −5.63682e8 −1.62822 −0.814108 0.580714i \(-0.802774\pi\)
−0.814108 + 0.580714i \(0.802774\pi\)
\(80\) 2.66804e7 0.0728261
\(81\) −4.84275e8 −1.25000
\(82\) −7.99948e7 −0.195389
\(83\) 5.36015e8 1.23973 0.619863 0.784710i \(-0.287188\pi\)
0.619863 + 0.784710i \(0.287188\pi\)
\(84\) −3.27122e7 −0.0716890
\(85\) −6.59466e7 −0.137027
\(86\) −3.18872e7 −0.0628599
\(87\) 4.77203e8 0.893030
\(88\) −1.25833e8 −0.223678
\(89\) −1.03608e9 −1.75041 −0.875203 0.483756i \(-0.839272\pi\)
−0.875203 + 0.483756i \(0.839272\pi\)
\(90\) 6.40011e7 0.102824
\(91\) 0 0
\(92\) −3.98061e8 −0.579301
\(93\) −4.01505e8 −0.556567
\(94\) 1.02819e8 0.135831
\(95\) −1.92959e8 −0.243057
\(96\) 1.80125e8 0.216448
\(97\) 1.36454e9 1.56500 0.782500 0.622650i \(-0.213944\pi\)
0.782500 + 0.622650i \(0.213944\pi\)
\(98\) −6.36804e8 −0.697411
\(99\) −3.01850e8 −0.315815
\(100\) −4.57571e8 −0.457571
\(101\) −1.36473e9 −1.30497 −0.652485 0.757801i \(-0.726274\pi\)
−0.652485 + 0.757801i \(0.726274\pi\)
\(102\) −4.45220e8 −0.407262
\(103\) 1.16578e9 1.02058 0.510292 0.860001i \(-0.329537\pi\)
0.510292 + 0.860001i \(0.329537\pi\)
\(104\) 0 0
\(105\) −5.20213e7 −0.0417666
\(106\) −3.24347e8 −0.249536
\(107\) −8.41266e8 −0.620450 −0.310225 0.950663i \(-0.600404\pi\)
−0.310225 + 0.950663i \(0.600404\pi\)
\(108\) −4.33490e8 −0.306600
\(109\) −6.13020e8 −0.415963 −0.207982 0.978133i \(-0.566689\pi\)
−0.207982 + 0.978133i \(0.566689\pi\)
\(110\) −2.00109e8 −0.130317
\(111\) −2.31554e8 −0.144777
\(112\) −4.87501e7 −0.0292748
\(113\) 1.02536e9 0.591594 0.295797 0.955251i \(-0.404415\pi\)
0.295797 + 0.955251i \(0.404415\pi\)
\(114\) −1.30271e9 −0.722395
\(115\) −6.33026e8 −0.337506
\(116\) 7.11163e8 0.364677
\(117\) 0 0
\(118\) −1.18232e9 −0.561391
\(119\) 1.20497e8 0.0550826
\(120\) 2.86448e8 0.126104
\(121\) −1.41417e9 −0.599746
\(122\) 1.60778e9 0.657063
\(123\) −8.58846e8 −0.338332
\(124\) −5.98353e8 −0.227279
\(125\) −1.52280e9 −0.557889
\(126\) −1.16942e8 −0.0413337
\(127\) −3.19992e9 −1.09150 −0.545749 0.837949i \(-0.683755\pi\)
−0.545749 + 0.837949i \(0.683755\pi\)
\(128\) 2.68435e8 0.0883883
\(129\) −3.42350e8 −0.108847
\(130\) 0 0
\(131\) 6.26836e9 1.85966 0.929830 0.367990i \(-0.119954\pi\)
0.929830 + 0.367990i \(0.119954\pi\)
\(132\) −1.35098e9 −0.387317
\(133\) 3.52573e8 0.0977049
\(134\) 8.48263e8 0.227279
\(135\) −6.89368e8 −0.178628
\(136\) −6.63499e8 −0.166309
\(137\) −4.13958e7 −0.0100395 −0.00501976 0.999987i \(-0.501598\pi\)
−0.00501976 + 0.999987i \(0.501598\pi\)
\(138\) −4.27369e9 −1.00311
\(139\) 2.33474e9 0.530484 0.265242 0.964182i \(-0.414548\pi\)
0.265242 + 0.964182i \(0.414548\pi\)
\(140\) −7.75260e7 −0.0170558
\(141\) 1.10390e9 0.235203
\(142\) 1.18022e9 0.243592
\(143\) 0 0
\(144\) 6.43926e8 0.124797
\(145\) 1.13094e9 0.212464
\(146\) 3.64385e9 0.663701
\(147\) −6.83691e9 −1.20762
\(148\) −3.45079e8 −0.0591208
\(149\) 2.84125e9 0.472250 0.236125 0.971723i \(-0.424123\pi\)
0.236125 + 0.971723i \(0.424123\pi\)
\(150\) −4.91261e9 −0.792322
\(151\) −1.03576e10 −1.62130 −0.810649 0.585532i \(-0.800886\pi\)
−0.810649 + 0.585532i \(0.800886\pi\)
\(152\) −1.94139e9 −0.294997
\(153\) −1.59161e9 −0.234815
\(154\) 3.65637e8 0.0523851
\(155\) −9.51544e8 −0.132415
\(156\) 0 0
\(157\) 7.32184e9 0.961772 0.480886 0.876783i \(-0.340315\pi\)
0.480886 + 0.876783i \(0.340315\pi\)
\(158\) −9.01890e9 −1.15132
\(159\) −3.48228e9 −0.432092
\(160\) 4.26886e8 0.0514958
\(161\) 1.15666e9 0.135672
\(162\) −7.74841e9 −0.883883
\(163\) 1.48972e10 1.65295 0.826475 0.562974i \(-0.190343\pi\)
0.826475 + 0.562974i \(0.190343\pi\)
\(164\) −1.27992e9 −0.138161
\(165\) −2.14843e9 −0.225654
\(166\) 8.57624e9 0.876619
\(167\) 3.34802e9 0.333092 0.166546 0.986034i \(-0.446739\pi\)
0.166546 + 0.986034i \(0.446739\pi\)
\(168\) −5.23395e8 −0.0506918
\(169\) 0 0
\(170\) −1.05515e9 −0.0968929
\(171\) −4.65703e9 −0.416511
\(172\) −5.10196e8 −0.0444487
\(173\) −1.66055e10 −1.40943 −0.704715 0.709491i \(-0.748925\pi\)
−0.704715 + 0.709491i \(0.748925\pi\)
\(174\) 7.63524e9 0.631468
\(175\) 1.32958e9 0.107162
\(176\) −2.01333e9 −0.158164
\(177\) −1.26937e10 −0.972094
\(178\) −1.65773e10 −1.23772
\(179\) 2.25158e10 1.63926 0.819631 0.572892i \(-0.194179\pi\)
0.819631 + 0.572892i \(0.194179\pi\)
\(180\) 1.02402e9 0.0727078
\(181\) −4.01508e8 −0.0278062 −0.0139031 0.999903i \(-0.504426\pi\)
−0.0139031 + 0.999903i \(0.504426\pi\)
\(182\) 0 0
\(183\) 1.72616e10 1.13776
\(184\) −6.36898e9 −0.409628
\(185\) −5.48770e8 −0.0344443
\(186\) −6.42408e9 −0.393553
\(187\) 4.97640e9 0.297597
\(188\) 1.64511e9 0.0960472
\(189\) 1.25961e9 0.0718053
\(190\) −3.08734e9 −0.171867
\(191\) −1.13978e10 −0.619684 −0.309842 0.950788i \(-0.600276\pi\)
−0.309842 + 0.950788i \(0.600276\pi\)
\(192\) 2.88200e9 0.153052
\(193\) 2.17344e10 1.12756 0.563780 0.825925i \(-0.309347\pi\)
0.563780 + 0.825925i \(0.309347\pi\)
\(194\) 2.18327e10 1.10662
\(195\) 0 0
\(196\) −1.01889e10 −0.493144
\(197\) 9.57836e9 0.453099 0.226550 0.974000i \(-0.427255\pi\)
0.226550 + 0.974000i \(0.427255\pi\)
\(198\) −4.82960e9 −0.223315
\(199\) −3.06708e10 −1.38639 −0.693196 0.720749i \(-0.743798\pi\)
−0.693196 + 0.720749i \(0.743798\pi\)
\(200\) −7.32113e9 −0.323552
\(201\) 9.10718e9 0.393552
\(202\) −2.18357e10 −0.922753
\(203\) −2.06645e9 −0.0854068
\(204\) −7.12351e9 −0.287977
\(205\) −2.03542e9 −0.0804936
\(206\) 1.86525e10 0.721661
\(207\) −1.52780e10 −0.578361
\(208\) 0 0
\(209\) 1.45609e10 0.527874
\(210\) −8.32341e8 −0.0295335
\(211\) −2.69897e10 −0.937405 −0.468703 0.883356i \(-0.655278\pi\)
−0.468703 + 0.883356i \(0.655278\pi\)
\(212\) −5.18955e9 −0.176449
\(213\) 1.26711e10 0.421800
\(214\) −1.34603e10 −0.438724
\(215\) −8.11351e8 −0.0258962
\(216\) −6.93584e9 −0.216799
\(217\) 1.73865e9 0.0532285
\(218\) −9.80832e9 −0.294131
\(219\) 3.91214e10 1.14925
\(220\) −3.20175e9 −0.0921478
\(221\) 0 0
\(222\) −3.70486e9 −0.102373
\(223\) 1.58759e10 0.429898 0.214949 0.976625i \(-0.431041\pi\)
0.214949 + 0.976625i \(0.431041\pi\)
\(224\) −7.80002e8 −0.0207004
\(225\) −1.75620e10 −0.456828
\(226\) 1.64058e10 0.418320
\(227\) 7.00470e10 1.75095 0.875474 0.483265i \(-0.160549\pi\)
0.875474 + 0.483265i \(0.160549\pi\)
\(228\) −2.08433e10 −0.510811
\(229\) −2.13198e10 −0.512299 −0.256149 0.966637i \(-0.582454\pi\)
−0.256149 + 0.966637i \(0.582454\pi\)
\(230\) −1.01284e10 −0.238653
\(231\) 3.92559e9 0.0907090
\(232\) 1.13786e10 0.257865
\(233\) −4.25668e10 −0.946170 −0.473085 0.881017i \(-0.656860\pi\)
−0.473085 + 0.881017i \(0.656860\pi\)
\(234\) 0 0
\(235\) 2.61618e9 0.0559579
\(236\) −1.89171e10 −0.396963
\(237\) −9.68295e10 −1.99361
\(238\) 1.92795e9 0.0389493
\(239\) 1.57721e10 0.312680 0.156340 0.987703i \(-0.450030\pi\)
0.156340 + 0.987703i \(0.450030\pi\)
\(240\) 4.58316e9 0.0891692
\(241\) −8.87866e10 −1.69540 −0.847698 0.530480i \(-0.822012\pi\)
−0.847698 + 0.530480i \(0.822012\pi\)
\(242\) −2.26267e10 −0.424084
\(243\) −4.98594e10 −0.917316
\(244\) 2.57245e10 0.464614
\(245\) −1.62031e10 −0.287310
\(246\) −1.37415e10 −0.239237
\(247\) 0 0
\(248\) −9.57364e9 −0.160711
\(249\) 9.20769e10 1.51794
\(250\) −2.43648e10 −0.394487
\(251\) −1.50754e10 −0.239739 −0.119869 0.992790i \(-0.538248\pi\)
−0.119869 + 0.992790i \(0.538248\pi\)
\(252\) −1.87108e9 −0.0292273
\(253\) 4.77689e10 0.732998
\(254\) −5.11988e10 −0.771805
\(255\) −1.13283e10 −0.167778
\(256\) 4.29497e9 0.0625000
\(257\) −8.79773e10 −1.25797 −0.628987 0.777416i \(-0.716530\pi\)
−0.628987 + 0.777416i \(0.716530\pi\)
\(258\) −5.47760e9 −0.0769665
\(259\) 1.00271e9 0.0138460
\(260\) 0 0
\(261\) 2.72951e10 0.364085
\(262\) 1.00294e11 1.31498
\(263\) −7.02242e10 −0.905077 −0.452539 0.891745i \(-0.649482\pi\)
−0.452539 + 0.891745i \(0.649482\pi\)
\(264\) −2.16157e10 −0.273874
\(265\) −8.25281e9 −0.102801
\(266\) 5.64116e9 0.0690878
\(267\) −1.77978e11 −2.14322
\(268\) 1.35722e10 0.160710
\(269\) −1.23994e11 −1.44382 −0.721912 0.691985i \(-0.756736\pi\)
−0.721912 + 0.691985i \(0.756736\pi\)
\(270\) −1.10299e10 −0.126309
\(271\) 1.89556e10 0.213489 0.106745 0.994286i \(-0.465957\pi\)
0.106745 + 0.994286i \(0.465957\pi\)
\(272\) −1.06160e10 −0.117598
\(273\) 0 0
\(274\) −6.62332e8 −0.00709902
\(275\) 5.49103e10 0.578971
\(276\) −6.83791e10 −0.709304
\(277\) −4.12889e10 −0.421381 −0.210690 0.977553i \(-0.567571\pi\)
−0.210690 + 0.977553i \(0.567571\pi\)
\(278\) 3.73559e10 0.375109
\(279\) −2.29654e10 −0.226910
\(280\) −1.24042e9 −0.0120602
\(281\) 1.95250e10 0.186816 0.0934079 0.995628i \(-0.470224\pi\)
0.0934079 + 0.995628i \(0.470224\pi\)
\(282\) 1.76624e10 0.166314
\(283\) −4.18914e10 −0.388227 −0.194114 0.980979i \(-0.562183\pi\)
−0.194114 + 0.980979i \(0.562183\pi\)
\(284\) 1.88835e10 0.172246
\(285\) −3.31466e10 −0.297603
\(286\) 0 0
\(287\) 3.71910e9 0.0323570
\(288\) 1.03028e10 0.0882449
\(289\) −9.23480e10 −0.778731
\(290\) 1.80951e10 0.150235
\(291\) 2.34402e11 1.91621
\(292\) 5.83016e10 0.469308
\(293\) −1.37947e11 −1.09347 −0.546736 0.837305i \(-0.684130\pi\)
−0.546736 + 0.837305i \(0.684130\pi\)
\(294\) −1.09391e11 −0.853919
\(295\) −3.00833e10 −0.231274
\(296\) −5.52126e9 −0.0418047
\(297\) 5.20205e10 0.387945
\(298\) 4.54600e10 0.333931
\(299\) 0 0
\(300\) −7.86017e10 −0.560256
\(301\) 1.48249e9 0.0104098
\(302\) −1.65722e11 −1.14643
\(303\) −2.34434e11 −1.59782
\(304\) −3.10623e10 −0.208594
\(305\) 4.09089e10 0.270688
\(306\) −2.54657e10 −0.166039
\(307\) 5.96149e10 0.383029 0.191515 0.981490i \(-0.438660\pi\)
0.191515 + 0.981490i \(0.438660\pi\)
\(308\) 5.85020e9 0.0370418
\(309\) 2.00258e11 1.24962
\(310\) −1.52247e10 −0.0936314
\(311\) 1.71576e11 1.04000 0.520001 0.854166i \(-0.325932\pi\)
0.520001 + 0.854166i \(0.325932\pi\)
\(312\) 0 0
\(313\) 3.69157e9 0.0217401 0.0108700 0.999941i \(-0.496540\pi\)
0.0108700 + 0.999941i \(0.496540\pi\)
\(314\) 1.17149e11 0.680075
\(315\) −2.97552e9 −0.0170281
\(316\) −1.44302e11 −0.814108
\(317\) 1.65466e11 0.920324 0.460162 0.887835i \(-0.347791\pi\)
0.460162 + 0.887835i \(0.347791\pi\)
\(318\) −5.57165e10 −0.305535
\(319\) −8.53423e10 −0.461430
\(320\) 6.83017e9 0.0364130
\(321\) −1.44513e11 −0.759687
\(322\) 1.85065e10 0.0959343
\(323\) 7.67774e10 0.392484
\(324\) −1.23974e11 −0.625000
\(325\) 0 0
\(326\) 2.38355e11 1.16881
\(327\) −1.05305e11 −0.509311
\(328\) −2.04787e10 −0.0976943
\(329\) −4.78025e9 −0.0224941
\(330\) −3.43748e10 −0.159561
\(331\) 1.01805e11 0.466168 0.233084 0.972457i \(-0.425118\pi\)
0.233084 + 0.972457i \(0.425118\pi\)
\(332\) 1.37220e11 0.619863
\(333\) −1.32445e10 −0.0590249
\(334\) 5.35684e10 0.235532
\(335\) 2.15835e10 0.0936312
\(336\) −8.37431e9 −0.0358445
\(337\) −1.79113e10 −0.0756470 −0.0378235 0.999284i \(-0.512042\pi\)
−0.0378235 + 0.999284i \(0.512042\pi\)
\(338\) 0 0
\(339\) 1.76137e11 0.724356
\(340\) −1.68823e10 −0.0685137
\(341\) 7.18046e10 0.287579
\(342\) −7.45125e10 −0.294518
\(343\) 5.96239e10 0.232593
\(344\) −8.16313e9 −0.0314300
\(345\) −1.08741e11 −0.413247
\(346\) −2.65687e11 −0.996617
\(347\) −1.16861e11 −0.432699 −0.216349 0.976316i \(-0.569415\pi\)
−0.216349 + 0.976316i \(0.569415\pi\)
\(348\) 1.22164e11 0.446515
\(349\) 4.41747e11 1.59389 0.796947 0.604050i \(-0.206447\pi\)
0.796947 + 0.604050i \(0.206447\pi\)
\(350\) 2.12733e10 0.0757753
\(351\) 0 0
\(352\) −3.22133e10 −0.111839
\(353\) −3.80388e11 −1.30389 −0.651945 0.758266i \(-0.726047\pi\)
−0.651945 + 0.758266i \(0.726047\pi\)
\(354\) −2.03099e11 −0.687374
\(355\) 3.00298e10 0.100352
\(356\) −2.65237e11 −0.875203
\(357\) 2.06990e10 0.0674439
\(358\) 3.60252e11 1.15913
\(359\) −4.62611e11 −1.46991 −0.734956 0.678115i \(-0.762797\pi\)
−0.734956 + 0.678115i \(0.762797\pi\)
\(360\) 1.63843e10 0.0514122
\(361\) −9.80378e10 −0.303816
\(362\) −6.42413e9 −0.0196619
\(363\) −2.42927e11 −0.734337
\(364\) 0 0
\(365\) 9.27155e10 0.273423
\(366\) 2.76185e11 0.804517
\(367\) 1.46833e11 0.422501 0.211250 0.977432i \(-0.432246\pi\)
0.211250 + 0.977432i \(0.432246\pi\)
\(368\) −1.01904e11 −0.289651
\(369\) −4.91244e10 −0.137936
\(370\) −8.78032e9 −0.0243558
\(371\) 1.50794e10 0.0413240
\(372\) −1.02785e11 −0.278284
\(373\) −5.69730e11 −1.52398 −0.761990 0.647589i \(-0.775777\pi\)
−0.761990 + 0.647589i \(0.775777\pi\)
\(374\) 7.96225e10 0.210433
\(375\) −2.61587e11 −0.683087
\(376\) 2.63218e10 0.0679156
\(377\) 0 0
\(378\) 2.01537e10 0.0507740
\(379\) −5.10729e11 −1.27149 −0.635747 0.771898i \(-0.719308\pi\)
−0.635747 + 0.771898i \(0.719308\pi\)
\(380\) −4.93975e10 −0.121529
\(381\) −5.49684e11 −1.33644
\(382\) −1.82364e11 −0.438182
\(383\) 1.30775e11 0.310548 0.155274 0.987871i \(-0.450374\pi\)
0.155274 + 0.987871i \(0.450374\pi\)
\(384\) 4.61120e10 0.108224
\(385\) 9.30342e9 0.0215809
\(386\) 3.47750e11 0.797305
\(387\) −1.95818e10 −0.0443765
\(388\) 3.49323e11 0.782500
\(389\) 1.94359e11 0.430359 0.215179 0.976575i \(-0.430966\pi\)
0.215179 + 0.976575i \(0.430966\pi\)
\(390\) 0 0
\(391\) 2.51878e11 0.544998
\(392\) −1.63022e11 −0.348705
\(393\) 1.07678e12 2.27699
\(394\) 1.53254e11 0.320390
\(395\) −2.29480e11 −0.474306
\(396\) −7.72736e10 −0.157907
\(397\) 3.39169e11 0.685265 0.342633 0.939469i \(-0.388681\pi\)
0.342633 + 0.939469i \(0.388681\pi\)
\(398\) −4.90733e11 −0.980328
\(399\) 6.05651e10 0.119631
\(400\) −1.17138e11 −0.228785
\(401\) 2.96624e11 0.572870 0.286435 0.958100i \(-0.407530\pi\)
0.286435 + 0.958100i \(0.407530\pi\)
\(402\) 1.45715e11 0.278283
\(403\) 0 0
\(404\) −3.49371e11 −0.652485
\(405\) −1.97153e11 −0.364130
\(406\) −3.30632e10 −0.0603917
\(407\) 4.14108e10 0.0748064
\(408\) −1.13976e11 −0.203631
\(409\) −3.83507e11 −0.677670 −0.338835 0.940846i \(-0.610033\pi\)
−0.338835 + 0.940846i \(0.610033\pi\)
\(410\) −3.25667e10 −0.0569175
\(411\) −7.11098e9 −0.0122925
\(412\) 2.98439e11 0.510292
\(413\) 5.49680e10 0.0929682
\(414\) −2.44447e11 −0.408963
\(415\) 2.18217e11 0.361137
\(416\) 0 0
\(417\) 4.01063e11 0.649532
\(418\) 2.32974e11 0.373263
\(419\) 2.78496e11 0.441424 0.220712 0.975339i \(-0.429162\pi\)
0.220712 + 0.975339i \(0.429162\pi\)
\(420\) −1.33174e10 −0.0208833
\(421\) 3.12942e11 0.485506 0.242753 0.970088i \(-0.421949\pi\)
0.242753 + 0.970088i \(0.421949\pi\)
\(422\) −4.31835e11 −0.662845
\(423\) 6.31409e10 0.0958913
\(424\) −8.30328e10 −0.124768
\(425\) 2.89534e11 0.430476
\(426\) 2.02738e11 0.298258
\(427\) −7.47484e10 −0.108812
\(428\) −2.15364e11 −0.310225
\(429\) 0 0
\(430\) −1.29816e10 −0.0183114
\(431\) −1.02866e12 −1.43591 −0.717953 0.696091i \(-0.754921\pi\)
−0.717953 + 0.696091i \(0.754921\pi\)
\(432\) −1.10974e11 −0.153300
\(433\) 7.13458e11 0.975378 0.487689 0.873017i \(-0.337840\pi\)
0.487689 + 0.873017i \(0.337840\pi\)
\(434\) 2.78184e10 0.0376382
\(435\) 1.94274e11 0.260143
\(436\) −1.56933e11 −0.207982
\(437\) 7.36992e11 0.966710
\(438\) 6.25942e11 0.812645
\(439\) −1.03174e12 −1.32581 −0.662903 0.748705i \(-0.730676\pi\)
−0.662903 + 0.748705i \(0.730676\pi\)
\(440\) −5.12279e10 −0.0651583
\(441\) −3.91059e11 −0.492343
\(442\) 0 0
\(443\) −2.25083e11 −0.277668 −0.138834 0.990316i \(-0.544335\pi\)
−0.138834 + 0.990316i \(0.544335\pi\)
\(444\) −5.92778e10 −0.0723884
\(445\) −4.21799e11 −0.509900
\(446\) 2.54014e11 0.303984
\(447\) 4.88072e11 0.578229
\(448\) −1.24800e10 −0.0146374
\(449\) 3.50928e11 0.407483 0.203741 0.979025i \(-0.434690\pi\)
0.203741 + 0.979025i \(0.434690\pi\)
\(450\) −2.80992e11 −0.323026
\(451\) 1.53595e11 0.174817
\(452\) 2.62492e11 0.295797
\(453\) −1.77923e12 −1.98514
\(454\) 1.12075e12 1.23811
\(455\) 0 0
\(456\) −3.33493e11 −0.361198
\(457\) 1.12300e12 1.20436 0.602180 0.798361i \(-0.294299\pi\)
0.602180 + 0.798361i \(0.294299\pi\)
\(458\) −3.41117e11 −0.362250
\(459\) 2.74296e11 0.288445
\(460\) −1.62055e11 −0.168753
\(461\) 7.79501e11 0.803826 0.401913 0.915678i \(-0.368345\pi\)
0.401913 + 0.915678i \(0.368345\pi\)
\(462\) 6.28094e10 0.0641410
\(463\) 1.57235e12 1.59014 0.795068 0.606521i \(-0.207435\pi\)
0.795068 + 0.606521i \(0.207435\pi\)
\(464\) 1.82058e11 0.182338
\(465\) −1.63457e11 −0.162130
\(466\) −6.81068e11 −0.669043
\(467\) 4.59549e11 0.447101 0.223550 0.974692i \(-0.428235\pi\)
0.223550 + 0.974692i \(0.428235\pi\)
\(468\) 0 0
\(469\) −3.94372e10 −0.0376381
\(470\) 4.18588e10 0.0395682
\(471\) 1.25775e12 1.17761
\(472\) −3.02673e11 −0.280695
\(473\) 6.12255e10 0.0562415
\(474\) −1.54927e12 −1.40969
\(475\) 8.47172e11 0.763573
\(476\) 3.08472e10 0.0275413
\(477\) −1.99180e11 −0.176162
\(478\) 2.52354e11 0.221098
\(479\) −1.26363e12 −1.09676 −0.548378 0.836231i \(-0.684755\pi\)
−0.548378 + 0.836231i \(0.684755\pi\)
\(480\) 7.33306e10 0.0630521
\(481\) 0 0
\(482\) −1.42059e12 −1.19883
\(483\) 1.98691e11 0.166118
\(484\) −3.62027e11 −0.299873
\(485\) 5.55519e11 0.455891
\(486\) −7.97750e11 −0.648640
\(487\) 5.57232e11 0.448906 0.224453 0.974485i \(-0.427940\pi\)
0.224453 + 0.974485i \(0.427940\pi\)
\(488\) 4.11591e11 0.328532
\(489\) 2.55904e12 2.02389
\(490\) −2.59249e11 −0.203159
\(491\) −1.63350e12 −1.26839 −0.634193 0.773175i \(-0.718668\pi\)
−0.634193 + 0.773175i \(0.718668\pi\)
\(492\) −2.19865e11 −0.169166
\(493\) −4.49997e11 −0.343082
\(494\) 0 0
\(495\) −1.22886e11 −0.0919982
\(496\) −1.53178e11 −0.113640
\(497\) −5.48702e10 −0.0403397
\(498\) 1.47323e12 1.07334
\(499\) 2.09366e11 0.151166 0.0755830 0.997140i \(-0.475918\pi\)
0.0755830 + 0.997140i \(0.475918\pi\)
\(500\) −3.89837e11 −0.278944
\(501\) 5.75125e11 0.407843
\(502\) −2.41207e11 −0.169521
\(503\) 2.51323e12 1.75055 0.875277 0.483621i \(-0.160679\pi\)
0.875277 + 0.483621i \(0.160679\pi\)
\(504\) −2.99372e10 −0.0206668
\(505\) −5.55595e11 −0.380143
\(506\) 7.64302e11 0.518308
\(507\) 0 0
\(508\) −8.19180e11 −0.545749
\(509\) 1.58384e12 1.04588 0.522940 0.852370i \(-0.324835\pi\)
0.522940 + 0.852370i \(0.324835\pi\)
\(510\) −1.81253e11 −0.118637
\(511\) −1.69409e11 −0.109911
\(512\) 6.87195e10 0.0441942
\(513\) 8.02588e11 0.511640
\(514\) −1.40764e12 −0.889522
\(515\) 4.74600e11 0.297300
\(516\) −8.76417e10 −0.0544236
\(517\) −1.97420e11 −0.121530
\(518\) 1.60433e10 0.00979062
\(519\) −2.85249e12 −1.72572
\(520\) 0 0
\(521\) 4.07598e11 0.242361 0.121181 0.992630i \(-0.461332\pi\)
0.121181 + 0.992630i \(0.461332\pi\)
\(522\) 4.36722e11 0.257447
\(523\) 1.83075e12 1.06997 0.534985 0.844862i \(-0.320317\pi\)
0.534985 + 0.844862i \(0.320317\pi\)
\(524\) 1.60470e12 0.929830
\(525\) 2.28396e11 0.131211
\(526\) −1.12359e12 −0.639986
\(527\) 3.78615e11 0.213821
\(528\) −3.45851e11 −0.193658
\(529\) 6.16643e11 0.342360
\(530\) −1.32045e11 −0.0726909
\(531\) −7.26056e11 −0.396319
\(532\) 9.02586e10 0.0488524
\(533\) 0 0
\(534\) −2.84766e12 −1.51549
\(535\) −3.42488e11 −0.180740
\(536\) 2.17155e11 0.113639
\(537\) 3.86777e12 2.00713
\(538\) −1.98390e12 −1.02094
\(539\) 1.22270e12 0.623981
\(540\) −1.76478e11 −0.0893139
\(541\) 3.70914e12 1.86160 0.930798 0.365534i \(-0.119114\pi\)
0.930798 + 0.365534i \(0.119114\pi\)
\(542\) 3.03290e11 0.150960
\(543\) −6.89713e10 −0.0340462
\(544\) −1.69856e11 −0.0831544
\(545\) −2.49566e11 −0.121172
\(546\) 0 0
\(547\) 6.53711e11 0.312207 0.156104 0.987741i \(-0.450107\pi\)
0.156104 + 0.987741i \(0.450107\pi\)
\(548\) −1.05973e10 −0.00501976
\(549\) 9.87330e11 0.463860
\(550\) 8.78564e11 0.409394
\(551\) −1.31669e12 −0.608555
\(552\) −1.09407e12 −0.501554
\(553\) 4.19304e11 0.190663
\(554\) −6.60623e11 −0.297961
\(555\) −9.42679e10 −0.0421741
\(556\) 5.97694e11 0.265242
\(557\) 3.67485e12 1.61768 0.808838 0.588031i \(-0.200097\pi\)
0.808838 + 0.588031i \(0.200097\pi\)
\(558\) −3.67446e11 −0.160450
\(559\) 0 0
\(560\) −1.98467e10 −0.00852788
\(561\) 8.54849e11 0.364382
\(562\) 3.12401e11 0.132099
\(563\) 1.05942e12 0.444406 0.222203 0.975000i \(-0.428675\pi\)
0.222203 + 0.975000i \(0.428675\pi\)
\(564\) 2.82598e11 0.117602
\(565\) 4.17435e11 0.172334
\(566\) −6.70263e11 −0.274518
\(567\) 3.60237e11 0.146374
\(568\) 3.02135e11 0.121796
\(569\) 8.80266e11 0.352053 0.176027 0.984385i \(-0.443675\pi\)
0.176027 + 0.984385i \(0.443675\pi\)
\(570\) −5.30345e11 −0.210437
\(571\) 1.68787e12 0.664473 0.332237 0.943196i \(-0.392197\pi\)
0.332237 + 0.943196i \(0.392197\pi\)
\(572\) 0 0
\(573\) −1.95792e12 −0.758749
\(574\) 5.95055e10 0.0228799
\(575\) 2.77925e12 1.06029
\(576\) 1.64845e11 0.0623986
\(577\) −3.43447e12 −1.28994 −0.644968 0.764210i \(-0.723129\pi\)
−0.644968 + 0.764210i \(0.723129\pi\)
\(578\) −1.47757e12 −0.550646
\(579\) 3.73354e12 1.38060
\(580\) 2.89521e11 0.106232
\(581\) −3.98724e11 −0.145171
\(582\) 3.75043e12 1.35496
\(583\) 6.22766e11 0.223263
\(584\) 9.32826e11 0.331851
\(585\) 0 0
\(586\) −2.20715e12 −0.773201
\(587\) −2.96761e12 −1.03166 −0.515828 0.856692i \(-0.672516\pi\)
−0.515828 + 0.856692i \(0.672516\pi\)
\(588\) −1.75025e12 −0.603812
\(589\) 1.10782e12 0.379273
\(590\) −4.81333e11 −0.163535
\(591\) 1.64538e12 0.554781
\(592\) −8.83402e10 −0.0295604
\(593\) 5.26715e12 1.74916 0.874580 0.484881i \(-0.161137\pi\)
0.874580 + 0.484881i \(0.161137\pi\)
\(594\) 8.32328e11 0.274319
\(595\) 4.90555e10 0.0160458
\(596\) 7.27361e11 0.236125
\(597\) −5.26864e12 −1.69752
\(598\) 0 0
\(599\) 5.86654e12 1.86192 0.930960 0.365120i \(-0.118972\pi\)
0.930960 + 0.365120i \(0.118972\pi\)
\(600\) −1.25763e12 −0.396161
\(601\) −1.71503e11 −0.0536212 −0.0268106 0.999641i \(-0.508535\pi\)
−0.0268106 + 0.999641i \(0.508535\pi\)
\(602\) 2.37199e10 0.00736086
\(603\) 5.20914e11 0.160449
\(604\) −2.65155e12 −0.810649
\(605\) −5.75722e11 −0.174708
\(606\) −3.75094e12 −1.12983
\(607\) −1.41459e12 −0.422942 −0.211471 0.977384i \(-0.567825\pi\)
−0.211471 + 0.977384i \(0.567825\pi\)
\(608\) −4.96996e11 −0.147498
\(609\) −3.54976e11 −0.104573
\(610\) 6.54543e11 0.191405
\(611\) 0 0
\(612\) −4.07452e11 −0.117407
\(613\) 5.12682e10 0.0146648 0.00733239 0.999973i \(-0.497666\pi\)
0.00733239 + 0.999973i \(0.497666\pi\)
\(614\) 9.53838e11 0.270843
\(615\) −3.49645e11 −0.0985574
\(616\) 9.36032e10 0.0261925
\(617\) −1.01857e12 −0.282947 −0.141474 0.989942i \(-0.545184\pi\)
−0.141474 + 0.989942i \(0.545184\pi\)
\(618\) 3.20413e12 0.883612
\(619\) 1.19561e12 0.327326 0.163663 0.986516i \(-0.447669\pi\)
0.163663 + 0.986516i \(0.447669\pi\)
\(620\) −2.43595e11 −0.0662074
\(621\) 2.63299e12 0.710456
\(622\) 2.74521e12 0.735392
\(623\) 7.70707e11 0.204971
\(624\) 0 0
\(625\) 2.87104e12 0.752626
\(626\) 5.90651e10 0.0153726
\(627\) 2.50128e12 0.646336
\(628\) 1.87439e12 0.480886
\(629\) 2.18353e11 0.0556200
\(630\) −4.76084e10 −0.0120407
\(631\) 5.01180e12 1.25853 0.629263 0.777193i \(-0.283357\pi\)
0.629263 + 0.777193i \(0.283357\pi\)
\(632\) −2.30884e12 −0.575661
\(633\) −4.63631e12 −1.14777
\(634\) 2.64745e12 0.650768
\(635\) −1.30272e12 −0.317958
\(636\) −8.91464e11 −0.216046
\(637\) 0 0
\(638\) −1.36548e12 −0.326281
\(639\) 7.24765e11 0.171966
\(640\) 1.09283e11 0.0257479
\(641\) −8.80050e11 −0.205895 −0.102948 0.994687i \(-0.532827\pi\)
−0.102948 + 0.994687i \(0.532827\pi\)
\(642\) −2.31221e12 −0.537180
\(643\) −3.00684e12 −0.693684 −0.346842 0.937924i \(-0.612746\pi\)
−0.346842 + 0.937924i \(0.612746\pi\)
\(644\) 2.96105e11 0.0678358
\(645\) −1.39374e11 −0.0317076
\(646\) 1.22844e12 0.277528
\(647\) 2.12776e12 0.477369 0.238684 0.971097i \(-0.423284\pi\)
0.238684 + 0.971097i \(0.423284\pi\)
\(648\) −1.98359e12 −0.441942
\(649\) 2.27012e12 0.502283
\(650\) 0 0
\(651\) 2.98667e11 0.0651737
\(652\) 3.81368e12 0.826475
\(653\) 3.63853e12 0.783099 0.391550 0.920157i \(-0.371939\pi\)
0.391550 + 0.920157i \(0.371939\pi\)
\(654\) −1.68488e12 −0.360137
\(655\) 2.55191e12 0.541727
\(656\) −3.27659e11 −0.0690803
\(657\) 2.23767e12 0.468546
\(658\) −7.64840e10 −0.0159057
\(659\) 1.53357e12 0.316752 0.158376 0.987379i \(-0.449374\pi\)
0.158376 + 0.987379i \(0.449374\pi\)
\(660\) −5.49997e11 −0.112827
\(661\) 3.04283e12 0.619970 0.309985 0.950741i \(-0.399676\pi\)
0.309985 + 0.950741i \(0.399676\pi\)
\(662\) 1.62888e12 0.329631
\(663\) 0 0
\(664\) 2.19552e12 0.438309
\(665\) 1.43536e11 0.0284618
\(666\) −2.11911e11 −0.0417369
\(667\) −4.31955e12 −0.845031
\(668\) 8.57094e11 0.166546
\(669\) 2.72717e12 0.526373
\(670\) 3.45336e11 0.0662072
\(671\) −3.08703e12 −0.587882
\(672\) −1.33989e11 −0.0253459
\(673\) 3.20634e12 0.602479 0.301240 0.953548i \(-0.402600\pi\)
0.301240 + 0.953548i \(0.402600\pi\)
\(674\) −2.86580e11 −0.0534905
\(675\) 3.02662e12 0.561165
\(676\) 0 0
\(677\) 1.74076e12 0.318486 0.159243 0.987239i \(-0.449095\pi\)
0.159243 + 0.987239i \(0.449095\pi\)
\(678\) 2.81819e12 0.512197
\(679\) −1.01504e12 −0.183260
\(680\) −2.70117e11 −0.0484465
\(681\) 1.20327e13 2.14388
\(682\) 1.14887e12 0.203349
\(683\) −4.26370e12 −0.749711 −0.374855 0.927083i \(-0.622308\pi\)
−0.374855 + 0.927083i \(0.622308\pi\)
\(684\) −1.19220e12 −0.208255
\(685\) −1.68526e10 −0.00292456
\(686\) 9.53982e11 0.164468
\(687\) −3.66232e12 −0.627265
\(688\) −1.30610e11 −0.0222243
\(689\) 0 0
\(690\) −1.73986e12 −0.292210
\(691\) −1.11120e13 −1.85413 −0.927064 0.374904i \(-0.877676\pi\)
−0.927064 + 0.374904i \(0.877676\pi\)
\(692\) −4.25100e12 −0.704715
\(693\) 2.24536e11 0.0369817
\(694\) −1.86977e12 −0.305964
\(695\) 9.50497e11 0.154532
\(696\) 1.95462e12 0.315734
\(697\) 8.09883e11 0.129979
\(698\) 7.06795e12 1.12705
\(699\) −7.31214e12 −1.15850
\(700\) 3.40372e11 0.0535812
\(701\) −6.22216e12 −0.973218 −0.486609 0.873620i \(-0.661766\pi\)
−0.486609 + 0.873620i \(0.661766\pi\)
\(702\) 0 0
\(703\) 6.38898e11 0.0986580
\(704\) −5.15413e11 −0.0790821
\(705\) 4.49408e11 0.0685156
\(706\) −6.08621e12 −0.921989
\(707\) 1.01518e12 0.152811
\(708\) −3.24959e12 −0.486047
\(709\) −1.16269e13 −1.72805 −0.864023 0.503452i \(-0.832063\pi\)
−0.864023 + 0.503452i \(0.832063\pi\)
\(710\) 4.80478e11 0.0709595
\(711\) −5.53847e12 −0.812786
\(712\) −4.24379e12 −0.618862
\(713\) 3.63435e12 0.526652
\(714\) 3.31184e11 0.0476901
\(715\) 0 0
\(716\) 5.76404e12 0.819631
\(717\) 2.70935e12 0.382850
\(718\) −7.40178e12 −1.03938
\(719\) −4.28622e12 −0.598128 −0.299064 0.954233i \(-0.596674\pi\)
−0.299064 + 0.954233i \(0.596674\pi\)
\(720\) 2.62149e11 0.0363539
\(721\) −8.67185e11 −0.119510
\(722\) −1.56861e12 −0.214831
\(723\) −1.52518e13 −2.07586
\(724\) −1.02786e11 −0.0139031
\(725\) −4.96532e12 −0.667462
\(726\) −3.88682e12 −0.519254
\(727\) 1.07312e13 1.42476 0.712381 0.701792i \(-0.247617\pi\)
0.712381 + 0.701792i \(0.247617\pi\)
\(728\) 0 0
\(729\) 9.67121e11 0.126826
\(730\) 1.48345e12 0.193339
\(731\) 3.22833e11 0.0418167
\(732\) 4.41896e12 0.568879
\(733\) −6.78526e12 −0.868158 −0.434079 0.900875i \(-0.642926\pi\)
−0.434079 + 0.900875i \(0.642926\pi\)
\(734\) 2.34934e12 0.298753
\(735\) −2.78337e12 −0.351786
\(736\) −1.63046e12 −0.204814
\(737\) −1.62872e12 −0.203349
\(738\) −7.85991e11 −0.0975358
\(739\) −4.24403e12 −0.523453 −0.261727 0.965142i \(-0.584292\pi\)
−0.261727 + 0.965142i \(0.584292\pi\)
\(740\) −1.40485e11 −0.0172221
\(741\) 0 0
\(742\) 2.41271e11 0.0292205
\(743\) −8.58861e12 −1.03389 −0.516944 0.856019i \(-0.672930\pi\)
−0.516944 + 0.856019i \(0.672930\pi\)
\(744\) −1.64456e12 −0.196776
\(745\) 1.15670e12 0.137568
\(746\) −9.11567e12 −1.07762
\(747\) 5.26663e12 0.618857
\(748\) 1.27396e12 0.148798
\(749\) 6.25791e11 0.0726542
\(750\) −4.18540e12 −0.483015
\(751\) −1.70411e13 −1.95487 −0.977433 0.211244i \(-0.932248\pi\)
−0.977433 + 0.211244i \(0.932248\pi\)
\(752\) 4.21148e11 0.0480236
\(753\) −2.58967e12 −0.293539
\(754\) 0 0
\(755\) −4.21668e12 −0.472291
\(756\) 3.22459e11 0.0359027
\(757\) −6.27839e12 −0.694891 −0.347446 0.937700i \(-0.612951\pi\)
−0.347446 + 0.937700i \(0.612951\pi\)
\(758\) −8.17166e12 −0.899082
\(759\) 8.20576e12 0.897492
\(760\) −7.90360e11 −0.0859337
\(761\) −1.79803e13 −1.94342 −0.971710 0.236177i \(-0.924106\pi\)
−0.971710 + 0.236177i \(0.924106\pi\)
\(762\) −8.79495e12 −0.945009
\(763\) 4.56005e11 0.0487090
\(764\) −2.91783e12 −0.309842
\(765\) −6.47960e11 −0.0684025
\(766\) 2.09239e12 0.219591
\(767\) 0 0
\(768\) 7.37791e11 0.0765258
\(769\) 9.02747e12 0.930888 0.465444 0.885077i \(-0.345895\pi\)
0.465444 + 0.885077i \(0.345895\pi\)
\(770\) 1.48855e11 0.0152600
\(771\) −1.51128e13 −1.54028
\(772\) 5.56400e12 0.563780
\(773\) 3.88617e12 0.391484 0.195742 0.980655i \(-0.437288\pi\)
0.195742 + 0.980655i \(0.437288\pi\)
\(774\) −3.13309e11 −0.0313790
\(775\) 4.17769e12 0.415985
\(776\) 5.58917e12 0.553311
\(777\) 1.72245e11 0.0169533
\(778\) 3.10974e12 0.304310
\(779\) 2.36971e12 0.230556
\(780\) 0 0
\(781\) −2.26609e12 −0.217945
\(782\) 4.03005e12 0.385372
\(783\) −4.70401e12 −0.447240
\(784\) −2.60835e12 −0.246572
\(785\) 2.98080e12 0.280168
\(786\) 1.72285e13 1.61008
\(787\) −1.00929e13 −0.937842 −0.468921 0.883240i \(-0.655357\pi\)
−0.468921 + 0.883240i \(0.655357\pi\)
\(788\) 2.45206e12 0.226550
\(789\) −1.20631e13 −1.10819
\(790\) −3.67169e12 −0.335385
\(791\) −7.62733e11 −0.0692753
\(792\) −1.23638e12 −0.111657
\(793\) 0 0
\(794\) 5.42670e12 0.484556
\(795\) −1.41767e12 −0.125870
\(796\) −7.85172e12 −0.693196
\(797\) 1.97702e12 0.173559 0.0867796 0.996228i \(-0.472342\pi\)
0.0867796 + 0.996228i \(0.472342\pi\)
\(798\) 9.69041e11 0.0845920
\(799\) −1.04096e12 −0.0903598
\(800\) −1.87421e12 −0.161776
\(801\) −1.01800e13 −0.873782
\(802\) 4.74598e12 0.405080
\(803\) −6.99642e12 −0.593821
\(804\) 2.33144e12 0.196776
\(805\) 4.70887e11 0.0395217
\(806\) 0 0
\(807\) −2.12997e13 −1.76784
\(808\) −5.58994e12 −0.461377
\(809\) −1.78254e13 −1.46309 −0.731546 0.681793i \(-0.761201\pi\)
−0.731546 + 0.681793i \(0.761201\pi\)
\(810\) −3.15445e12 −0.257479
\(811\) 8.70377e12 0.706503 0.353251 0.935528i \(-0.385076\pi\)
0.353251 + 0.935528i \(0.385076\pi\)
\(812\) −5.29011e11 −0.0427034
\(813\) 3.25620e12 0.261399
\(814\) 6.62573e11 0.0528961
\(815\) 6.06479e12 0.481511
\(816\) −1.82362e12 −0.143989
\(817\) 9.44605e11 0.0741738
\(818\) −6.13611e12 −0.479185
\(819\) 0 0
\(820\) −5.21067e11 −0.0402468
\(821\) −2.22094e12 −0.170605 −0.0853027 0.996355i \(-0.527186\pi\)
−0.0853027 + 0.996355i \(0.527186\pi\)
\(822\) −1.13776e11 −0.00869213
\(823\) −2.41858e13 −1.83765 −0.918823 0.394671i \(-0.870859\pi\)
−0.918823 + 0.394671i \(0.870859\pi\)
\(824\) 4.77503e12 0.360831
\(825\) 9.43251e12 0.708899
\(826\) 8.79488e11 0.0657385
\(827\) −9.09741e12 −0.676306 −0.338153 0.941091i \(-0.609802\pi\)
−0.338153 + 0.941091i \(0.609802\pi\)
\(828\) −3.91116e12 −0.289181
\(829\) 1.87063e13 1.37560 0.687799 0.725901i \(-0.258577\pi\)
0.687799 + 0.725901i \(0.258577\pi\)
\(830\) 3.49147e12 0.255363
\(831\) −7.09263e12 −0.515944
\(832\) 0 0
\(833\) 6.44713e12 0.463942
\(834\) 6.41701e12 0.459289
\(835\) 1.36301e12 0.0970312
\(836\) 3.72759e12 0.263937
\(837\) 3.95783e12 0.278735
\(838\) 4.45594e12 0.312134
\(839\) −1.92142e12 −0.133873 −0.0669366 0.997757i \(-0.521323\pi\)
−0.0669366 + 0.997757i \(0.521323\pi\)
\(840\) −2.13079e11 −0.0147667
\(841\) −6.78997e12 −0.468043
\(842\) 5.00708e12 0.343305
\(843\) 3.35402e12 0.228740
\(844\) −6.90937e12 −0.468703
\(845\) 0 0
\(846\) 1.01025e12 0.0678054
\(847\) 1.05195e12 0.0702298
\(848\) −1.32853e12 −0.0882244
\(849\) −7.19613e12 −0.475351
\(850\) 4.63254e12 0.304392
\(851\) 2.09598e12 0.136995
\(852\) 3.24381e12 0.210900
\(853\) 6.12511e12 0.396135 0.198067 0.980188i \(-0.436534\pi\)
0.198067 + 0.980188i \(0.436534\pi\)
\(854\) −1.19597e12 −0.0769417
\(855\) −1.89592e12 −0.121331
\(856\) −3.44583e12 −0.219362
\(857\) 6.56017e12 0.415434 0.207717 0.978189i \(-0.433397\pi\)
0.207717 + 0.978189i \(0.433397\pi\)
\(858\) 0 0
\(859\) 1.35590e13 0.849688 0.424844 0.905267i \(-0.360329\pi\)
0.424844 + 0.905267i \(0.360329\pi\)
\(860\) −2.07706e11 −0.0129481
\(861\) 6.38868e11 0.0396184
\(862\) −1.64586e13 −1.01534
\(863\) −1.64847e13 −1.01165 −0.505827 0.862635i \(-0.668812\pi\)
−0.505827 + 0.862635i \(0.668812\pi\)
\(864\) −1.77558e12 −0.108400
\(865\) −6.76025e12 −0.410573
\(866\) 1.14153e13 0.689696
\(867\) −1.58636e13 −0.953489
\(868\) 4.45095e11 0.0266142
\(869\) 1.73169e13 1.03010
\(870\) 3.10838e12 0.183949
\(871\) 0 0
\(872\) −2.51093e12 −0.147065
\(873\) 1.34074e13 0.781230
\(874\) 1.17919e13 0.683567
\(875\) 1.13276e12 0.0653284
\(876\) 1.00151e13 0.574627
\(877\) −6.70037e12 −0.382473 −0.191236 0.981544i \(-0.561250\pi\)
−0.191236 + 0.981544i \(0.561250\pi\)
\(878\) −1.65078e13 −0.937487
\(879\) −2.36966e13 −1.33886
\(880\) −8.19647e11 −0.0460739
\(881\) 1.85549e13 1.03769 0.518846 0.854868i \(-0.326362\pi\)
0.518846 + 0.854868i \(0.326362\pi\)
\(882\) −6.25694e12 −0.348139
\(883\) 1.04252e13 0.577111 0.288555 0.957463i \(-0.406825\pi\)
0.288555 + 0.957463i \(0.406825\pi\)
\(884\) 0 0
\(885\) −5.16773e12 −0.283175
\(886\) −3.60133e12 −0.196341
\(887\) −2.46187e13 −1.33539 −0.667696 0.744434i \(-0.732719\pi\)
−0.667696 + 0.744434i \(0.732719\pi\)
\(888\) −9.48445e11 −0.0511863
\(889\) 2.38032e12 0.127814
\(890\) −6.74878e12 −0.360554
\(891\) 1.48774e13 0.790820
\(892\) 4.06422e12 0.214949
\(893\) −3.04585e12 −0.160279
\(894\) 7.80915e12 0.408870
\(895\) 9.16639e12 0.477524
\(896\) −1.99680e11 −0.0103502
\(897\) 0 0
\(898\) 5.61485e12 0.288134
\(899\) −6.49301e12 −0.331534
\(900\) −4.49588e12 −0.228414
\(901\) 3.28375e12 0.166000
\(902\) 2.45752e12 0.123614
\(903\) 2.54663e11 0.0127459
\(904\) 4.19988e12 0.209160
\(905\) −1.63458e11 −0.00810005
\(906\) −2.84677e13 −1.40371
\(907\) 1.94672e13 0.955147 0.477573 0.878592i \(-0.341516\pi\)
0.477573 + 0.878592i \(0.341516\pi\)
\(908\) 1.79320e13 0.875474
\(909\) −1.34092e13 −0.651426
\(910\) 0 0
\(911\) 3.61012e13 1.73656 0.868279 0.496076i \(-0.165226\pi\)
0.868279 + 0.496076i \(0.165226\pi\)
\(912\) −5.33589e12 −0.255405
\(913\) −1.64669e13 −0.784321
\(914\) 1.79680e13 0.851611
\(915\) 7.02736e12 0.331434
\(916\) −5.45786e12 −0.256149
\(917\) −4.66283e12 −0.217765
\(918\) 4.38874e12 0.203961
\(919\) 1.77605e13 0.821361 0.410681 0.911779i \(-0.365291\pi\)
0.410681 + 0.911779i \(0.365291\pi\)
\(920\) −2.59287e12 −0.119326
\(921\) 1.02407e13 0.468986
\(922\) 1.24720e13 0.568391
\(923\) 0 0
\(924\) 1.00495e12 0.0453545
\(925\) 2.40933e12 0.108208
\(926\) 2.51576e13 1.12440
\(927\) 1.14544e13 0.509463
\(928\) 2.91292e12 0.128933
\(929\) −3.62715e13 −1.59770 −0.798849 0.601532i \(-0.794557\pi\)
−0.798849 + 0.601532i \(0.794557\pi\)
\(930\) −2.61531e12 −0.114644
\(931\) 1.88642e13 0.822935
\(932\) −1.08971e13 −0.473085
\(933\) 2.94734e13 1.27339
\(934\) 7.35278e12 0.316148
\(935\) 2.02594e12 0.0866912
\(936\) 0 0
\(937\) −3.55731e12 −0.150763 −0.0753813 0.997155i \(-0.524017\pi\)
−0.0753813 + 0.997155i \(0.524017\pi\)
\(938\) −6.30995e11 −0.0266142
\(939\) 6.34139e11 0.0266189
\(940\) 6.69741e11 0.0279790
\(941\) −2.27004e13 −0.943801 −0.471901 0.881652i \(-0.656432\pi\)
−0.471901 + 0.881652i \(0.656432\pi\)
\(942\) 2.01240e13 0.832693
\(943\) 7.77413e12 0.320147
\(944\) −4.84277e12 −0.198482
\(945\) 5.12798e11 0.0209172
\(946\) 9.79607e11 0.0397688
\(947\) 1.23091e13 0.497339 0.248670 0.968588i \(-0.420007\pi\)
0.248670 + 0.968588i \(0.420007\pi\)
\(948\) −2.47883e13 −0.996805
\(949\) 0 0
\(950\) 1.35548e13 0.539927
\(951\) 2.84238e13 1.12686
\(952\) 4.93556e11 0.0194747
\(953\) 9.51428e12 0.373644 0.186822 0.982394i \(-0.440181\pi\)
0.186822 + 0.982394i \(0.440181\pi\)
\(954\) −3.18688e12 −0.124566
\(955\) −4.64015e12 −0.180516
\(956\) 4.03767e12 0.156340
\(957\) −1.46601e13 −0.564982
\(958\) −2.02181e13 −0.775524
\(959\) 3.07930e10 0.00117562
\(960\) 1.17329e12 0.0445846
\(961\) −2.09766e13 −0.793377
\(962\) 0 0
\(963\) −8.26588e12 −0.309721
\(964\) −2.27294e13 −0.847698
\(965\) 8.84829e12 0.328463
\(966\) 3.17906e12 0.117463
\(967\) −2.33888e13 −0.860179 −0.430089 0.902786i \(-0.641518\pi\)
−0.430089 + 0.902786i \(0.641518\pi\)
\(968\) −5.79244e12 −0.212042
\(969\) 1.31889e13 0.480563
\(970\) 8.88831e12 0.322364
\(971\) 2.42023e12 0.0873716 0.0436858 0.999045i \(-0.486090\pi\)
0.0436858 + 0.999045i \(0.486090\pi\)
\(972\) −1.27640e13 −0.458658
\(973\) −1.73674e12 −0.0621193
\(974\) 8.91571e12 0.317424
\(975\) 0 0
\(976\) 6.58546e12 0.232307
\(977\) 3.69666e13 1.29803 0.649014 0.760776i \(-0.275182\pi\)
0.649014 + 0.760776i \(0.275182\pi\)
\(978\) 4.09447e13 1.43111
\(979\) 3.18294e13 1.10741
\(980\) −4.14799e12 −0.143655
\(981\) −6.02324e12 −0.207644
\(982\) −2.61359e13 −0.896885
\(983\) −3.70914e13 −1.26702 −0.633508 0.773736i \(-0.718386\pi\)
−0.633508 + 0.773736i \(0.718386\pi\)
\(984\) −3.51784e12 −0.119618
\(985\) 3.89945e12 0.131990
\(986\) −7.19995e12 −0.242596
\(987\) −8.21154e11 −0.0275421
\(988\) 0 0
\(989\) 3.09889e12 0.102997
\(990\) −1.96618e12 −0.0650526
\(991\) 1.09766e13 0.361524 0.180762 0.983527i \(-0.442144\pi\)
0.180762 + 0.983527i \(0.442144\pi\)
\(992\) −2.45085e12 −0.0803553
\(993\) 1.74881e13 0.570782
\(994\) −8.77924e11 −0.0285245
\(995\) −1.24864e13 −0.403862
\(996\) 2.35717e13 0.758969
\(997\) 5.35667e13 1.71698 0.858492 0.512827i \(-0.171402\pi\)
0.858492 + 0.512827i \(0.171402\pi\)
\(998\) 3.34986e12 0.106891
\(999\) 2.28254e12 0.0725058
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.p.1.11 yes 12
13.12 even 2 338.10.a.o.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.10.a.o.1.11 12 13.12 even 2
338.10.a.p.1.11 yes 12 1.1 even 1 trivial