Properties

Label 338.10.a.o.1.12
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-192,-399,3072,562] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 136646 x^{10} - 2261265 x^{9} + 6422687308 x^{8} + 214352365700 x^{7} + \cdots - 14\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{3}\cdot 7\cdot 13^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(225.484\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +214.068 q^{3} +256.000 q^{4} -543.184 q^{5} -3425.09 q^{6} +7002.26 q^{7} -4096.00 q^{8} +26142.1 q^{9} +8690.94 q^{10} +22073.5 q^{11} +54801.4 q^{12} -112036. q^{14} -116278. q^{15} +65536.0 q^{16} -160293. q^{17} -418273. q^{18} +319608. q^{19} -139055. q^{20} +1.49896e6 q^{21} -353176. q^{22} -1.94692e6 q^{23} -876822. q^{24} -1.65808e6 q^{25} +1.38268e6 q^{27} +1.79258e6 q^{28} -6.36416e6 q^{29} +1.86045e6 q^{30} -7.65952e6 q^{31} -1.04858e6 q^{32} +4.72523e6 q^{33} +2.56468e6 q^{34} -3.80352e6 q^{35} +6.69237e6 q^{36} +1.86035e6 q^{37} -5.11373e6 q^{38} +2.22488e6 q^{40} -1.49835e7 q^{41} -2.39834e7 q^{42} -1.31570e7 q^{43} +5.65082e6 q^{44} -1.42000e7 q^{45} +3.11507e7 q^{46} +5.07440e7 q^{47} +1.40292e7 q^{48} +8.67806e6 q^{49} +2.65292e7 q^{50} -3.43136e7 q^{51} +6.39570e7 q^{53} -2.21229e7 q^{54} -1.19900e7 q^{55} -2.86813e7 q^{56} +6.84179e7 q^{57} +1.01827e8 q^{58} -4.95386e7 q^{59} -2.97672e7 q^{60} -9.47554e7 q^{61} +1.22552e8 q^{62} +1.83054e8 q^{63} +1.67772e7 q^{64} -7.56037e7 q^{66} -3.03905e8 q^{67} -4.10350e7 q^{68} -4.16773e8 q^{69} +6.08563e7 q^{70} -3.10294e7 q^{71} -1.07078e8 q^{72} -9.77274e7 q^{73} -2.97656e7 q^{74} -3.54941e8 q^{75} +8.18197e7 q^{76} +1.54565e8 q^{77} -6.40154e8 q^{79} -3.55981e7 q^{80} -2.18566e8 q^{81} +2.39736e8 q^{82} +6.01226e8 q^{83} +3.83734e8 q^{84} +8.70685e7 q^{85} +2.10512e8 q^{86} -1.36236e9 q^{87} -9.04131e7 q^{88} -3.98742e8 q^{89} +2.27199e8 q^{90} -4.98411e8 q^{92} -1.63966e9 q^{93} -8.11903e8 q^{94} -1.73606e8 q^{95} -2.24467e8 q^{96} +1.54108e9 q^{97} -1.38849e8 q^{98} +5.77048e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 192 q^{2} - 399 q^{3} + 3072 q^{4} + 562 q^{5} + 6384 q^{6} - 3161 q^{7} - 49152 q^{8} + 54783 q^{9} - 8992 q^{10} + 164271 q^{11} - 102144 q^{12} + 50576 q^{14} - 434244 q^{15} + 786432 q^{16} - 649529 q^{17}+ \cdots + 4431369848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 214.068 1.52583 0.762915 0.646499i \(-0.223768\pi\)
0.762915 + 0.646499i \(0.223768\pi\)
\(4\) 256.000 0.500000
\(5\) −543.184 −0.388671 −0.194335 0.980935i \(-0.562255\pi\)
−0.194335 + 0.980935i \(0.562255\pi\)
\(6\) −3425.09 −1.07892
\(7\) 7002.26 1.10229 0.551147 0.834408i \(-0.314190\pi\)
0.551147 + 0.834408i \(0.314190\pi\)
\(8\) −4096.00 −0.353553
\(9\) 26142.1 1.32816
\(10\) 8690.94 0.274832
\(11\) 22073.5 0.454574 0.227287 0.973828i \(-0.427014\pi\)
0.227287 + 0.973828i \(0.427014\pi\)
\(12\) 54801.4 0.762915
\(13\) 0 0
\(14\) −112036. −0.779439
\(15\) −116278. −0.593045
\(16\) 65536.0 0.250000
\(17\) −160293. −0.465472 −0.232736 0.972540i \(-0.574768\pi\)
−0.232736 + 0.972540i \(0.574768\pi\)
\(18\) −418273. −0.939148
\(19\) 319608. 0.562635 0.281318 0.959615i \(-0.409229\pi\)
0.281318 + 0.959615i \(0.409229\pi\)
\(20\) −139055. −0.194335
\(21\) 1.49896e6 1.68191
\(22\) −353176. −0.321432
\(23\) −1.94692e6 −1.45068 −0.725342 0.688389i \(-0.758318\pi\)
−0.725342 + 0.688389i \(0.758318\pi\)
\(24\) −876822. −0.539462
\(25\) −1.65808e6 −0.848935
\(26\) 0 0
\(27\) 1.38268e6 0.500709
\(28\) 1.79258e6 0.551147
\(29\) −6.36416e6 −1.67090 −0.835449 0.549568i \(-0.814792\pi\)
−0.835449 + 0.549568i \(0.814792\pi\)
\(30\) 1.86045e6 0.419346
\(31\) −7.65952e6 −1.48961 −0.744807 0.667280i \(-0.767459\pi\)
−0.744807 + 0.667280i \(0.767459\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) 4.72523e6 0.693602
\(34\) 2.56468e6 0.329139
\(35\) −3.80352e6 −0.428429
\(36\) 6.69237e6 0.664078
\(37\) 1.86035e6 0.163187 0.0815937 0.996666i \(-0.473999\pi\)
0.0815937 + 0.996666i \(0.473999\pi\)
\(38\) −5.11373e6 −0.397843
\(39\) 0 0
\(40\) 2.22488e6 0.137416
\(41\) −1.49835e7 −0.828104 −0.414052 0.910253i \(-0.635887\pi\)
−0.414052 + 0.910253i \(0.635887\pi\)
\(42\) −2.39834e7 −1.18929
\(43\) −1.31570e7 −0.586880 −0.293440 0.955977i \(-0.594800\pi\)
−0.293440 + 0.955977i \(0.594800\pi\)
\(44\) 5.65082e6 0.227287
\(45\) −1.42000e7 −0.516215
\(46\) 3.11507e7 1.02579
\(47\) 5.07440e7 1.51685 0.758427 0.651758i \(-0.225968\pi\)
0.758427 + 0.651758i \(0.225968\pi\)
\(48\) 1.40292e7 0.381457
\(49\) 8.67806e6 0.215050
\(50\) 2.65292e7 0.600288
\(51\) −3.43136e7 −0.710231
\(52\) 0 0
\(53\) 6.39570e7 1.11339 0.556694 0.830717i \(-0.312069\pi\)
0.556694 + 0.830717i \(0.312069\pi\)
\(54\) −2.21229e7 −0.354055
\(55\) −1.19900e7 −0.176680
\(56\) −2.86813e7 −0.389720
\(57\) 6.84179e7 0.858485
\(58\) 1.01827e8 1.18150
\(59\) −4.95386e7 −0.532242 −0.266121 0.963940i \(-0.585742\pi\)
−0.266121 + 0.963940i \(0.585742\pi\)
\(60\) −2.97672e7 −0.296523
\(61\) −9.47554e7 −0.876233 −0.438117 0.898918i \(-0.644354\pi\)
−0.438117 + 0.898918i \(0.644354\pi\)
\(62\) 1.22552e8 1.05332
\(63\) 1.83054e8 1.46402
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) −7.56037e7 −0.490451
\(67\) −3.03905e8 −1.84248 −0.921238 0.388999i \(-0.872821\pi\)
−0.921238 + 0.388999i \(0.872821\pi\)
\(68\) −4.10350e7 −0.232736
\(69\) −4.16773e8 −2.21350
\(70\) 6.08563e7 0.302945
\(71\) −3.10294e7 −0.144914 −0.0724571 0.997372i \(-0.523084\pi\)
−0.0724571 + 0.997372i \(0.523084\pi\)
\(72\) −1.07078e8 −0.469574
\(73\) −9.77274e7 −0.402776 −0.201388 0.979512i \(-0.564545\pi\)
−0.201388 + 0.979512i \(0.564545\pi\)
\(74\) −2.97656e7 −0.115391
\(75\) −3.54941e8 −1.29533
\(76\) 8.18197e7 0.281318
\(77\) 1.54565e8 0.501074
\(78\) 0 0
\(79\) −6.40154e8 −1.84911 −0.924555 0.381050i \(-0.875563\pi\)
−0.924555 + 0.381050i \(0.875563\pi\)
\(80\) −3.55981e7 −0.0971677
\(81\) −2.18566e8 −0.564158
\(82\) 2.39736e8 0.585558
\(83\) 6.01226e8 1.39055 0.695274 0.718744i \(-0.255283\pi\)
0.695274 + 0.718744i \(0.255283\pi\)
\(84\) 3.83734e8 0.840956
\(85\) 8.70685e7 0.180916
\(86\) 2.10512e8 0.414987
\(87\) −1.36236e9 −2.54951
\(88\) −9.04131e7 −0.160716
\(89\) −3.98742e8 −0.673655 −0.336827 0.941566i \(-0.609354\pi\)
−0.336827 + 0.941566i \(0.609354\pi\)
\(90\) 2.27199e8 0.365019
\(91\) 0 0
\(92\) −4.98411e8 −0.725342
\(93\) −1.63966e9 −2.27290
\(94\) −8.11903e8 −1.07258
\(95\) −1.73606e8 −0.218680
\(96\) −2.24467e8 −0.269731
\(97\) 1.54108e9 1.76747 0.883733 0.467991i \(-0.155022\pi\)
0.883733 + 0.467991i \(0.155022\pi\)
\(98\) −1.38849e8 −0.152064
\(99\) 5.77048e8 0.603745
\(100\) −4.24467e8 −0.424467
\(101\) 1.97167e9 1.88533 0.942667 0.333735i \(-0.108309\pi\)
0.942667 + 0.333735i \(0.108309\pi\)
\(102\) 5.49017e8 0.502209
\(103\) −7.94164e8 −0.695252 −0.347626 0.937633i \(-0.613012\pi\)
−0.347626 + 0.937633i \(0.613012\pi\)
\(104\) 0 0
\(105\) −8.14211e8 −0.653710
\(106\) −1.02331e9 −0.787285
\(107\) 1.04673e9 0.771981 0.385991 0.922503i \(-0.373860\pi\)
0.385991 + 0.922503i \(0.373860\pi\)
\(108\) 3.53967e8 0.250355
\(109\) −9.16572e8 −0.621938 −0.310969 0.950420i \(-0.600654\pi\)
−0.310969 + 0.950420i \(0.600654\pi\)
\(110\) 1.91840e8 0.124931
\(111\) 3.98241e8 0.248996
\(112\) 4.58900e8 0.275573
\(113\) 6.62151e7 0.0382036 0.0191018 0.999818i \(-0.493919\pi\)
0.0191018 + 0.999818i \(0.493919\pi\)
\(114\) −1.09469e9 −0.607041
\(115\) 1.05754e9 0.563838
\(116\) −1.62922e9 −0.835449
\(117\) 0 0
\(118\) 7.92617e8 0.376352
\(119\) −1.12241e9 −0.513087
\(120\) 4.76276e8 0.209673
\(121\) −1.87071e9 −0.793363
\(122\) 1.51609e9 0.619590
\(123\) −3.20748e9 −1.26355
\(124\) −1.96084e9 −0.744807
\(125\) 1.96155e9 0.718627
\(126\) −2.92886e9 −1.03522
\(127\) 4.16674e9 1.42128 0.710639 0.703556i \(-0.248406\pi\)
0.710639 + 0.703556i \(0.248406\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) −2.81650e9 −0.895480
\(130\) 0 0
\(131\) −1.62751e9 −0.482840 −0.241420 0.970421i \(-0.577613\pi\)
−0.241420 + 0.970421i \(0.577613\pi\)
\(132\) 1.20966e9 0.346801
\(133\) 2.23798e9 0.620189
\(134\) 4.86249e9 1.30283
\(135\) −7.51052e8 −0.194611
\(136\) 6.56559e8 0.164569
\(137\) 5.28874e9 1.28265 0.641327 0.767267i \(-0.278384\pi\)
0.641327 + 0.767267i \(0.278384\pi\)
\(138\) 6.66837e9 1.56518
\(139\) 2.41456e8 0.0548619 0.0274310 0.999624i \(-0.491267\pi\)
0.0274310 + 0.999624i \(0.491267\pi\)
\(140\) −9.73700e8 −0.214215
\(141\) 1.08627e10 2.31446
\(142\) 4.96471e8 0.102470
\(143\) 0 0
\(144\) 1.71325e9 0.332039
\(145\) 3.45691e9 0.649429
\(146\) 1.56364e9 0.284806
\(147\) 1.85770e9 0.328130
\(148\) 4.76249e8 0.0815937
\(149\) −3.77246e9 −0.627027 −0.313513 0.949584i \(-0.601506\pi\)
−0.313513 + 0.949584i \(0.601506\pi\)
\(150\) 5.67906e9 0.915937
\(151\) −9.98101e9 −1.56235 −0.781175 0.624312i \(-0.785379\pi\)
−0.781175 + 0.624312i \(0.785379\pi\)
\(152\) −1.30912e9 −0.198922
\(153\) −4.19039e9 −0.618220
\(154\) −2.47303e9 −0.354313
\(155\) 4.16053e9 0.578970
\(156\) 0 0
\(157\) −6.60326e9 −0.867381 −0.433691 0.901062i \(-0.642789\pi\)
−0.433691 + 0.901062i \(0.642789\pi\)
\(158\) 1.02425e10 1.30752
\(159\) 1.36912e10 1.69884
\(160\) 5.69570e8 0.0687079
\(161\) −1.36328e10 −1.59908
\(162\) 3.49706e9 0.398920
\(163\) 1.05234e10 1.16764 0.583821 0.811882i \(-0.301557\pi\)
0.583821 + 0.811882i \(0.301557\pi\)
\(164\) −3.83577e9 −0.414052
\(165\) −2.56667e9 −0.269583
\(166\) −9.61961e9 −0.983267
\(167\) −7.50019e8 −0.0746188 −0.0373094 0.999304i \(-0.511879\pi\)
−0.0373094 + 0.999304i \(0.511879\pi\)
\(168\) −6.13974e9 −0.594646
\(169\) 0 0
\(170\) −1.39310e9 −0.127927
\(171\) 8.35523e9 0.747267
\(172\) −3.36820e9 −0.293440
\(173\) 1.52159e10 1.29149 0.645745 0.763553i \(-0.276547\pi\)
0.645745 + 0.763553i \(0.276547\pi\)
\(174\) 2.17978e10 1.80277
\(175\) −1.16103e10 −0.935775
\(176\) 1.44661e9 0.113643
\(177\) −1.06046e10 −0.812111
\(178\) 6.37988e9 0.476346
\(179\) −1.42967e10 −1.04087 −0.520434 0.853902i \(-0.674230\pi\)
−0.520434 + 0.853902i \(0.674230\pi\)
\(180\) −3.63519e9 −0.258108
\(181\) −1.61446e9 −0.111808 −0.0559041 0.998436i \(-0.517804\pi\)
−0.0559041 + 0.998436i \(0.517804\pi\)
\(182\) 0 0
\(183\) −2.02841e10 −1.33698
\(184\) 7.97458e9 0.512894
\(185\) −1.01051e9 −0.0634262
\(186\) 2.62345e10 1.60718
\(187\) −3.53823e9 −0.211592
\(188\) 1.29905e10 0.758427
\(189\) 9.68191e9 0.551929
\(190\) 2.77770e9 0.154630
\(191\) 2.71988e10 1.47877 0.739385 0.673283i \(-0.235117\pi\)
0.739385 + 0.673283i \(0.235117\pi\)
\(192\) 3.59146e9 0.190729
\(193\) 1.15062e10 0.596931 0.298466 0.954420i \(-0.403525\pi\)
0.298466 + 0.954420i \(0.403525\pi\)
\(194\) −2.46572e10 −1.24979
\(195\) 0 0
\(196\) 2.22158e9 0.107525
\(197\) 3.10270e9 0.146771 0.0733857 0.997304i \(-0.476620\pi\)
0.0733857 + 0.997304i \(0.476620\pi\)
\(198\) −9.23276e9 −0.426912
\(199\) 3.08347e9 0.139380 0.0696900 0.997569i \(-0.477799\pi\)
0.0696900 + 0.997569i \(0.477799\pi\)
\(200\) 6.79148e9 0.300144
\(201\) −6.50564e10 −2.81130
\(202\) −3.15467e10 −1.33313
\(203\) −4.45635e10 −1.84182
\(204\) −8.78427e9 −0.355116
\(205\) 8.13878e9 0.321860
\(206\) 1.27066e10 0.491618
\(207\) −5.08965e10 −1.92673
\(208\) 0 0
\(209\) 7.05488e9 0.255759
\(210\) 1.30274e10 0.462243
\(211\) 1.81636e10 0.630856 0.315428 0.948950i \(-0.397852\pi\)
0.315428 + 0.948950i \(0.397852\pi\)
\(212\) 1.63730e10 0.556694
\(213\) −6.64240e9 −0.221114
\(214\) −1.67476e10 −0.545873
\(215\) 7.14669e9 0.228103
\(216\) −5.66347e9 −0.177028
\(217\) −5.36339e10 −1.64199
\(218\) 1.46651e10 0.439777
\(219\) −2.09203e10 −0.614567
\(220\) −3.06944e9 −0.0883398
\(221\) 0 0
\(222\) −6.37186e9 −0.176067
\(223\) −4.07436e10 −1.10328 −0.551642 0.834081i \(-0.685998\pi\)
−0.551642 + 0.834081i \(0.685998\pi\)
\(224\) −7.34240e9 −0.194860
\(225\) −4.33456e10 −1.12752
\(226\) −1.05944e9 −0.0270140
\(227\) −2.94809e10 −0.736926 −0.368463 0.929642i \(-0.620116\pi\)
−0.368463 + 0.929642i \(0.620116\pi\)
\(228\) 1.75150e10 0.429243
\(229\) −1.20107e10 −0.288607 −0.144304 0.989533i \(-0.546094\pi\)
−0.144304 + 0.989533i \(0.546094\pi\)
\(230\) −1.69206e10 −0.398694
\(231\) 3.30873e10 0.764553
\(232\) 2.60676e10 0.590752
\(233\) −2.13260e10 −0.474032 −0.237016 0.971506i \(-0.576169\pi\)
−0.237016 + 0.971506i \(0.576169\pi\)
\(234\) 0 0
\(235\) −2.75633e10 −0.589557
\(236\) −1.26819e10 −0.266121
\(237\) −1.37036e11 −2.82143
\(238\) 1.79586e10 0.362807
\(239\) 3.87588e10 0.768386 0.384193 0.923253i \(-0.374480\pi\)
0.384193 + 0.923253i \(0.374480\pi\)
\(240\) −7.62041e9 −0.148261
\(241\) 2.95025e10 0.563355 0.281677 0.959509i \(-0.409109\pi\)
0.281677 + 0.959509i \(0.409109\pi\)
\(242\) 2.99313e10 0.560992
\(243\) −7.40034e10 −1.36152
\(244\) −2.42574e10 −0.438117
\(245\) −4.71379e9 −0.0835839
\(246\) 5.13197e10 0.893462
\(247\) 0 0
\(248\) 3.13734e10 0.526658
\(249\) 1.28703e11 2.12174
\(250\) −3.13847e10 −0.508146
\(251\) −7.72417e9 −0.122834 −0.0614172 0.998112i \(-0.519562\pi\)
−0.0614172 + 0.998112i \(0.519562\pi\)
\(252\) 4.68618e10 0.732008
\(253\) −4.29754e10 −0.659443
\(254\) −6.66678e10 −1.00500
\(255\) 1.86386e10 0.276046
\(256\) 4.29497e9 0.0625000
\(257\) 9.31679e10 1.33219 0.666097 0.745865i \(-0.267964\pi\)
0.666097 + 0.745865i \(0.267964\pi\)
\(258\) 4.50640e10 0.633200
\(259\) 1.30266e10 0.179880
\(260\) 0 0
\(261\) −1.66372e11 −2.21921
\(262\) 2.60402e10 0.341419
\(263\) −9.43492e10 −1.21601 −0.608006 0.793933i \(-0.708030\pi\)
−0.608006 + 0.793933i \(0.708030\pi\)
\(264\) −1.93546e10 −0.245225
\(265\) −3.47404e10 −0.432742
\(266\) −3.58077e10 −0.438540
\(267\) −8.53580e10 −1.02788
\(268\) −7.77998e10 −0.921238
\(269\) −1.55133e11 −1.80642 −0.903212 0.429194i \(-0.858798\pi\)
−0.903212 + 0.429194i \(0.858798\pi\)
\(270\) 1.20168e10 0.137611
\(271\) 8.46688e10 0.953590 0.476795 0.879014i \(-0.341798\pi\)
0.476795 + 0.879014i \(0.341798\pi\)
\(272\) −1.05049e10 −0.116368
\(273\) 0 0
\(274\) −8.46199e10 −0.906974
\(275\) −3.65996e10 −0.385904
\(276\) −1.06694e11 −1.10675
\(277\) −1.08946e11 −1.11187 −0.555935 0.831226i \(-0.687640\pi\)
−0.555935 + 0.831226i \(0.687640\pi\)
\(278\) −3.86329e9 −0.0387932
\(279\) −2.00236e11 −1.97844
\(280\) 1.55792e10 0.151473
\(281\) 1.03370e11 0.989044 0.494522 0.869165i \(-0.335343\pi\)
0.494522 + 0.869165i \(0.335343\pi\)
\(282\) −1.73802e11 −1.63657
\(283\) 9.16958e10 0.849788 0.424894 0.905243i \(-0.360311\pi\)
0.424894 + 0.905243i \(0.360311\pi\)
\(284\) −7.94353e9 −0.0724571
\(285\) −3.71635e10 −0.333668
\(286\) 0 0
\(287\) −1.04918e11 −0.912814
\(288\) −2.74120e10 −0.234787
\(289\) −9.28941e10 −0.783336
\(290\) −5.53105e10 −0.459216
\(291\) 3.29895e11 2.69685
\(292\) −2.50182e10 −0.201388
\(293\) −1.03773e11 −0.822583 −0.411292 0.911504i \(-0.634922\pi\)
−0.411292 + 0.911504i \(0.634922\pi\)
\(294\) −2.97231e10 −0.232023
\(295\) 2.69086e10 0.206867
\(296\) −7.61999e9 −0.0576954
\(297\) 3.05207e10 0.227609
\(298\) 6.03593e10 0.443375
\(299\) 0 0
\(300\) −9.08649e10 −0.647665
\(301\) −9.21289e10 −0.646914
\(302\) 1.59696e11 1.10475
\(303\) 4.22072e11 2.87670
\(304\) 2.09458e10 0.140659
\(305\) 5.14696e10 0.340566
\(306\) 6.70462e10 0.437147
\(307\) −1.60123e11 −1.02880 −0.514401 0.857550i \(-0.671986\pi\)
−0.514401 + 0.857550i \(0.671986\pi\)
\(308\) 3.95685e10 0.250537
\(309\) −1.70005e11 −1.06084
\(310\) −6.65684e10 −0.409393
\(311\) −2.22651e11 −1.34959 −0.674796 0.738004i \(-0.735768\pi\)
−0.674796 + 0.738004i \(0.735768\pi\)
\(312\) 0 0
\(313\) 1.04187e11 0.613573 0.306786 0.951778i \(-0.400746\pi\)
0.306786 + 0.951778i \(0.400746\pi\)
\(314\) 1.05652e11 0.613331
\(315\) −9.94319e10 −0.569021
\(316\) −1.63879e11 −0.924555
\(317\) 3.23443e10 0.179900 0.0899500 0.995946i \(-0.471329\pi\)
0.0899500 + 0.995946i \(0.471329\pi\)
\(318\) −2.19058e11 −1.20126
\(319\) −1.40479e11 −0.759547
\(320\) −9.11312e9 −0.0485839
\(321\) 2.24071e11 1.17791
\(322\) 2.18125e11 1.13072
\(323\) −5.12309e10 −0.261891
\(324\) −5.59530e10 −0.282079
\(325\) 0 0
\(326\) −1.68374e11 −0.825648
\(327\) −1.96209e11 −0.948972
\(328\) 6.13723e10 0.292779
\(329\) 3.55322e11 1.67202
\(330\) 4.10667e10 0.190624
\(331\) −2.85306e11 −1.30642 −0.653212 0.757175i \(-0.726579\pi\)
−0.653212 + 0.757175i \(0.726579\pi\)
\(332\) 1.53914e11 0.695274
\(333\) 4.86334e10 0.216738
\(334\) 1.20003e10 0.0527635
\(335\) 1.65077e11 0.716117
\(336\) 9.82358e10 0.420478
\(337\) −2.47522e11 −1.04539 −0.522697 0.852519i \(-0.675074\pi\)
−0.522697 + 0.852519i \(0.675074\pi\)
\(338\) 0 0
\(339\) 1.41745e10 0.0582922
\(340\) 2.22895e10 0.0904578
\(341\) −1.69072e11 −0.677140
\(342\) −1.33684e11 −0.528397
\(343\) −2.21800e11 −0.865245
\(344\) 5.38912e10 0.207494
\(345\) 2.26384e11 0.860321
\(346\) −2.43455e11 −0.913221
\(347\) −2.59297e11 −0.960098 −0.480049 0.877242i \(-0.659381\pi\)
−0.480049 + 0.877242i \(0.659381\pi\)
\(348\) −3.48765e11 −1.27475
\(349\) −1.65421e11 −0.596867 −0.298433 0.954430i \(-0.596464\pi\)
−0.298433 + 0.954430i \(0.596464\pi\)
\(350\) 1.85765e11 0.661693
\(351\) 0 0
\(352\) −2.31458e10 −0.0803581
\(353\) 3.91322e11 1.34137 0.670684 0.741743i \(-0.266001\pi\)
0.670684 + 0.741743i \(0.266001\pi\)
\(354\) 1.69674e11 0.574249
\(355\) 1.68547e10 0.0563239
\(356\) −1.02078e11 −0.336827
\(357\) −2.40272e11 −0.782883
\(358\) 2.28746e11 0.736005
\(359\) 6.93669e9 0.0220408 0.0110204 0.999939i \(-0.496492\pi\)
0.0110204 + 0.999939i \(0.496492\pi\)
\(360\) 5.81631e10 0.182510
\(361\) −2.20538e11 −0.683442
\(362\) 2.58314e10 0.0790603
\(363\) −4.00459e11 −1.21054
\(364\) 0 0
\(365\) 5.30840e10 0.156547
\(366\) 3.24546e11 0.945389
\(367\) 4.70305e11 1.35326 0.676631 0.736322i \(-0.263439\pi\)
0.676631 + 0.736322i \(0.263439\pi\)
\(368\) −1.27593e11 −0.362671
\(369\) −3.91699e11 −1.09985
\(370\) 1.61682e10 0.0448491
\(371\) 4.47844e11 1.22728
\(372\) −4.19752e11 −1.13645
\(373\) −2.97318e10 −0.0795300 −0.0397650 0.999209i \(-0.512661\pi\)
−0.0397650 + 0.999209i \(0.512661\pi\)
\(374\) 5.66116e10 0.149618
\(375\) 4.19904e11 1.09650
\(376\) −2.07847e11 −0.536289
\(377\) 0 0
\(378\) −1.54911e11 −0.390273
\(379\) 6.21819e11 1.54806 0.774030 0.633149i \(-0.218238\pi\)
0.774030 + 0.633149i \(0.218238\pi\)
\(380\) −4.44432e10 −0.109340
\(381\) 8.91965e11 2.16863
\(382\) −4.35182e11 −1.04565
\(383\) 7.75402e11 1.84133 0.920667 0.390349i \(-0.127646\pi\)
0.920667 + 0.390349i \(0.127646\pi\)
\(384\) −5.74634e10 −0.134866
\(385\) −8.39570e10 −0.194753
\(386\) −1.84099e11 −0.422094
\(387\) −3.43952e11 −0.779469
\(388\) 3.94515e11 0.883733
\(389\) −4.18910e11 −0.927573 −0.463786 0.885947i \(-0.653509\pi\)
−0.463786 + 0.885947i \(0.653509\pi\)
\(390\) 0 0
\(391\) 3.12077e11 0.675253
\(392\) −3.55453e10 −0.0760318
\(393\) −3.48398e11 −0.736731
\(394\) −4.96431e10 −0.103783
\(395\) 3.47721e11 0.718695
\(396\) 1.47724e11 0.301872
\(397\) −2.34885e11 −0.474567 −0.237283 0.971440i \(-0.576257\pi\)
−0.237283 + 0.971440i \(0.576257\pi\)
\(398\) −4.93355e10 −0.0985566
\(399\) 4.79080e11 0.946302
\(400\) −1.08664e11 −0.212234
\(401\) 4.85397e10 0.0937449 0.0468724 0.998901i \(-0.485075\pi\)
0.0468724 + 0.998901i \(0.485075\pi\)
\(402\) 1.04090e12 1.98789
\(403\) 0 0
\(404\) 5.04748e11 0.942667
\(405\) 1.18722e11 0.219272
\(406\) 7.13016e11 1.30236
\(407\) 4.10644e10 0.0741807
\(408\) 1.40548e11 0.251105
\(409\) −1.39589e11 −0.246659 −0.123329 0.992366i \(-0.539357\pi\)
−0.123329 + 0.992366i \(0.539357\pi\)
\(410\) −1.30221e11 −0.227589
\(411\) 1.13215e12 1.95711
\(412\) −2.03306e11 −0.347626
\(413\) −3.46882e11 −0.586687
\(414\) 8.14345e11 1.36241
\(415\) −3.26576e11 −0.540466
\(416\) 0 0
\(417\) 5.16879e10 0.0837099
\(418\) −1.12878e11 −0.180849
\(419\) 1.05583e12 1.67352 0.836761 0.547568i \(-0.184446\pi\)
0.836761 + 0.547568i \(0.184446\pi\)
\(420\) −2.08438e11 −0.326855
\(421\) 3.55252e10 0.0551147 0.0275574 0.999620i \(-0.491227\pi\)
0.0275574 + 0.999620i \(0.491227\pi\)
\(422\) −2.90617e11 −0.446082
\(423\) 1.32655e12 2.01462
\(424\) −2.61968e11 −0.393642
\(425\) 2.65778e11 0.395156
\(426\) 1.06278e11 0.156351
\(427\) −6.63502e11 −0.965866
\(428\) 2.67962e11 0.385991
\(429\) 0 0
\(430\) −1.14347e11 −0.161293
\(431\) −1.07951e12 −1.50688 −0.753442 0.657515i \(-0.771608\pi\)
−0.753442 + 0.657515i \(0.771608\pi\)
\(432\) 9.06155e10 0.125177
\(433\) −9.37095e11 −1.28112 −0.640558 0.767910i \(-0.721297\pi\)
−0.640558 + 0.767910i \(0.721297\pi\)
\(434\) 8.58143e11 1.16106
\(435\) 7.40013e11 0.990918
\(436\) −2.34642e11 −0.310969
\(437\) −6.22252e11 −0.816205
\(438\) 3.34725e11 0.434565
\(439\) 8.32479e11 1.06975 0.534876 0.844931i \(-0.320358\pi\)
0.534876 + 0.844931i \(0.320358\pi\)
\(440\) 4.91110e10 0.0624657
\(441\) 2.26863e11 0.285621
\(442\) 0 0
\(443\) 1.05746e12 1.30451 0.652255 0.758000i \(-0.273823\pi\)
0.652255 + 0.758000i \(0.273823\pi\)
\(444\) 1.01950e11 0.124498
\(445\) 2.16591e11 0.261830
\(446\) 6.51897e11 0.780139
\(447\) −8.07562e11 −0.956736
\(448\) 1.17478e11 0.137787
\(449\) −1.09666e12 −1.27339 −0.636697 0.771114i \(-0.719700\pi\)
−0.636697 + 0.771114i \(0.719700\pi\)
\(450\) 6.93529e11 0.797275
\(451\) −3.30738e11 −0.376435
\(452\) 1.69511e10 0.0191018
\(453\) −2.13661e12 −2.38388
\(454\) 4.71694e11 0.521085
\(455\) 0 0
\(456\) −2.80240e11 −0.303520
\(457\) −1.38035e12 −1.48035 −0.740176 0.672413i \(-0.765258\pi\)
−0.740176 + 0.672413i \(0.765258\pi\)
\(458\) 1.92170e11 0.204076
\(459\) −2.21634e11 −0.233066
\(460\) 2.70729e11 0.281919
\(461\) 9.70837e9 0.0100113 0.00500567 0.999987i \(-0.498407\pi\)
0.00500567 + 0.999987i \(0.498407\pi\)
\(462\) −5.29397e11 −0.540621
\(463\) 1.18016e12 1.19352 0.596758 0.802422i \(-0.296455\pi\)
0.596758 + 0.802422i \(0.296455\pi\)
\(464\) −4.17081e11 −0.417725
\(465\) 8.90636e11 0.883409
\(466\) 3.41216e11 0.335192
\(467\) −5.38177e11 −0.523600 −0.261800 0.965122i \(-0.584316\pi\)
−0.261800 + 0.965122i \(0.584316\pi\)
\(468\) 0 0
\(469\) −2.12803e12 −2.03095
\(470\) 4.41013e11 0.416880
\(471\) −1.41355e12 −1.32348
\(472\) 2.02910e11 0.188176
\(473\) −2.90422e11 −0.266781
\(474\) 2.19258e12 1.99505
\(475\) −5.29935e11 −0.477641
\(476\) −2.87338e11 −0.256544
\(477\) 1.67197e12 1.47875
\(478\) −6.20140e11 −0.543331
\(479\) 6.14553e11 0.533396 0.266698 0.963780i \(-0.414067\pi\)
0.266698 + 0.963780i \(0.414067\pi\)
\(480\) 1.21927e11 0.104837
\(481\) 0 0
\(482\) −4.72040e11 −0.398352
\(483\) −2.91835e12 −2.43992
\(484\) −4.78901e11 −0.396681
\(485\) −8.37088e11 −0.686963
\(486\) 1.18406e12 0.962739
\(487\) −2.18229e10 −0.0175806 −0.00879028 0.999961i \(-0.502798\pi\)
−0.00879028 + 0.999961i \(0.502798\pi\)
\(488\) 3.88118e11 0.309795
\(489\) 2.25271e12 1.78162
\(490\) 7.54206e10 0.0591027
\(491\) −1.31071e11 −0.101775 −0.0508875 0.998704i \(-0.516205\pi\)
−0.0508875 + 0.998704i \(0.516205\pi\)
\(492\) −8.21115e11 −0.631773
\(493\) 1.02013e12 0.777757
\(494\) 0 0
\(495\) −3.13443e11 −0.234658
\(496\) −5.01974e11 −0.372404
\(497\) −2.17276e11 −0.159738
\(498\) −2.05925e12 −1.50030
\(499\) −2.11689e12 −1.52843 −0.764216 0.644961i \(-0.776874\pi\)
−0.764216 + 0.644961i \(0.776874\pi\)
\(500\) 5.02156e11 0.359314
\(501\) −1.60555e11 −0.113856
\(502\) 1.23587e11 0.0868570
\(503\) −4.25100e11 −0.296098 −0.148049 0.988980i \(-0.547299\pi\)
−0.148049 + 0.988980i \(0.547299\pi\)
\(504\) −7.49788e11 −0.517608
\(505\) −1.07098e12 −0.732774
\(506\) 6.87606e11 0.466297
\(507\) 0 0
\(508\) 1.06668e12 0.710639
\(509\) −1.93072e12 −1.27494 −0.637469 0.770476i \(-0.720018\pi\)
−0.637469 + 0.770476i \(0.720018\pi\)
\(510\) −2.98217e11 −0.195194
\(511\) −6.84313e11 −0.443977
\(512\) −6.87195e10 −0.0441942
\(513\) 4.41917e11 0.281717
\(514\) −1.49069e12 −0.942003
\(515\) 4.31377e11 0.270224
\(516\) −7.21023e11 −0.447740
\(517\) 1.12010e12 0.689522
\(518\) −2.08426e11 −0.127195
\(519\) 3.25724e12 1.97059
\(520\) 0 0
\(521\) 2.60841e12 1.55098 0.775490 0.631360i \(-0.217503\pi\)
0.775490 + 0.631360i \(0.217503\pi\)
\(522\) 2.66196e12 1.56922
\(523\) −2.23302e11 −0.130507 −0.0652537 0.997869i \(-0.520786\pi\)
−0.0652537 + 0.997869i \(0.520786\pi\)
\(524\) −4.16643e11 −0.241420
\(525\) −2.48539e12 −1.42783
\(526\) 1.50959e12 0.859850
\(527\) 1.22777e12 0.693374
\(528\) 3.09673e11 0.173401
\(529\) 1.98934e12 1.10448
\(530\) 5.55847e11 0.305995
\(531\) −1.29504e12 −0.706901
\(532\) 5.72923e11 0.310094
\(533\) 0 0
\(534\) 1.36573e12 0.726823
\(535\) −5.68566e11 −0.300047
\(536\) 1.24480e12 0.651414
\(537\) −3.06045e12 −1.58819
\(538\) 2.48213e12 1.27733
\(539\) 1.91555e11 0.0977563
\(540\) −1.92269e11 −0.0973056
\(541\) −2.08096e12 −1.04442 −0.522212 0.852816i \(-0.674893\pi\)
−0.522212 + 0.852816i \(0.674893\pi\)
\(542\) −1.35470e12 −0.674290
\(543\) −3.45604e11 −0.170600
\(544\) 1.68079e11 0.0822847
\(545\) 4.97867e11 0.241729
\(546\) 0 0
\(547\) 2.54059e12 1.21337 0.606684 0.794943i \(-0.292499\pi\)
0.606684 + 0.794943i \(0.292499\pi\)
\(548\) 1.35392e12 0.641327
\(549\) −2.47710e12 −1.16377
\(550\) 5.85593e11 0.272875
\(551\) −2.03404e12 −0.940106
\(552\) 1.70710e12 0.782589
\(553\) −4.48253e12 −2.03826
\(554\) 1.74314e12 0.786210
\(555\) −2.16318e11 −0.0967775
\(556\) 6.18127e10 0.0274310
\(557\) 9.00442e11 0.396376 0.198188 0.980164i \(-0.436494\pi\)
0.198188 + 0.980164i \(0.436494\pi\)
\(558\) 3.20377e12 1.39897
\(559\) 0 0
\(560\) −2.49267e11 −0.107107
\(561\) −7.57421e11 −0.322853
\(562\) −1.65392e12 −0.699360
\(563\) 2.04664e11 0.0858526 0.0429263 0.999078i \(-0.486332\pi\)
0.0429263 + 0.999078i \(0.486332\pi\)
\(564\) 2.78084e12 1.15723
\(565\) −3.59670e10 −0.0148486
\(566\) −1.46713e12 −0.600891
\(567\) −1.53046e12 −0.621868
\(568\) 1.27096e11 0.0512349
\(569\) 2.58109e12 1.03228 0.516141 0.856504i \(-0.327368\pi\)
0.516141 + 0.856504i \(0.327368\pi\)
\(570\) 5.94616e11 0.235939
\(571\) −4.20505e12 −1.65542 −0.827710 0.561156i \(-0.810357\pi\)
−0.827710 + 0.561156i \(0.810357\pi\)
\(572\) 0 0
\(573\) 5.82240e12 2.25635
\(574\) 1.67869e12 0.645457
\(575\) 3.22814e12 1.23154
\(576\) 4.38591e11 0.166019
\(577\) 4.16728e12 1.56517 0.782585 0.622543i \(-0.213901\pi\)
0.782585 + 0.622543i \(0.213901\pi\)
\(578\) 1.48631e12 0.553902
\(579\) 2.46311e12 0.910815
\(580\) 8.84969e11 0.324715
\(581\) 4.20994e12 1.53279
\(582\) −5.27832e12 −1.90696
\(583\) 1.41176e12 0.506117
\(584\) 4.00291e11 0.142403
\(585\) 0 0
\(586\) 1.66037e12 0.581654
\(587\) 1.03026e12 0.358160 0.179080 0.983835i \(-0.442688\pi\)
0.179080 + 0.983835i \(0.442688\pi\)
\(588\) 4.75570e11 0.164065
\(589\) −2.44805e12 −0.838109
\(590\) −4.30537e11 −0.146277
\(591\) 6.64188e11 0.223948
\(592\) 1.21920e11 0.0407968
\(593\) −2.35250e12 −0.781238 −0.390619 0.920552i \(-0.627739\pi\)
−0.390619 + 0.920552i \(0.627739\pi\)
\(594\) −4.88331e11 −0.160944
\(595\) 6.09676e11 0.199422
\(596\) −9.65749e11 −0.313513
\(597\) 6.60072e11 0.212670
\(598\) 0 0
\(599\) −1.55241e12 −0.492702 −0.246351 0.969181i \(-0.579232\pi\)
−0.246351 + 0.969181i \(0.579232\pi\)
\(600\) 1.45384e12 0.457968
\(601\) 1.61275e12 0.504235 0.252117 0.967697i \(-0.418873\pi\)
0.252117 + 0.967697i \(0.418873\pi\)
\(602\) 1.47406e12 0.457438
\(603\) −7.94472e12 −2.44709
\(604\) −2.55514e12 −0.781175
\(605\) 1.01614e12 0.308357
\(606\) −6.75314e12 −2.03413
\(607\) 5.98358e12 1.78901 0.894504 0.447060i \(-0.147529\pi\)
0.894504 + 0.447060i \(0.147529\pi\)
\(608\) −3.35134e11 −0.0994608
\(609\) −9.53962e12 −2.81030
\(610\) −8.23514e11 −0.240817
\(611\) 0 0
\(612\) −1.07274e12 −0.309110
\(613\) 3.16702e12 0.905898 0.452949 0.891537i \(-0.350372\pi\)
0.452949 + 0.891537i \(0.350372\pi\)
\(614\) 2.56197e12 0.727472
\(615\) 1.74225e12 0.491104
\(616\) −6.33096e11 −0.177156
\(617\) −5.19353e12 −1.44271 −0.721356 0.692565i \(-0.756481\pi\)
−0.721356 + 0.692565i \(0.756481\pi\)
\(618\) 2.72008e12 0.750125
\(619\) 4.48823e12 1.22876 0.614380 0.789010i \(-0.289406\pi\)
0.614380 + 0.789010i \(0.289406\pi\)
\(620\) 1.06510e12 0.289485
\(621\) −2.69197e12 −0.726371
\(622\) 3.56241e12 0.954306
\(623\) −2.79210e12 −0.742565
\(624\) 0 0
\(625\) 2.17295e12 0.569626
\(626\) −1.66700e12 −0.433861
\(627\) 1.51022e12 0.390245
\(628\) −1.69044e12 −0.433691
\(629\) −2.98200e11 −0.0759592
\(630\) 1.59091e12 0.402358
\(631\) 3.25343e12 0.816975 0.408487 0.912764i \(-0.366056\pi\)
0.408487 + 0.912764i \(0.366056\pi\)
\(632\) 2.62207e12 0.653759
\(633\) 3.88824e12 0.962578
\(634\) −5.17509e11 −0.127208
\(635\) −2.26330e12 −0.552410
\(636\) 3.50493e12 0.849421
\(637\) 0 0
\(638\) 2.24767e12 0.537081
\(639\) −8.11174e11 −0.192469
\(640\) 1.45810e11 0.0343540
\(641\) 9.44836e11 0.221052 0.110526 0.993873i \(-0.464746\pi\)
0.110526 + 0.993873i \(0.464746\pi\)
\(642\) −3.58514e12 −0.832910
\(643\) 6.61958e12 1.52715 0.763574 0.645720i \(-0.223443\pi\)
0.763574 + 0.645720i \(0.223443\pi\)
\(644\) −3.49001e12 −0.799539
\(645\) 1.52988e12 0.348047
\(646\) 8.19694e11 0.185185
\(647\) −1.72331e12 −0.386629 −0.193315 0.981137i \(-0.561924\pi\)
−0.193315 + 0.981137i \(0.561924\pi\)
\(648\) 8.95248e11 0.199460
\(649\) −1.09349e12 −0.241943
\(650\) 0 0
\(651\) −1.14813e13 −2.50540
\(652\) 2.69398e12 0.583821
\(653\) −7.01466e12 −1.50972 −0.754861 0.655884i \(-0.772296\pi\)
−0.754861 + 0.655884i \(0.772296\pi\)
\(654\) 3.13934e12 0.671024
\(655\) 8.84038e11 0.187666
\(656\) −9.81957e11 −0.207026
\(657\) −2.55480e12 −0.534949
\(658\) −5.68516e12 −1.18230
\(659\) 1.88109e12 0.388531 0.194265 0.980949i \(-0.437768\pi\)
0.194265 + 0.980949i \(0.437768\pi\)
\(660\) −6.57068e11 −0.134791
\(661\) −4.65444e12 −0.948332 −0.474166 0.880435i \(-0.657250\pi\)
−0.474166 + 0.880435i \(0.657250\pi\)
\(662\) 4.56489e12 0.923781
\(663\) 0 0
\(664\) −2.46262e12 −0.491633
\(665\) −1.21564e12 −0.241049
\(666\) −7.78134e11 −0.153257
\(667\) 1.23905e13 2.42394
\(668\) −1.92005e11 −0.0373094
\(669\) −8.72189e12 −1.68342
\(670\) −2.64123e12 −0.506371
\(671\) −2.09158e12 −0.398313
\(672\) −1.57177e12 −0.297323
\(673\) −1.05746e12 −0.198699 −0.0993495 0.995053i \(-0.531676\pi\)
−0.0993495 + 0.995053i \(0.531676\pi\)
\(674\) 3.96036e12 0.739205
\(675\) −2.29259e12 −0.425070
\(676\) 0 0
\(677\) 8.40145e12 1.53711 0.768555 0.639784i \(-0.220976\pi\)
0.768555 + 0.639784i \(0.220976\pi\)
\(678\) −2.26793e11 −0.0412188
\(679\) 1.07910e13 1.94827
\(680\) −3.56633e11 −0.0639633
\(681\) −6.31091e12 −1.12442
\(682\) 2.70516e12 0.478810
\(683\) 8.60487e12 1.51304 0.756521 0.653969i \(-0.226897\pi\)
0.756521 + 0.653969i \(0.226897\pi\)
\(684\) 2.13894e12 0.373633
\(685\) −2.87276e12 −0.498530
\(686\) 3.54881e12 0.611820
\(687\) −2.57110e12 −0.440365
\(688\) −8.62259e11 −0.146720
\(689\) 0 0
\(690\) −3.62215e12 −0.608339
\(691\) −5.12497e12 −0.855146 −0.427573 0.903981i \(-0.640631\pi\)
−0.427573 + 0.903981i \(0.640631\pi\)
\(692\) 3.89528e12 0.645745
\(693\) 4.04064e12 0.665504
\(694\) 4.14876e12 0.678892
\(695\) −1.31155e11 −0.0213232
\(696\) 5.58024e12 0.901386
\(697\) 2.40174e12 0.385460
\(698\) 2.64674e12 0.422049
\(699\) −4.56522e12 −0.723293
\(700\) −2.97223e12 −0.467888
\(701\) −7.08567e12 −1.10828 −0.554140 0.832423i \(-0.686953\pi\)
−0.554140 + 0.832423i \(0.686953\pi\)
\(702\) 0 0
\(703\) 5.94583e11 0.0918149
\(704\) 3.70332e11 0.0568217
\(705\) −5.90042e12 −0.899564
\(706\) −6.26115e12 −0.948490
\(707\) 1.38062e13 2.07819
\(708\) −2.71478e12 −0.406056
\(709\) −3.49375e12 −0.519259 −0.259630 0.965708i \(-0.583600\pi\)
−0.259630 + 0.965708i \(0.583600\pi\)
\(710\) −2.69675e11 −0.0398270
\(711\) −1.67350e13 −2.45590
\(712\) 1.63325e12 0.238173
\(713\) 1.49125e13 2.16096
\(714\) 3.84436e12 0.553582
\(715\) 0 0
\(716\) −3.65994e12 −0.520434
\(717\) 8.29701e12 1.17243
\(718\) −1.10987e11 −0.0155852
\(719\) −5.96519e12 −0.832423 −0.416211 0.909268i \(-0.636642\pi\)
−0.416211 + 0.909268i \(0.636642\pi\)
\(720\) −9.30609e11 −0.129054
\(721\) −5.56094e12 −0.766372
\(722\) 3.52861e12 0.483266
\(723\) 6.31554e12 0.859583
\(724\) −4.13302e11 −0.0559041
\(725\) 1.05523e13 1.41848
\(726\) 6.40734e12 0.855978
\(727\) −4.12061e12 −0.547087 −0.273544 0.961860i \(-0.588196\pi\)
−0.273544 + 0.961860i \(0.588196\pi\)
\(728\) 0 0
\(729\) −1.15397e13 −1.51329
\(730\) −8.49343e11 −0.110696
\(731\) 2.10898e12 0.273177
\(732\) −5.19273e12 −0.668491
\(733\) 1.19055e13 1.52328 0.761641 0.647999i \(-0.224394\pi\)
0.761641 + 0.647999i \(0.224394\pi\)
\(734\) −7.52487e12 −0.956901
\(735\) −1.00907e12 −0.127535
\(736\) 2.04149e12 0.256447
\(737\) −6.70826e12 −0.837541
\(738\) 6.26719e12 0.777712
\(739\) 1.33277e13 1.64383 0.821914 0.569611i \(-0.192906\pi\)
0.821914 + 0.569611i \(0.192906\pi\)
\(740\) −2.58691e11 −0.0317131
\(741\) 0 0
\(742\) −7.16550e12 −0.867819
\(743\) −7.00674e12 −0.843463 −0.421732 0.906721i \(-0.638578\pi\)
−0.421732 + 0.906721i \(0.638578\pi\)
\(744\) 6.71604e12 0.803591
\(745\) 2.04914e12 0.243707
\(746\) 4.75709e11 0.0562362
\(747\) 1.57173e13 1.84687
\(748\) −9.05786e11 −0.105796
\(749\) 7.32946e12 0.850950
\(750\) −6.71847e12 −0.775344
\(751\) −1.50087e12 −0.172172 −0.0860861 0.996288i \(-0.527436\pi\)
−0.0860861 + 0.996288i \(0.527436\pi\)
\(752\) 3.32556e12 0.379214
\(753\) −1.65350e12 −0.187424
\(754\) 0 0
\(755\) 5.42153e12 0.607240
\(756\) 2.47857e12 0.275964
\(757\) −1.19276e13 −1.32015 −0.660075 0.751200i \(-0.729476\pi\)
−0.660075 + 0.751200i \(0.729476\pi\)
\(758\) −9.94911e12 −1.09464
\(759\) −9.19965e12 −1.00620
\(760\) 7.11091e11 0.0773150
\(761\) −7.03886e12 −0.760802 −0.380401 0.924822i \(-0.624214\pi\)
−0.380401 + 0.924822i \(0.624214\pi\)
\(762\) −1.42714e13 −1.53345
\(763\) −6.41807e12 −0.685558
\(764\) 6.96291e12 0.739385
\(765\) 2.27615e12 0.240284
\(766\) −1.24064e13 −1.30202
\(767\) 0 0
\(768\) 9.19415e11 0.0953643
\(769\) 5.61868e12 0.579383 0.289692 0.957120i \(-0.406447\pi\)
0.289692 + 0.957120i \(0.406447\pi\)
\(770\) 1.34331e12 0.137711
\(771\) 1.99443e13 2.03270
\(772\) 2.94559e12 0.298466
\(773\) −4.24702e10 −0.00427836 −0.00213918 0.999998i \(-0.500681\pi\)
−0.00213918 + 0.999998i \(0.500681\pi\)
\(774\) 5.50323e12 0.551168
\(775\) 1.27001e13 1.26459
\(776\) −6.31225e12 −0.624894
\(777\) 2.78859e12 0.274467
\(778\) 6.70257e12 0.655893
\(779\) −4.78884e12 −0.465921
\(780\) 0 0
\(781\) −6.84928e11 −0.0658742
\(782\) −4.99323e12 −0.477476
\(783\) −8.79962e12 −0.836634
\(784\) 5.68726e11 0.0537626
\(785\) 3.58679e12 0.337126
\(786\) 5.57437e12 0.520948
\(787\) −1.53467e13 −1.42603 −0.713013 0.701151i \(-0.752670\pi\)
−0.713013 + 0.701151i \(0.752670\pi\)
\(788\) 7.94290e11 0.0733857
\(789\) −2.01971e13 −1.85543
\(790\) −5.56354e12 −0.508194
\(791\) 4.63656e11 0.0421116
\(792\) −2.36359e12 −0.213456
\(793\) 0 0
\(794\) 3.75815e12 0.335569
\(795\) −7.43681e12 −0.660290
\(796\) 7.89368e11 0.0696900
\(797\) −4.72604e12 −0.414892 −0.207446 0.978247i \(-0.566515\pi\)
−0.207446 + 0.978247i \(0.566515\pi\)
\(798\) −7.66528e12 −0.669137
\(799\) −8.13389e12 −0.706054
\(800\) 1.73862e12 0.150072
\(801\) −1.04240e13 −0.894718
\(802\) −7.76636e11 −0.0662877
\(803\) −2.15719e12 −0.183091
\(804\) −1.66544e13 −1.40565
\(805\) 7.40514e12 0.621515
\(806\) 0 0
\(807\) −3.32091e13 −2.75630
\(808\) −8.07596e12 −0.666566
\(809\) −1.47237e13 −1.20850 −0.604251 0.796794i \(-0.706528\pi\)
−0.604251 + 0.796794i \(0.706528\pi\)
\(810\) −1.89955e12 −0.155049
\(811\) 9.13263e12 0.741314 0.370657 0.928770i \(-0.379133\pi\)
0.370657 + 0.928770i \(0.379133\pi\)
\(812\) −1.14083e13 −0.920910
\(813\) 1.81249e13 1.45502
\(814\) −6.57031e11 −0.0524537
\(815\) −5.71612e12 −0.453829
\(816\) −2.24877e12 −0.177558
\(817\) −4.20509e12 −0.330200
\(818\) 2.23343e12 0.174414
\(819\) 0 0
\(820\) 2.08353e12 0.160930
\(821\) −9.37570e12 −0.720211 −0.360105 0.932912i \(-0.617259\pi\)
−0.360105 + 0.932912i \(0.617259\pi\)
\(822\) −1.81144e13 −1.38389
\(823\) −1.09602e13 −0.832762 −0.416381 0.909190i \(-0.636702\pi\)
−0.416381 + 0.909190i \(0.636702\pi\)
\(824\) 3.25289e12 0.245809
\(825\) −7.83480e12 −0.588823
\(826\) 5.55011e12 0.414850
\(827\) −1.24213e13 −0.923408 −0.461704 0.887034i \(-0.652762\pi\)
−0.461704 + 0.887034i \(0.652762\pi\)
\(828\) −1.30295e13 −0.963367
\(829\) 8.95630e12 0.658618 0.329309 0.944222i \(-0.393184\pi\)
0.329309 + 0.944222i \(0.393184\pi\)
\(830\) 5.22522e12 0.382167
\(831\) −2.33219e13 −1.69652
\(832\) 0 0
\(833\) −1.39103e12 −0.100100
\(834\) −8.27007e11 −0.0591918
\(835\) 4.07398e11 0.0290022
\(836\) 1.80605e12 0.127880
\(837\) −1.05907e13 −0.745864
\(838\) −1.68933e13 −1.18336
\(839\) 1.45875e13 1.01637 0.508185 0.861248i \(-0.330317\pi\)
0.508185 + 0.861248i \(0.330317\pi\)
\(840\) 3.33501e12 0.231121
\(841\) 2.59954e13 1.79190
\(842\) −5.68404e11 −0.0389720
\(843\) 2.21282e13 1.50911
\(844\) 4.64987e12 0.315428
\(845\) 0 0
\(846\) −2.12248e13 −1.42455
\(847\) −1.30992e13 −0.874518
\(848\) 4.19149e12 0.278347
\(849\) 1.96291e13 1.29663
\(850\) −4.25244e12 −0.279417
\(851\) −3.62195e12 −0.236733
\(852\) −1.70045e12 −0.110557
\(853\) −1.83110e13 −1.18424 −0.592121 0.805849i \(-0.701709\pi\)
−0.592121 + 0.805849i \(0.701709\pi\)
\(854\) 1.06160e13 0.682970
\(855\) −4.53843e12 −0.290441
\(856\) −4.28740e12 −0.272937
\(857\) −1.39674e12 −0.0884506 −0.0442253 0.999022i \(-0.514082\pi\)
−0.0442253 + 0.999022i \(0.514082\pi\)
\(858\) 0 0
\(859\) −8.17566e12 −0.512334 −0.256167 0.966633i \(-0.582460\pi\)
−0.256167 + 0.966633i \(0.582460\pi\)
\(860\) 1.82955e12 0.114052
\(861\) −2.24596e13 −1.39280
\(862\) 1.72722e13 1.06553
\(863\) 5.86145e12 0.359713 0.179857 0.983693i \(-0.442437\pi\)
0.179857 + 0.983693i \(0.442437\pi\)
\(864\) −1.44985e12 −0.0885138
\(865\) −8.26505e12 −0.501965
\(866\) 1.49935e13 0.905885
\(867\) −1.98856e13 −1.19524
\(868\) −1.37303e13 −0.820996
\(869\) −1.41304e13 −0.840557
\(870\) −1.18402e13 −0.700685
\(871\) 0 0
\(872\) 3.75428e12 0.219888
\(873\) 4.02869e13 2.34747
\(874\) 9.95602e12 0.577144
\(875\) 1.37353e13 0.792138
\(876\) −5.35560e12 −0.307284
\(877\) 1.21872e12 0.0695672 0.0347836 0.999395i \(-0.488926\pi\)
0.0347836 + 0.999395i \(0.488926\pi\)
\(878\) −1.33197e13 −0.756428
\(879\) −2.22145e13 −1.25512
\(880\) −7.85775e11 −0.0441699
\(881\) −1.08861e13 −0.608806 −0.304403 0.952543i \(-0.598457\pi\)
−0.304403 + 0.952543i \(0.598457\pi\)
\(882\) −3.62980e12 −0.201964
\(883\) −2.77016e13 −1.53349 −0.766746 0.641950i \(-0.778126\pi\)
−0.766746 + 0.641950i \(0.778126\pi\)
\(884\) 0 0
\(885\) 5.76026e12 0.315644
\(886\) −1.69194e13 −0.922428
\(887\) 3.64336e13 1.97627 0.988133 0.153600i \(-0.0490866\pi\)
0.988133 + 0.153600i \(0.0490866\pi\)
\(888\) −1.63120e12 −0.0880334
\(889\) 2.91766e13 1.56667
\(890\) −3.46545e12 −0.185142
\(891\) −4.82453e12 −0.256452
\(892\) −1.04304e13 −0.551642
\(893\) 1.62182e13 0.853435
\(894\) 1.29210e13 0.676514
\(895\) 7.76571e12 0.404555
\(896\) −1.87966e12 −0.0974299
\(897\) 0 0
\(898\) 1.75465e13 0.900426
\(899\) 4.87464e13 2.48899
\(900\) −1.10965e13 −0.563759
\(901\) −1.02519e13 −0.518252
\(902\) 5.29181e12 0.266179
\(903\) −1.97219e13 −0.987081
\(904\) −2.71217e11 −0.0135070
\(905\) 8.76949e11 0.0434566
\(906\) 3.41858e13 1.68566
\(907\) 2.16470e13 1.06210 0.531049 0.847341i \(-0.321798\pi\)
0.531049 + 0.847341i \(0.321798\pi\)
\(908\) −7.54710e12 −0.368463
\(909\) 5.15436e13 2.50402
\(910\) 0 0
\(911\) 1.54878e13 0.745002 0.372501 0.928032i \(-0.378500\pi\)
0.372501 + 0.928032i \(0.378500\pi\)
\(912\) 4.48383e12 0.214621
\(913\) 1.32712e13 0.632107
\(914\) 2.20855e13 1.04677
\(915\) 1.10180e13 0.519646
\(916\) −3.07473e12 −0.144304
\(917\) −1.13963e13 −0.532231
\(918\) 3.54615e12 0.164803
\(919\) 1.42584e13 0.659404 0.329702 0.944085i \(-0.393052\pi\)
0.329702 + 0.944085i \(0.393052\pi\)
\(920\) −4.33167e12 −0.199347
\(921\) −3.42772e13 −1.56978
\(922\) −1.55334e11 −0.00707908
\(923\) 0 0
\(924\) 8.47035e12 0.382277
\(925\) −3.08460e12 −0.138535
\(926\) −1.88826e13 −0.843943
\(927\) −2.07611e13 −0.923403
\(928\) 6.67330e12 0.295376
\(929\) −2.94641e13 −1.29785 −0.648923 0.760854i \(-0.724780\pi\)
−0.648923 + 0.760854i \(0.724780\pi\)
\(930\) −1.42502e13 −0.624664
\(931\) 2.77358e12 0.120995
\(932\) −5.45946e12 −0.237016
\(933\) −4.76624e13 −2.05925
\(934\) 8.61084e12 0.370241
\(935\) 1.92191e12 0.0822395
\(936\) 0 0
\(937\) −1.48665e13 −0.630058 −0.315029 0.949082i \(-0.602014\pi\)
−0.315029 + 0.949082i \(0.602014\pi\)
\(938\) 3.40484e13 1.43610
\(939\) 2.23032e13 0.936207
\(940\) −7.05621e12 −0.294779
\(941\) 1.07989e13 0.448979 0.224489 0.974477i \(-0.427929\pi\)
0.224489 + 0.974477i \(0.427929\pi\)
\(942\) 2.26167e13 0.935839
\(943\) 2.91716e13 1.20132
\(944\) −3.24656e12 −0.133061
\(945\) −5.25906e12 −0.214519
\(946\) 4.64675e12 0.188642
\(947\) 3.34338e13 1.35086 0.675431 0.737423i \(-0.263958\pi\)
0.675431 + 0.737423i \(0.263958\pi\)
\(948\) −3.50813e13 −1.41071
\(949\) 0 0
\(950\) 8.47896e12 0.337743
\(951\) 6.92388e12 0.274497
\(952\) 4.59740e12 0.181404
\(953\) −4.30973e13 −1.69251 −0.846257 0.532775i \(-0.821149\pi\)
−0.846257 + 0.532775i \(0.821149\pi\)
\(954\) −2.67515e13 −1.04564
\(955\) −1.47740e13 −0.574754
\(956\) 9.92224e12 0.384193
\(957\) −3.00721e13 −1.15894
\(958\) −9.83285e12 −0.377168
\(959\) 3.70331e13 1.41386
\(960\) −1.95083e12 −0.0741307
\(961\) 3.22286e13 1.21895
\(962\) 0 0
\(963\) 2.73637e13 1.02531
\(964\) 7.55264e12 0.281677
\(965\) −6.24999e12 −0.232010
\(966\) 4.66937e13 1.72529
\(967\) −2.87351e13 −1.05680 −0.528401 0.848995i \(-0.677208\pi\)
−0.528401 + 0.848995i \(0.677208\pi\)
\(968\) 7.66242e12 0.280496
\(969\) −1.09669e13 −0.399601
\(970\) 1.33934e13 0.485756
\(971\) 2.53809e13 0.916263 0.458132 0.888884i \(-0.348519\pi\)
0.458132 + 0.888884i \(0.348519\pi\)
\(972\) −1.89449e13 −0.680759
\(973\) 1.69074e12 0.0604739
\(974\) 3.49167e11 0.0124313
\(975\) 0 0
\(976\) −6.20989e12 −0.219058
\(977\) 4.19116e13 1.47166 0.735832 0.677165i \(-0.236792\pi\)
0.735832 + 0.677165i \(0.236792\pi\)
\(978\) −3.60434e13 −1.25980
\(979\) −8.80165e12 −0.306226
\(980\) −1.20673e12 −0.0417919
\(981\) −2.39611e13 −0.826031
\(982\) 2.09714e12 0.0719658
\(983\) 4.57288e12 0.156206 0.0781032 0.996945i \(-0.475114\pi\)
0.0781032 + 0.996945i \(0.475114\pi\)
\(984\) 1.31378e13 0.446731
\(985\) −1.68534e12 −0.0570457
\(986\) −1.63221e13 −0.549957
\(987\) 7.60631e13 2.55122
\(988\) 0 0
\(989\) 2.56157e13 0.851378
\(990\) 5.01509e12 0.165928
\(991\) 2.78674e13 0.917834 0.458917 0.888479i \(-0.348237\pi\)
0.458917 + 0.888479i \(0.348237\pi\)
\(992\) 8.03159e12 0.263329
\(993\) −6.10748e13 −1.99338
\(994\) 3.47642e12 0.112952
\(995\) −1.67489e12 −0.0541730
\(996\) 3.29480e13 1.06087
\(997\) −1.72557e13 −0.553100 −0.276550 0.961000i \(-0.589191\pi\)
−0.276550 + 0.961000i \(0.589191\pi\)
\(998\) 3.38702e13 1.08076
\(999\) 2.57227e12 0.0817095
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.o.1.12 12
13.12 even 2 338.10.a.p.1.12 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.10.a.o.1.12 12 1.1 even 1 trivial
338.10.a.p.1.12 yes 12 13.12 even 2