Properties

Label 338.10.a.l.1.3
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,96,81,1536,1693] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 10375x^{4} - 44865x^{3} + 25702990x^{2} + 68900300x - 16723086000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4}\cdot 13 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(31.0068\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{2} -78.0204 q^{3} +256.000 q^{4} -1338.85 q^{5} -1248.33 q^{6} -132.180 q^{7} +4096.00 q^{8} -13595.8 q^{9} -21421.6 q^{10} -24257.6 q^{11} -19973.2 q^{12} -2114.88 q^{14} +104457. q^{15} +65536.0 q^{16} -427172. q^{17} -217533. q^{18} -949104. q^{19} -342745. q^{20} +10312.8 q^{21} -388121. q^{22} +972785. q^{23} -319572. q^{24} -160614. q^{25} +2.59643e6 q^{27} -33838.1 q^{28} -3.04579e6 q^{29} +1.67132e6 q^{30} +2.57547e6 q^{31} +1.04858e6 q^{32} +1.89258e6 q^{33} -6.83475e6 q^{34} +176969. q^{35} -3.48053e6 q^{36} -1.08742e7 q^{37} -1.51857e7 q^{38} -5.48392e6 q^{40} +1.20652e7 q^{41} +165004. q^{42} -2.13875e7 q^{43} -6.20994e6 q^{44} +1.82027e7 q^{45} +1.55646e7 q^{46} -2.69913e7 q^{47} -5.11314e6 q^{48} -4.03361e7 q^{49} -2.56982e6 q^{50} +3.33281e7 q^{51} +3.73277e7 q^{53} +4.15428e7 q^{54} +3.24772e7 q^{55} -541410. q^{56} +7.40495e7 q^{57} -4.87326e7 q^{58} +3.49075e7 q^{59} +2.67411e7 q^{60} -1.58329e8 q^{61} +4.12075e7 q^{62} +1.79710e6 q^{63} +1.67772e7 q^{64} +3.02814e7 q^{66} +6.76408e7 q^{67} -1.09356e8 q^{68} -7.58970e7 q^{69} +2.83150e6 q^{70} +1.14781e8 q^{71} -5.56885e7 q^{72} -1.49856e8 q^{73} -1.73988e8 q^{74} +1.25311e7 q^{75} -2.42971e8 q^{76} +3.20637e6 q^{77} +6.16681e7 q^{79} -8.77427e7 q^{80} +6.50322e7 q^{81} +1.93043e8 q^{82} -4.82674e8 q^{83} +2.64006e6 q^{84} +5.71918e8 q^{85} -3.42200e8 q^{86} +2.37633e8 q^{87} -9.93590e7 q^{88} -1.91320e8 q^{89} +2.91244e8 q^{90} +2.49033e8 q^{92} -2.00939e8 q^{93} -4.31861e8 q^{94} +1.27070e9 q^{95} -8.18103e7 q^{96} -1.07090e8 q^{97} -6.45378e8 q^{98} +3.29801e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 96 q^{2} + 81 q^{3} + 1536 q^{4} + 1693 q^{5} + 1296 q^{6} + 473 q^{7} + 24576 q^{8} + 69813 q^{9} + 27088 q^{10} + 14011 q^{11} + 20736 q^{12} + 7568 q^{14} - 294780 q^{15} + 393216 q^{16} - 173558 q^{17}+ \cdots - 881769510 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 0.707107
\(3\) −78.0204 −0.556112 −0.278056 0.960565i \(-0.589690\pi\)
−0.278056 + 0.960565i \(0.589690\pi\)
\(4\) 256.000 0.500000
\(5\) −1338.85 −0.958001 −0.479000 0.877815i \(-0.659001\pi\)
−0.479000 + 0.877815i \(0.659001\pi\)
\(6\) −1248.33 −0.393231
\(7\) −132.180 −0.0208078 −0.0104039 0.999946i \(-0.503312\pi\)
−0.0104039 + 0.999946i \(0.503312\pi\)
\(8\) 4096.00 0.353553
\(9\) −13595.8 −0.690739
\(10\) −21421.6 −0.677409
\(11\) −24257.6 −0.499551 −0.249776 0.968304i \(-0.580357\pi\)
−0.249776 + 0.968304i \(0.580357\pi\)
\(12\) −19973.2 −0.278056
\(13\) 0 0
\(14\) −2114.88 −0.0147133
\(15\) 104457. 0.532756
\(16\) 65536.0 0.250000
\(17\) −427172. −1.24046 −0.620230 0.784420i \(-0.712961\pi\)
−0.620230 + 0.784420i \(0.712961\pi\)
\(18\) −217533. −0.488426
\(19\) −949104. −1.67079 −0.835396 0.549648i \(-0.814762\pi\)
−0.835396 + 0.549648i \(0.814762\pi\)
\(20\) −342745. −0.479000
\(21\) 10312.8 0.0115714
\(22\) −388121. −0.353236
\(23\) 972785. 0.724839 0.362419 0.932015i \(-0.381951\pi\)
0.362419 + 0.932015i \(0.381951\pi\)
\(24\) −319572. −0.196615
\(25\) −160614. −0.0822342
\(26\) 0 0
\(27\) 2.59643e6 0.940241
\(28\) −33838.1 −0.0104039
\(29\) −3.04579e6 −0.799666 −0.399833 0.916588i \(-0.630932\pi\)
−0.399833 + 0.916588i \(0.630932\pi\)
\(30\) 1.67132e6 0.376715
\(31\) 2.57547e6 0.500874 0.250437 0.968133i \(-0.419426\pi\)
0.250437 + 0.968133i \(0.419426\pi\)
\(32\) 1.04858e6 0.176777
\(33\) 1.89258e6 0.277807
\(34\) −6.83475e6 −0.877138
\(35\) 176969. 0.0199338
\(36\) −3.48053e6 −0.345370
\(37\) −1.08742e7 −0.953874 −0.476937 0.878937i \(-0.658253\pi\)
−0.476937 + 0.878937i \(0.658253\pi\)
\(38\) −1.51857e7 −1.18143
\(39\) 0 0
\(40\) −5.48392e6 −0.338704
\(41\) 1.20652e7 0.666817 0.333408 0.942782i \(-0.391801\pi\)
0.333408 + 0.942782i \(0.391801\pi\)
\(42\) 165004. 0.00818225
\(43\) −2.13875e7 −0.954008 −0.477004 0.878901i \(-0.658277\pi\)
−0.477004 + 0.878901i \(0.658277\pi\)
\(44\) −6.20994e6 −0.249776
\(45\) 1.82027e7 0.661729
\(46\) 1.55646e7 0.512538
\(47\) −2.69913e7 −0.806833 −0.403417 0.915016i \(-0.632177\pi\)
−0.403417 + 0.915016i \(0.632177\pi\)
\(48\) −5.11314e6 −0.139028
\(49\) −4.03361e7 −0.999567
\(50\) −2.56982e6 −0.0581484
\(51\) 3.33281e7 0.689835
\(52\) 0 0
\(53\) 3.73277e7 0.649815 0.324908 0.945746i \(-0.394667\pi\)
0.324908 + 0.945746i \(0.394667\pi\)
\(54\) 4.15428e7 0.664851
\(55\) 3.24772e7 0.478571
\(56\) −541410. −0.00735665
\(57\) 7.40495e7 0.929148
\(58\) −4.87326e7 −0.565449
\(59\) 3.49075e7 0.375046 0.187523 0.982260i \(-0.439954\pi\)
0.187523 + 0.982260i \(0.439954\pi\)
\(60\) 2.67411e7 0.266378
\(61\) −1.58329e8 −1.46412 −0.732058 0.681242i \(-0.761440\pi\)
−0.732058 + 0.681242i \(0.761440\pi\)
\(62\) 4.12075e7 0.354171
\(63\) 1.79710e6 0.0143727
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) 3.02814e7 0.196439
\(67\) 6.76408e7 0.410083 0.205042 0.978753i \(-0.434267\pi\)
0.205042 + 0.978753i \(0.434267\pi\)
\(68\) −1.09356e8 −0.620230
\(69\) −7.58970e7 −0.403092
\(70\) 2.83150e6 0.0140954
\(71\) 1.14781e8 0.536053 0.268026 0.963412i \(-0.413629\pi\)
0.268026 + 0.963412i \(0.413629\pi\)
\(72\) −5.56885e7 −0.244213
\(73\) −1.49856e8 −0.617620 −0.308810 0.951124i \(-0.599931\pi\)
−0.308810 + 0.951124i \(0.599931\pi\)
\(74\) −1.73988e8 −0.674491
\(75\) 1.25311e7 0.0457315
\(76\) −2.42971e8 −0.835396
\(77\) 3.20637e6 0.0103945
\(78\) 0 0
\(79\) 6.16681e7 0.178131 0.0890654 0.996026i \(-0.471612\pi\)
0.0890654 + 0.996026i \(0.471612\pi\)
\(80\) −8.77427e7 −0.239500
\(81\) 6.50322e7 0.167860
\(82\) 1.93043e8 0.471511
\(83\) −4.82674e8 −1.11636 −0.558178 0.829721i \(-0.688499\pi\)
−0.558178 + 0.829721i \(0.688499\pi\)
\(84\) 2.64006e6 0.00578572
\(85\) 5.71918e8 1.18836
\(86\) −3.42200e8 −0.674585
\(87\) 2.37633e8 0.444704
\(88\) −9.93590e7 −0.176618
\(89\) −1.91320e8 −0.323225 −0.161612 0.986854i \(-0.551669\pi\)
−0.161612 + 0.986854i \(0.551669\pi\)
\(90\) 2.91244e8 0.467913
\(91\) 0 0
\(92\) 2.49033e8 0.362419
\(93\) −2.00939e8 −0.278542
\(94\) −4.31861e8 −0.570517
\(95\) 1.27070e9 1.60062
\(96\) −8.18103e7 −0.0983077
\(97\) −1.07090e8 −0.122822 −0.0614110 0.998113i \(-0.519560\pi\)
−0.0614110 + 0.998113i \(0.519560\pi\)
\(98\) −6.45378e8 −0.706801
\(99\) 3.29801e8 0.345060
\(100\) −4.11171e7 −0.0411171
\(101\) 1.37121e9 1.31117 0.655583 0.755123i \(-0.272423\pi\)
0.655583 + 0.755123i \(0.272423\pi\)
\(102\) 5.33250e8 0.487787
\(103\) 1.97511e9 1.72911 0.864555 0.502537i \(-0.167600\pi\)
0.864555 + 0.502537i \(0.167600\pi\)
\(104\) 0 0
\(105\) −1.38072e7 −0.0110855
\(106\) 5.97243e8 0.459489
\(107\) 2.25459e9 1.66280 0.831400 0.555674i \(-0.187540\pi\)
0.831400 + 0.555674i \(0.187540\pi\)
\(108\) 6.64685e8 0.470120
\(109\) 6.84819e7 0.0464683 0.0232341 0.999730i \(-0.492604\pi\)
0.0232341 + 0.999730i \(0.492604\pi\)
\(110\) 5.19635e8 0.338401
\(111\) 8.48412e8 0.530461
\(112\) −8.66256e6 −0.00520194
\(113\) −2.69288e9 −1.55369 −0.776844 0.629693i \(-0.783181\pi\)
−0.776844 + 0.629693i \(0.783181\pi\)
\(114\) 1.18479e9 0.657007
\(115\) −1.30241e9 −0.694396
\(116\) −7.79721e8 −0.399833
\(117\) 0 0
\(118\) 5.58520e8 0.265197
\(119\) 5.64637e7 0.0258112
\(120\) 4.27857e8 0.188358
\(121\) −1.76952e9 −0.750448
\(122\) −2.53326e9 −1.03529
\(123\) −9.41330e8 −0.370825
\(124\) 6.59320e8 0.250437
\(125\) 2.82997e9 1.03678
\(126\) 2.87536e7 0.0101631
\(127\) −4.79639e9 −1.63605 −0.818027 0.575180i \(-0.804932\pi\)
−0.818027 + 0.575180i \(0.804932\pi\)
\(128\) 2.68435e8 0.0883883
\(129\) 1.66866e9 0.530536
\(130\) 0 0
\(131\) −2.25488e8 −0.0668965 −0.0334483 0.999440i \(-0.510649\pi\)
−0.0334483 + 0.999440i \(0.510649\pi\)
\(132\) 4.84502e8 0.138903
\(133\) 1.25453e8 0.0347654
\(134\) 1.08225e9 0.289973
\(135\) −3.47622e9 −0.900752
\(136\) −1.74970e9 −0.438569
\(137\) 5.88169e9 1.42646 0.713230 0.700930i \(-0.247231\pi\)
0.713230 + 0.700930i \(0.247231\pi\)
\(138\) −1.21435e9 −0.285029
\(139\) 4.98569e9 1.13281 0.566407 0.824126i \(-0.308333\pi\)
0.566407 + 0.824126i \(0.308333\pi\)
\(140\) 4.53041e7 0.00996692
\(141\) 2.10587e9 0.448690
\(142\) 1.83650e9 0.379046
\(143\) 0 0
\(144\) −8.91015e8 −0.172685
\(145\) 4.07784e9 0.766080
\(146\) −2.39770e9 −0.436723
\(147\) 3.14704e9 0.555872
\(148\) −2.78381e9 −0.476937
\(149\) −4.11445e9 −0.683871 −0.341935 0.939723i \(-0.611082\pi\)
−0.341935 + 0.939723i \(0.611082\pi\)
\(150\) 2.00498e8 0.0323370
\(151\) −4.09807e9 −0.641480 −0.320740 0.947167i \(-0.603932\pi\)
−0.320740 + 0.947167i \(0.603932\pi\)
\(152\) −3.88753e9 −0.590714
\(153\) 5.80775e9 0.856834
\(154\) 5.13019e7 0.00735005
\(155\) −3.44816e9 −0.479838
\(156\) 0 0
\(157\) 1.11279e10 1.46173 0.730863 0.682524i \(-0.239118\pi\)
0.730863 + 0.682524i \(0.239118\pi\)
\(158\) 9.86690e8 0.125957
\(159\) −2.91232e9 −0.361370
\(160\) −1.40388e9 −0.169352
\(161\) −1.28583e8 −0.0150823
\(162\) 1.04052e9 0.118695
\(163\) 1.35306e10 1.50132 0.750661 0.660688i \(-0.229735\pi\)
0.750661 + 0.660688i \(0.229735\pi\)
\(164\) 3.08869e9 0.333408
\(165\) −2.53388e9 −0.266139
\(166\) −7.72279e9 −0.789383
\(167\) 7.60541e9 0.756656 0.378328 0.925672i \(-0.376499\pi\)
0.378328 + 0.925672i \(0.376499\pi\)
\(168\) 4.22410e7 0.00409112
\(169\) 0 0
\(170\) 9.15069e9 0.840299
\(171\) 1.29038e10 1.15408
\(172\) −5.47520e9 −0.477004
\(173\) −4.57829e9 −0.388594 −0.194297 0.980943i \(-0.562243\pi\)
−0.194297 + 0.980943i \(0.562243\pi\)
\(174\) 3.80214e9 0.314453
\(175\) 2.12300e7 0.00171111
\(176\) −1.58974e9 −0.124888
\(177\) −2.72350e9 −0.208568
\(178\) −3.06111e9 −0.228554
\(179\) 2.99951e9 0.218379 0.109190 0.994021i \(-0.465174\pi\)
0.109190 + 0.994021i \(0.465174\pi\)
\(180\) 4.65990e9 0.330864
\(181\) −9.34858e9 −0.647429 −0.323714 0.946155i \(-0.604932\pi\)
−0.323714 + 0.946155i \(0.604932\pi\)
\(182\) 0 0
\(183\) 1.23529e10 0.814213
\(184\) 3.98453e9 0.256269
\(185\) 1.45589e10 0.913812
\(186\) −3.21502e9 −0.196959
\(187\) 1.03622e10 0.619673
\(188\) −6.90978e9 −0.403417
\(189\) −3.43196e8 −0.0195643
\(190\) 2.03313e10 1.13181
\(191\) −5.09241e9 −0.276868 −0.138434 0.990372i \(-0.544207\pi\)
−0.138434 + 0.990372i \(0.544207\pi\)
\(192\) −1.30897e9 −0.0695140
\(193\) 1.36610e10 0.708722 0.354361 0.935109i \(-0.384698\pi\)
0.354361 + 0.935109i \(0.384698\pi\)
\(194\) −1.71344e9 −0.0868483
\(195\) 0 0
\(196\) −1.03261e10 −0.499784
\(197\) −2.47334e9 −0.117000 −0.0585001 0.998287i \(-0.518632\pi\)
−0.0585001 + 0.998287i \(0.518632\pi\)
\(198\) 5.27682e9 0.243994
\(199\) 4.35407e10 1.96814 0.984071 0.177777i \(-0.0568905\pi\)
0.984071 + 0.177777i \(0.0568905\pi\)
\(200\) −6.57874e8 −0.0290742
\(201\) −5.27736e9 −0.228052
\(202\) 2.19394e10 0.927134
\(203\) 4.02593e8 0.0166392
\(204\) 8.53200e9 0.344918
\(205\) −1.61534e10 −0.638811
\(206\) 3.16017e10 1.22267
\(207\) −1.32258e10 −0.500674
\(208\) 0 0
\(209\) 2.30230e10 0.834647
\(210\) −2.20915e8 −0.00783860
\(211\) −2.27973e10 −0.791795 −0.395898 0.918295i \(-0.629566\pi\)
−0.395898 + 0.918295i \(0.629566\pi\)
\(212\) 9.55589e9 0.324908
\(213\) −8.95526e9 −0.298105
\(214\) 3.60734e10 1.17578
\(215\) 2.86346e10 0.913940
\(216\) 1.06350e10 0.332425
\(217\) −3.40426e8 −0.0104221
\(218\) 1.09571e9 0.0328580
\(219\) 1.16918e10 0.343466
\(220\) 8.31416e9 0.239285
\(221\) 0 0
\(222\) 1.35746e10 0.375093
\(223\) −3.15215e10 −0.853561 −0.426780 0.904355i \(-0.640352\pi\)
−0.426780 + 0.904355i \(0.640352\pi\)
\(224\) −1.38601e8 −0.00367833
\(225\) 2.18367e9 0.0568024
\(226\) −4.30861e10 −1.09862
\(227\) 5.59976e10 1.39976 0.699880 0.714261i \(-0.253237\pi\)
0.699880 + 0.714261i \(0.253237\pi\)
\(228\) 1.89567e10 0.464574
\(229\) 5.70932e10 1.37191 0.685953 0.727646i \(-0.259385\pi\)
0.685953 + 0.727646i \(0.259385\pi\)
\(230\) −2.08386e10 −0.491012
\(231\) −2.50162e8 −0.00578053
\(232\) −1.24755e10 −0.282724
\(233\) −6.90380e10 −1.53457 −0.767285 0.641306i \(-0.778393\pi\)
−0.767285 + 0.641306i \(0.778393\pi\)
\(234\) 0 0
\(235\) 3.61372e10 0.772947
\(236\) 8.93631e9 0.187523
\(237\) −4.81137e9 −0.0990607
\(238\) 9.03419e8 0.0182513
\(239\) 1.10735e10 0.219530 0.109765 0.993958i \(-0.464990\pi\)
0.109765 + 0.993958i \(0.464990\pi\)
\(240\) 6.84572e9 0.133189
\(241\) −2.50128e10 −0.477624 −0.238812 0.971066i \(-0.576758\pi\)
−0.238812 + 0.971066i \(0.576758\pi\)
\(242\) −2.83123e10 −0.530647
\(243\) −5.61793e10 −1.03359
\(244\) −4.05322e10 −0.732058
\(245\) 5.40039e10 0.957586
\(246\) −1.50613e10 −0.262213
\(247\) 0 0
\(248\) 1.05491e10 0.177086
\(249\) 3.76585e10 0.620820
\(250\) 4.52796e10 0.733115
\(251\) 1.07464e10 0.170896 0.0854478 0.996343i \(-0.472768\pi\)
0.0854478 + 0.996343i \(0.472768\pi\)
\(252\) 4.60057e8 0.00718636
\(253\) −2.35974e10 −0.362094
\(254\) −7.67422e10 −1.15686
\(255\) −4.46213e10 −0.660863
\(256\) 4.29497e9 0.0625000
\(257\) −1.31427e11 −1.87925 −0.939626 0.342202i \(-0.888827\pi\)
−0.939626 + 0.342202i \(0.888827\pi\)
\(258\) 2.66986e10 0.375145
\(259\) 1.43736e9 0.0198480
\(260\) 0 0
\(261\) 4.14100e10 0.552360
\(262\) −3.60782e9 −0.0473030
\(263\) 1.15856e9 0.0149320 0.00746600 0.999972i \(-0.497623\pi\)
0.00746600 + 0.999972i \(0.497623\pi\)
\(264\) 7.75203e9 0.0982195
\(265\) −4.99761e10 −0.622523
\(266\) 2.00724e9 0.0245829
\(267\) 1.49268e10 0.179749
\(268\) 1.73160e10 0.205042
\(269\) −3.20648e10 −0.373373 −0.186687 0.982420i \(-0.559775\pi\)
−0.186687 + 0.982420i \(0.559775\pi\)
\(270\) −5.56195e10 −0.636928
\(271\) 1.63517e11 1.84162 0.920812 0.390007i \(-0.127527\pi\)
0.920812 + 0.390007i \(0.127527\pi\)
\(272\) −2.79952e10 −0.310115
\(273\) 0 0
\(274\) 9.41071e10 1.00866
\(275\) 3.89610e9 0.0410802
\(276\) −1.94296e10 −0.201546
\(277\) 1.28133e11 1.30768 0.653839 0.756634i \(-0.273157\pi\)
0.653839 + 0.756634i \(0.273157\pi\)
\(278\) 7.97710e10 0.801021
\(279\) −3.50156e10 −0.345973
\(280\) 7.24865e8 0.00704768
\(281\) −6.67853e10 −0.639003 −0.319501 0.947586i \(-0.603515\pi\)
−0.319501 + 0.947586i \(0.603515\pi\)
\(282\) 3.36940e10 0.317272
\(283\) −1.58033e11 −1.46457 −0.732285 0.680998i \(-0.761546\pi\)
−0.732285 + 0.680998i \(0.761546\pi\)
\(284\) 2.93839e10 0.268026
\(285\) −9.91409e10 −0.890125
\(286\) 0 0
\(287\) −1.59478e9 −0.0138750
\(288\) −1.42562e10 −0.122107
\(289\) 6.38881e10 0.538741
\(290\) 6.52455e10 0.541701
\(291\) 8.35521e9 0.0683028
\(292\) −3.83631e10 −0.308810
\(293\) 2.34407e11 1.85809 0.929043 0.369971i \(-0.120632\pi\)
0.929043 + 0.369971i \(0.120632\pi\)
\(294\) 5.03527e10 0.393061
\(295\) −4.67358e10 −0.359294
\(296\) −4.45409e10 −0.337245
\(297\) −6.29830e10 −0.469699
\(298\) −6.58313e10 −0.483570
\(299\) 0 0
\(300\) 3.20797e9 0.0228657
\(301\) 2.82700e9 0.0198508
\(302\) −6.55692e10 −0.453595
\(303\) −1.06982e11 −0.729155
\(304\) −6.22005e10 −0.417698
\(305\) 2.11978e11 1.40263
\(306\) 9.29241e10 0.605873
\(307\) −5.83393e10 −0.374833 −0.187417 0.982281i \(-0.560011\pi\)
−0.187417 + 0.982281i \(0.560011\pi\)
\(308\) 8.20831e8 0.00519727
\(309\) −1.54099e11 −0.961580
\(310\) −5.51705e10 −0.339297
\(311\) −6.30562e9 −0.0382213 −0.0191107 0.999817i \(-0.506083\pi\)
−0.0191107 + 0.999817i \(0.506083\pi\)
\(312\) 0 0
\(313\) 2.01041e10 0.118396 0.0591978 0.998246i \(-0.481146\pi\)
0.0591978 + 0.998246i \(0.481146\pi\)
\(314\) 1.78047e11 1.03360
\(315\) −2.40604e9 −0.0137691
\(316\) 1.57870e10 0.0890654
\(317\) −3.31339e9 −0.0184292 −0.00921458 0.999958i \(-0.502933\pi\)
−0.00921458 + 0.999958i \(0.502933\pi\)
\(318\) −4.65971e10 −0.255527
\(319\) 7.38834e10 0.399474
\(320\) −2.24621e10 −0.119750
\(321\) −1.75904e11 −0.924704
\(322\) −2.05733e9 −0.0106648
\(323\) 4.05431e11 2.07255
\(324\) 1.66483e10 0.0839298
\(325\) 0 0
\(326\) 2.16490e11 1.06159
\(327\) −5.34299e9 −0.0258416
\(328\) 4.94190e10 0.235755
\(329\) 3.56772e9 0.0167884
\(330\) −4.05421e10 −0.188189
\(331\) −1.44793e11 −0.663011 −0.331506 0.943453i \(-0.607557\pi\)
−0.331506 + 0.943453i \(0.607557\pi\)
\(332\) −1.23565e11 −0.558178
\(333\) 1.47844e11 0.658878
\(334\) 1.21686e11 0.535036
\(335\) −9.05607e10 −0.392860
\(336\) 6.75856e8 0.00289286
\(337\) −2.45134e10 −0.103531 −0.0517654 0.998659i \(-0.516485\pi\)
−0.0517654 + 0.998659i \(0.516485\pi\)
\(338\) 0 0
\(339\) 2.10100e11 0.864026
\(340\) 1.46411e11 0.594181
\(341\) −6.24746e10 −0.250212
\(342\) 2.06462e11 0.816059
\(343\) 1.06656e10 0.0416065
\(344\) −8.76032e10 −0.337293
\(345\) 1.01615e11 0.386162
\(346\) −7.32527e10 −0.274777
\(347\) 7.87399e10 0.291549 0.145775 0.989318i \(-0.453433\pi\)
0.145775 + 0.989318i \(0.453433\pi\)
\(348\) 6.08342e10 0.222352
\(349\) 3.63227e11 1.31058 0.655290 0.755377i \(-0.272546\pi\)
0.655290 + 0.755377i \(0.272546\pi\)
\(350\) 3.39679e8 0.00120994
\(351\) 0 0
\(352\) −2.54359e10 −0.0883090
\(353\) −5.70238e11 −1.95465 −0.977327 0.211737i \(-0.932088\pi\)
−0.977327 + 0.211737i \(0.932088\pi\)
\(354\) −4.35759e10 −0.147480
\(355\) −1.53674e11 −0.513539
\(356\) −4.89778e10 −0.161612
\(357\) −4.40532e9 −0.0143539
\(358\) 4.79921e10 0.154417
\(359\) 4.97640e11 1.58121 0.790607 0.612324i \(-0.209765\pi\)
0.790607 + 0.612324i \(0.209765\pi\)
\(360\) 7.45583e10 0.233956
\(361\) 5.78111e11 1.79155
\(362\) −1.49577e11 −0.457801
\(363\) 1.38059e11 0.417334
\(364\) 0 0
\(365\) 2.00634e11 0.591681
\(366\) 1.97646e11 0.575736
\(367\) −1.98143e11 −0.570141 −0.285070 0.958507i \(-0.592017\pi\)
−0.285070 + 0.958507i \(0.592017\pi\)
\(368\) 6.37524e10 0.181210
\(369\) −1.64036e11 −0.460597
\(370\) 2.32943e11 0.646163
\(371\) −4.93398e9 −0.0135212
\(372\) −5.14404e10 −0.139271
\(373\) −6.15553e11 −1.64655 −0.823276 0.567642i \(-0.807856\pi\)
−0.823276 + 0.567642i \(0.807856\pi\)
\(374\) 1.65794e11 0.438175
\(375\) −2.20796e11 −0.576567
\(376\) −1.10556e11 −0.285259
\(377\) 0 0
\(378\) −5.49114e9 −0.0138340
\(379\) 7.33929e11 1.82716 0.913582 0.406654i \(-0.133305\pi\)
0.913582 + 0.406654i \(0.133305\pi\)
\(380\) 3.25300e11 0.800310
\(381\) 3.74216e11 0.909830
\(382\) −8.14785e10 −0.195775
\(383\) 4.59205e11 1.09047 0.545233 0.838284i \(-0.316441\pi\)
0.545233 + 0.838284i \(0.316441\pi\)
\(384\) −2.09434e10 −0.0491538
\(385\) −4.29284e9 −0.00995798
\(386\) 2.18577e11 0.501142
\(387\) 2.90781e11 0.658970
\(388\) −2.74151e10 −0.0614110
\(389\) −3.60025e11 −0.797185 −0.398593 0.917128i \(-0.630501\pi\)
−0.398593 + 0.917128i \(0.630501\pi\)
\(390\) 0 0
\(391\) −4.15546e11 −0.899134
\(392\) −1.65217e11 −0.353400
\(393\) 1.75927e10 0.0372020
\(394\) −3.95735e10 −0.0827316
\(395\) −8.25642e10 −0.170649
\(396\) 8.44292e10 0.172530
\(397\) 8.51526e11 1.72044 0.860222 0.509919i \(-0.170325\pi\)
0.860222 + 0.509919i \(0.170325\pi\)
\(398\) 6.96651e11 1.39169
\(399\) −9.78787e9 −0.0193335
\(400\) −1.05260e10 −0.0205586
\(401\) −4.18560e11 −0.808365 −0.404183 0.914678i \(-0.632444\pi\)
−0.404183 + 0.914678i \(0.632444\pi\)
\(402\) −8.44378e10 −0.161257
\(403\) 0 0
\(404\) 3.51030e11 0.655583
\(405\) −8.70682e10 −0.160810
\(406\) 6.44148e9 0.0117657
\(407\) 2.63783e11 0.476509
\(408\) 1.36512e11 0.243894
\(409\) −4.98140e11 −0.880231 −0.440116 0.897941i \(-0.645063\pi\)
−0.440116 + 0.897941i \(0.645063\pi\)
\(410\) −2.58455e11 −0.451708
\(411\) −4.58892e11 −0.793273
\(412\) 5.05627e11 0.864555
\(413\) −4.61408e9 −0.00780386
\(414\) −2.11613e11 −0.354030
\(415\) 6.46227e11 1.06947
\(416\) 0 0
\(417\) −3.88986e11 −0.629972
\(418\) 3.68367e11 0.590184
\(419\) −3.28439e11 −0.520584 −0.260292 0.965530i \(-0.583819\pi\)
−0.260292 + 0.965530i \(0.583819\pi\)
\(420\) −3.53464e9 −0.00554273
\(421\) −1.25167e11 −0.194187 −0.0970937 0.995275i \(-0.530955\pi\)
−0.0970937 + 0.995275i \(0.530955\pi\)
\(422\) −3.64757e11 −0.559884
\(423\) 3.66969e11 0.557311
\(424\) 1.52894e11 0.229744
\(425\) 6.86097e10 0.102008
\(426\) −1.43284e11 −0.210792
\(427\) 2.09279e10 0.0304650
\(428\) 5.77174e11 0.831400
\(429\) 0 0
\(430\) 4.58153e11 0.646253
\(431\) −6.77654e11 −0.945933 −0.472966 0.881080i \(-0.656817\pi\)
−0.472966 + 0.881080i \(0.656817\pi\)
\(432\) 1.70159e11 0.235060
\(433\) −7.49888e11 −1.02518 −0.512591 0.858633i \(-0.671314\pi\)
−0.512591 + 0.858633i \(0.671314\pi\)
\(434\) −5.44681e9 −0.00736951
\(435\) −3.18155e11 −0.426027
\(436\) 1.75314e10 0.0232341
\(437\) −9.23274e11 −1.21106
\(438\) 1.87069e11 0.242867
\(439\) 7.09009e11 0.911091 0.455545 0.890213i \(-0.349444\pi\)
0.455545 + 0.890213i \(0.349444\pi\)
\(440\) 1.33026e11 0.169200
\(441\) 5.48403e11 0.690440
\(442\) 0 0
\(443\) −1.27698e12 −1.57532 −0.787659 0.616112i \(-0.788707\pi\)
−0.787659 + 0.616112i \(0.788707\pi\)
\(444\) 2.17194e11 0.265231
\(445\) 2.56148e11 0.309649
\(446\) −5.04343e11 −0.603559
\(447\) 3.21011e11 0.380309
\(448\) −2.21762e9 −0.00260097
\(449\) −1.35014e12 −1.56773 −0.783865 0.620931i \(-0.786755\pi\)
−0.783865 + 0.620931i \(0.786755\pi\)
\(450\) 3.49388e10 0.0401654
\(451\) −2.92672e11 −0.333109
\(452\) −6.89377e11 −0.776844
\(453\) 3.19733e11 0.356735
\(454\) 8.95962e11 0.989779
\(455\) 0 0
\(456\) 3.03307e11 0.328504
\(457\) −5.05907e11 −0.542560 −0.271280 0.962500i \(-0.587447\pi\)
−0.271280 + 0.962500i \(0.587447\pi\)
\(458\) 9.13491e11 0.970085
\(459\) −1.10912e12 −1.16633
\(460\) −3.33417e11 −0.347198
\(461\) −1.58511e12 −1.63458 −0.817289 0.576228i \(-0.804524\pi\)
−0.817289 + 0.576228i \(0.804524\pi\)
\(462\) −4.00260e9 −0.00408745
\(463\) −6.78962e11 −0.686643 −0.343321 0.939218i \(-0.611552\pi\)
−0.343321 + 0.939218i \(0.611552\pi\)
\(464\) −1.99609e11 −0.199916
\(465\) 2.69027e11 0.266844
\(466\) −1.10461e12 −1.08510
\(467\) −1.16699e12 −1.13538 −0.567689 0.823243i \(-0.692162\pi\)
−0.567689 + 0.823243i \(0.692162\pi\)
\(468\) 0 0
\(469\) −8.94077e9 −0.00853291
\(470\) 5.78196e11 0.546556
\(471\) −8.68205e11 −0.812884
\(472\) 1.42981e11 0.132599
\(473\) 5.18809e11 0.476576
\(474\) −7.69819e10 −0.0700465
\(475\) 1.52439e11 0.137396
\(476\) 1.44547e10 0.0129056
\(477\) −5.07501e11 −0.448853
\(478\) 1.77176e11 0.155231
\(479\) −9.58400e11 −0.831835 −0.415917 0.909402i \(-0.636539\pi\)
−0.415917 + 0.909402i \(0.636539\pi\)
\(480\) 1.09531e11 0.0941789
\(481\) 0 0
\(482\) −4.00205e11 −0.337731
\(483\) 1.00321e10 0.00838743
\(484\) −4.52997e11 −0.375224
\(485\) 1.43377e11 0.117664
\(486\) −8.98869e11 −0.730858
\(487\) 2.16464e12 1.74384 0.871919 0.489650i \(-0.162875\pi\)
0.871919 + 0.489650i \(0.162875\pi\)
\(488\) −6.48515e11 −0.517643
\(489\) −1.05567e12 −0.834904
\(490\) 8.64063e11 0.677116
\(491\) −3.11272e11 −0.241698 −0.120849 0.992671i \(-0.538562\pi\)
−0.120849 + 0.992671i \(0.538562\pi\)
\(492\) −2.40981e11 −0.185413
\(493\) 1.30107e12 0.991953
\(494\) 0 0
\(495\) −4.41554e11 −0.330567
\(496\) 1.68786e11 0.125219
\(497\) −1.51718e10 −0.0111540
\(498\) 6.02535e11 0.438986
\(499\) 1.41915e12 1.02465 0.512325 0.858792i \(-0.328784\pi\)
0.512325 + 0.858792i \(0.328784\pi\)
\(500\) 7.24473e11 0.518391
\(501\) −5.93377e11 −0.420785
\(502\) 1.71942e11 0.120841
\(503\) 5.24058e11 0.365026 0.182513 0.983203i \(-0.441577\pi\)
0.182513 + 0.983203i \(0.441577\pi\)
\(504\) 7.36091e9 0.00508153
\(505\) −1.83584e12 −1.25610
\(506\) −3.77558e11 −0.256039
\(507\) 0 0
\(508\) −1.22788e12 −0.818027
\(509\) −2.02882e12 −1.33972 −0.669859 0.742488i \(-0.733646\pi\)
−0.669859 + 0.742488i \(0.733646\pi\)
\(510\) −7.13940e11 −0.467300
\(511\) 1.98080e10 0.0128513
\(512\) 6.87195e10 0.0441942
\(513\) −2.46428e12 −1.57095
\(514\) −2.10283e12 −1.32883
\(515\) −2.64436e12 −1.65649
\(516\) 4.27177e11 0.265268
\(517\) 6.54744e11 0.403055
\(518\) 2.29977e10 0.0140346
\(519\) 3.57200e11 0.216102
\(520\) 0 0
\(521\) −2.41913e12 −1.43843 −0.719216 0.694787i \(-0.755499\pi\)
−0.719216 + 0.694787i \(0.755499\pi\)
\(522\) 6.62559e11 0.390578
\(523\) 1.87796e11 0.109756 0.0548782 0.998493i \(-0.482523\pi\)
0.0548782 + 0.998493i \(0.482523\pi\)
\(524\) −5.77251e10 −0.0334483
\(525\) −1.65637e9 −0.000951569 0
\(526\) 1.85370e10 0.0105585
\(527\) −1.10017e12 −0.621314
\(528\) 1.24032e11 0.0694517
\(529\) −8.54843e11 −0.474609
\(530\) −7.99617e11 −0.440191
\(531\) −4.74596e11 −0.259059
\(532\) 3.21159e10 0.0173827
\(533\) 0 0
\(534\) 2.38829e11 0.127102
\(535\) −3.01855e12 −1.59296
\(536\) 2.77057e11 0.144986
\(537\) −2.34023e11 −0.121443
\(538\) −5.13037e11 −0.264015
\(539\) 9.78456e11 0.499335
\(540\) −8.89912e11 −0.450376
\(541\) 2.23118e12 1.11982 0.559908 0.828554i \(-0.310836\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(542\) 2.61627e12 1.30222
\(543\) 7.29380e11 0.360043
\(544\) −4.47922e11 −0.219284
\(545\) −9.16868e10 −0.0445167
\(546\) 0 0
\(547\) −3.74325e12 −1.78775 −0.893874 0.448318i \(-0.852023\pi\)
−0.893874 + 0.448318i \(0.852023\pi\)
\(548\) 1.50571e12 0.713230
\(549\) 2.15261e12 1.01132
\(550\) 6.23376e10 0.0290481
\(551\) 2.89077e12 1.33608
\(552\) −3.10874e11 −0.142514
\(553\) −8.15130e9 −0.00370650
\(554\) 2.05012e12 0.924668
\(555\) −1.13589e12 −0.508182
\(556\) 1.27634e12 0.566407
\(557\) 6.79800e10 0.0299249 0.0149625 0.999888i \(-0.495237\pi\)
0.0149625 + 0.999888i \(0.495237\pi\)
\(558\) −5.60250e11 −0.244640
\(559\) 0 0
\(560\) 1.15978e10 0.00498346
\(561\) −8.08460e11 −0.344608
\(562\) −1.06857e12 −0.451843
\(563\) −4.39345e12 −1.84297 −0.921485 0.388415i \(-0.873023\pi\)
−0.921485 + 0.388415i \(0.873023\pi\)
\(564\) 5.39104e11 0.224345
\(565\) 3.60535e12 1.48844
\(566\) −2.52854e12 −1.03561
\(567\) −8.59597e9 −0.00349278
\(568\) 4.70143e11 0.189523
\(569\) 4.19303e12 1.67696 0.838480 0.544932i \(-0.183444\pi\)
0.838480 + 0.544932i \(0.183444\pi\)
\(570\) −1.58625e12 −0.629413
\(571\) 9.45651e10 0.0372279 0.0186139 0.999827i \(-0.494075\pi\)
0.0186139 + 0.999827i \(0.494075\pi\)
\(572\) 0 0
\(573\) 3.97312e11 0.153970
\(574\) −2.55165e10 −0.00981108
\(575\) −1.56243e11 −0.0596066
\(576\) −2.28100e11 −0.0863424
\(577\) 1.78911e12 0.671963 0.335981 0.941869i \(-0.390932\pi\)
0.335981 + 0.941869i \(0.390932\pi\)
\(578\) 1.02221e12 0.380947
\(579\) −1.06584e12 −0.394129
\(580\) 1.04393e12 0.383040
\(581\) 6.38000e10 0.0232289
\(582\) 1.33683e11 0.0482974
\(583\) −9.05479e11 −0.324616
\(584\) −6.13810e11 −0.218362
\(585\) 0 0
\(586\) 3.75051e12 1.31387
\(587\) −2.73299e12 −0.950096 −0.475048 0.879960i \(-0.657569\pi\)
−0.475048 + 0.879960i \(0.657569\pi\)
\(588\) 8.05643e11 0.277936
\(589\) −2.44439e12 −0.836857
\(590\) −7.47772e11 −0.254059
\(591\) 1.92971e11 0.0650652
\(592\) −7.12654e11 −0.238469
\(593\) 5.86251e11 0.194687 0.0973436 0.995251i \(-0.468965\pi\)
0.0973436 + 0.995251i \(0.468965\pi\)
\(594\) −1.00773e12 −0.332127
\(595\) −7.55962e10 −0.0247271
\(596\) −1.05330e12 −0.341935
\(597\) −3.39706e12 −1.09451
\(598\) 0 0
\(599\) −3.70853e12 −1.17701 −0.588506 0.808493i \(-0.700284\pi\)
−0.588506 + 0.808493i \(0.700284\pi\)
\(600\) 5.13276e10 0.0161685
\(601\) −1.30269e12 −0.407293 −0.203646 0.979044i \(-0.565279\pi\)
−0.203646 + 0.979044i \(0.565279\pi\)
\(602\) 4.52321e10 0.0140366
\(603\) −9.19632e11 −0.283261
\(604\) −1.04911e12 −0.320740
\(605\) 2.36911e12 0.718930
\(606\) −1.71172e12 −0.515591
\(607\) 4.23450e12 1.26606 0.633029 0.774128i \(-0.281812\pi\)
0.633029 + 0.774128i \(0.281812\pi\)
\(608\) −9.95208e11 −0.295357
\(609\) −3.14104e10 −0.00925329
\(610\) 3.39165e12 0.991806
\(611\) 0 0
\(612\) 1.48679e12 0.428417
\(613\) −5.74314e8 −0.000164277 0 −8.21386e−5 1.00000i \(-0.500026\pi\)
−8.21386e−5 1.00000i \(0.500026\pi\)
\(614\) −9.33428e11 −0.265047
\(615\) 1.26030e12 0.355251
\(616\) 1.31333e10 0.00367503
\(617\) −6.51466e11 −0.180971 −0.0904854 0.995898i \(-0.528842\pi\)
−0.0904854 + 0.995898i \(0.528842\pi\)
\(618\) −2.46558e12 −0.679940
\(619\) −2.12694e12 −0.582301 −0.291150 0.956677i \(-0.594038\pi\)
−0.291150 + 0.956677i \(0.594038\pi\)
\(620\) −8.82728e11 −0.239919
\(621\) 2.52576e12 0.681523
\(622\) −1.00890e11 −0.0270266
\(623\) 2.52887e10 0.00672558
\(624\) 0 0
\(625\) −3.47520e12 −0.911003
\(626\) 3.21666e11 0.0837183
\(627\) −1.79626e12 −0.464157
\(628\) 2.84875e12 0.730863
\(629\) 4.64517e12 1.18324
\(630\) −3.84966e10 −0.00973621
\(631\) 2.12362e12 0.533268 0.266634 0.963798i \(-0.414089\pi\)
0.266634 + 0.963798i \(0.414089\pi\)
\(632\) 2.52593e11 0.0629787
\(633\) 1.77866e12 0.440327
\(634\) −5.30142e10 −0.0130314
\(635\) 6.42163e12 1.56734
\(636\) −7.45554e11 −0.180685
\(637\) 0 0
\(638\) 1.18213e12 0.282471
\(639\) −1.56054e12 −0.370272
\(640\) −3.59394e11 −0.0846761
\(641\) 8.88570e11 0.207888 0.103944 0.994583i \(-0.466854\pi\)
0.103944 + 0.994583i \(0.466854\pi\)
\(642\) −2.81446e12 −0.653864
\(643\) −5.75199e12 −1.32699 −0.663497 0.748179i \(-0.730928\pi\)
−0.663497 + 0.748179i \(0.730928\pi\)
\(644\) −3.29172e10 −0.00754113
\(645\) −2.23408e12 −0.508254
\(646\) 6.48689e12 1.46552
\(647\) −4.48594e12 −1.00643 −0.503216 0.864161i \(-0.667850\pi\)
−0.503216 + 0.864161i \(0.667850\pi\)
\(648\) 2.66372e11 0.0593473
\(649\) −8.46770e11 −0.187355
\(650\) 0 0
\(651\) 2.65602e10 0.00579584
\(652\) 3.46384e12 0.750661
\(653\) −2.76591e12 −0.595291 −0.297645 0.954676i \(-0.596201\pi\)
−0.297645 + 0.954676i \(0.596201\pi\)
\(654\) −8.54878e10 −0.0182728
\(655\) 3.01895e11 0.0640869
\(656\) 7.90704e11 0.166704
\(657\) 2.03742e12 0.426614
\(658\) 5.70835e10 0.0118712
\(659\) −7.37449e12 −1.52317 −0.761584 0.648066i \(-0.775578\pi\)
−0.761584 + 0.648066i \(0.775578\pi\)
\(660\) −6.48674e11 −0.133070
\(661\) 7.09718e11 0.144604 0.0723019 0.997383i \(-0.476966\pi\)
0.0723019 + 0.997383i \(0.476966\pi\)
\(662\) −2.31669e12 −0.468820
\(663\) 0 0
\(664\) −1.97703e12 −0.394692
\(665\) −1.67962e11 −0.0333053
\(666\) 2.36551e12 0.465897
\(667\) −2.96289e12 −0.579629
\(668\) 1.94698e12 0.378328
\(669\) 2.45932e12 0.474676
\(670\) −1.44897e12 −0.277794
\(671\) 3.84067e12 0.731401
\(672\) 1.08137e10 0.00204556
\(673\) −5.09781e12 −0.957891 −0.478945 0.877845i \(-0.658981\pi\)
−0.478945 + 0.877845i \(0.658981\pi\)
\(674\) −3.92215e11 −0.0732073
\(675\) −4.17022e11 −0.0773200
\(676\) 0 0
\(677\) 9.32854e11 0.170673 0.0853365 0.996352i \(-0.472803\pi\)
0.0853365 + 0.996352i \(0.472803\pi\)
\(678\) 3.36159e12 0.610958
\(679\) 1.41552e10 0.00255565
\(680\) 2.34258e12 0.420149
\(681\) −4.36896e12 −0.778423
\(682\) −9.99593e11 −0.176927
\(683\) −2.85151e12 −0.501396 −0.250698 0.968065i \(-0.580660\pi\)
−0.250698 + 0.968065i \(0.580660\pi\)
\(684\) 3.30338e12 0.577041
\(685\) −7.87469e12 −1.36655
\(686\) 1.70649e11 0.0294202
\(687\) −4.45443e12 −0.762934
\(688\) −1.40165e12 −0.238502
\(689\) 0 0
\(690\) 1.62583e12 0.273058
\(691\) 7.72439e12 1.28888 0.644441 0.764654i \(-0.277090\pi\)
0.644441 + 0.764654i \(0.277090\pi\)
\(692\) −1.17204e12 −0.194297
\(693\) −4.35932e10 −0.00717992
\(694\) 1.25984e12 0.206157
\(695\) −6.67508e12 −1.08524
\(696\) 9.73347e11 0.157227
\(697\) −5.15391e12 −0.827160
\(698\) 5.81163e12 0.926720
\(699\) 5.38637e12 0.853393
\(700\) 5.43487e9 0.000855555 0
\(701\) 9.46243e12 1.48003 0.740017 0.672588i \(-0.234817\pi\)
0.740017 + 0.672588i \(0.234817\pi\)
\(702\) 0 0
\(703\) 1.03208e13 1.59373
\(704\) −4.06974e11 −0.0624439
\(705\) −2.81944e12 −0.429845
\(706\) −9.12380e12 −1.38215
\(707\) −1.81247e11 −0.0272824
\(708\) −6.97215e11 −0.104284
\(709\) 1.14047e13 1.69503 0.847515 0.530771i \(-0.178098\pi\)
0.847515 + 0.530771i \(0.178098\pi\)
\(710\) −2.45879e12 −0.363127
\(711\) −8.38429e11 −0.123042
\(712\) −7.83645e11 −0.114277
\(713\) 2.50538e12 0.363053
\(714\) −7.04851e10 −0.0101498
\(715\) 0 0
\(716\) 7.67874e11 0.109190
\(717\) −8.63959e11 −0.122083
\(718\) 7.96225e12 1.11809
\(719\) 4.49589e12 0.627387 0.313694 0.949524i \(-0.398434\pi\)
0.313694 + 0.949524i \(0.398434\pi\)
\(720\) 1.19293e12 0.165432
\(721\) −2.61070e11 −0.0359789
\(722\) 9.24977e12 1.26682
\(723\) 1.95151e12 0.265612
\(724\) −2.39324e12 −0.323714
\(725\) 4.89195e11 0.0657599
\(726\) 2.20894e12 0.295099
\(727\) −4.49807e11 −0.0597203 −0.0298601 0.999554i \(-0.509506\pi\)
−0.0298601 + 0.999554i \(0.509506\pi\)
\(728\) 0 0
\(729\) 3.10310e12 0.406932
\(730\) 3.21015e12 0.418381
\(731\) 9.13614e12 1.18341
\(732\) 3.16234e12 0.407107
\(733\) −1.37779e13 −1.76285 −0.881424 0.472326i \(-0.843415\pi\)
−0.881424 + 0.472326i \(0.843415\pi\)
\(734\) −3.17029e12 −0.403150
\(735\) −4.21341e12 −0.532525
\(736\) 1.02004e12 0.128135
\(737\) −1.64080e12 −0.204858
\(738\) −2.62458e12 −0.325691
\(739\) 1.38664e13 1.71027 0.855135 0.518406i \(-0.173474\pi\)
0.855135 + 0.518406i \(0.173474\pi\)
\(740\) 3.72709e12 0.456906
\(741\) 0 0
\(742\) −7.89437e10 −0.00956093
\(743\) −1.05429e13 −1.26914 −0.634571 0.772865i \(-0.718823\pi\)
−0.634571 + 0.772865i \(0.718823\pi\)
\(744\) −8.23046e11 −0.0984796
\(745\) 5.50863e12 0.655149
\(746\) −9.84884e12 −1.16429
\(747\) 6.56235e12 0.771111
\(748\) 2.65271e12 0.309837
\(749\) −2.98012e11 −0.0345991
\(750\) −3.53273e12 −0.407694
\(751\) −7.51483e12 −0.862063 −0.431032 0.902337i \(-0.641850\pi\)
−0.431032 + 0.902337i \(0.641850\pi\)
\(752\) −1.76890e12 −0.201708
\(753\) −8.38438e11 −0.0950372
\(754\) 0 0
\(755\) 5.48669e12 0.614539
\(756\) −8.78582e10 −0.00978215
\(757\) 1.20035e12 0.132855 0.0664274 0.997791i \(-0.478840\pi\)
0.0664274 + 0.997791i \(0.478840\pi\)
\(758\) 1.17429e13 1.29200
\(759\) 1.84108e12 0.201365
\(760\) 5.20481e12 0.565905
\(761\) 1.10016e13 1.18912 0.594561 0.804050i \(-0.297326\pi\)
0.594561 + 0.804050i \(0.297326\pi\)
\(762\) 5.98746e12 0.643347
\(763\) −9.05195e9 −0.000966900 0
\(764\) −1.30366e12 −0.138434
\(765\) −7.77569e12 −0.820848
\(766\) 7.34728e12 0.771076
\(767\) 0 0
\(768\) −3.35095e11 −0.0347570
\(769\) 6.04153e12 0.622986 0.311493 0.950248i \(-0.399171\pi\)
0.311493 + 0.950248i \(0.399171\pi\)
\(770\) −6.86854e10 −0.00704135
\(771\) 1.02540e13 1.04508
\(772\) 3.49723e12 0.354361
\(773\) 4.13748e12 0.416801 0.208400 0.978044i \(-0.433174\pi\)
0.208400 + 0.978044i \(0.433174\pi\)
\(774\) 4.65249e12 0.465963
\(775\) −4.13656e11 −0.0411890
\(776\) −4.38641e11 −0.0434241
\(777\) −1.12143e11 −0.0110377
\(778\) −5.76040e12 −0.563695
\(779\) −1.14511e13 −1.11411
\(780\) 0 0
\(781\) −2.78431e12 −0.267786
\(782\) −6.64874e12 −0.635783
\(783\) −7.90816e12 −0.751878
\(784\) −2.64347e12 −0.249892
\(785\) −1.48986e13 −1.40033
\(786\) 2.81483e11 0.0263058
\(787\) 4.97253e11 0.0462052 0.0231026 0.999733i \(-0.492646\pi\)
0.0231026 + 0.999733i \(0.492646\pi\)
\(788\) −6.33176e11 −0.0585001
\(789\) −9.03914e10 −0.00830387
\(790\) −1.32103e12 −0.120667
\(791\) 3.55945e11 0.0323288
\(792\) 1.35087e12 0.121997
\(793\) 0 0
\(794\) 1.36244e13 1.21654
\(795\) 3.89915e12 0.346193
\(796\) 1.11464e13 0.984071
\(797\) 2.56117e12 0.224841 0.112421 0.993661i \(-0.464140\pi\)
0.112421 + 0.993661i \(0.464140\pi\)
\(798\) −1.56606e11 −0.0136708
\(799\) 1.15299e13 1.00084
\(800\) −1.68416e11 −0.0145371
\(801\) 2.60115e12 0.223264
\(802\) −6.69695e12 −0.571601
\(803\) 3.63514e12 0.308533
\(804\) −1.35100e12 −0.114026
\(805\) 1.72153e11 0.0144488
\(806\) 0 0
\(807\) 2.50171e12 0.207637
\(808\) 5.61647e12 0.463567
\(809\) −5.40754e11 −0.0443845 −0.0221923 0.999754i \(-0.507065\pi\)
−0.0221923 + 0.999754i \(0.507065\pi\)
\(810\) −1.39309e12 −0.113710
\(811\) −1.95940e12 −0.159048 −0.0795242 0.996833i \(-0.525340\pi\)
−0.0795242 + 0.996833i \(0.525340\pi\)
\(812\) 1.03064e11 0.00831962
\(813\) −1.27577e13 −1.02415
\(814\) 4.22052e12 0.336943
\(815\) −1.81154e13 −1.43827
\(816\) 2.18419e12 0.172459
\(817\) 2.02990e13 1.59395
\(818\) −7.97025e12 −0.622418
\(819\) 0 0
\(820\) −4.13528e12 −0.319406
\(821\) 2.09751e13 1.61124 0.805620 0.592432i \(-0.201832\pi\)
0.805620 + 0.592432i \(0.201832\pi\)
\(822\) −7.34227e12 −0.560928
\(823\) 7.56818e12 0.575032 0.287516 0.957776i \(-0.407171\pi\)
0.287516 + 0.957776i \(0.407171\pi\)
\(824\) 8.09003e12 0.611333
\(825\) −3.03975e11 −0.0228452
\(826\) −7.38252e10 −0.00551816
\(827\) 3.34596e12 0.248740 0.124370 0.992236i \(-0.460309\pi\)
0.124370 + 0.992236i \(0.460309\pi\)
\(828\) −3.38581e12 −0.250337
\(829\) 5.10496e12 0.375403 0.187701 0.982226i \(-0.439896\pi\)
0.187701 + 0.982226i \(0.439896\pi\)
\(830\) 1.03396e13 0.756230
\(831\) −9.99696e12 −0.727216
\(832\) 0 0
\(833\) 1.72305e13 1.23992
\(834\) −6.22377e12 −0.445457
\(835\) −1.01825e13 −0.724877
\(836\) 5.89388e12 0.417323
\(837\) 6.68701e12 0.470942
\(838\) −5.25502e12 −0.368109
\(839\) 1.96315e13 1.36781 0.683903 0.729573i \(-0.260281\pi\)
0.683903 + 0.729573i \(0.260281\pi\)
\(840\) −5.65543e10 −0.00391930
\(841\) −5.23033e12 −0.360535
\(842\) −2.00268e12 −0.137311
\(843\) 5.21062e12 0.355357
\(844\) −5.83611e12 −0.395898
\(845\) 0 0
\(846\) 5.87150e12 0.394078
\(847\) 2.33895e11 0.0156151
\(848\) 2.44631e12 0.162454
\(849\) 1.23298e13 0.814465
\(850\) 1.09776e12 0.0721307
\(851\) −1.05783e13 −0.691405
\(852\) −2.29255e12 −0.149053
\(853\) 1.41852e13 0.917411 0.458706 0.888588i \(-0.348313\pi\)
0.458706 + 0.888588i \(0.348313\pi\)
\(854\) 3.34847e11 0.0215420
\(855\) −1.72763e13 −1.10561
\(856\) 9.23479e12 0.587889
\(857\) 3.06579e13 1.94146 0.970732 0.240167i \(-0.0772021\pi\)
0.970732 + 0.240167i \(0.0772021\pi\)
\(858\) 0 0
\(859\) 1.13754e13 0.712848 0.356424 0.934324i \(-0.383996\pi\)
0.356424 + 0.934324i \(0.383996\pi\)
\(860\) 7.33045e12 0.456970
\(861\) 1.24425e11 0.00771604
\(862\) −1.08425e13 −0.668875
\(863\) 1.07114e13 0.657349 0.328675 0.944443i \(-0.393398\pi\)
0.328675 + 0.944443i \(0.393398\pi\)
\(864\) 2.72255e12 0.166213
\(865\) 6.12963e12 0.372273
\(866\) −1.19982e13 −0.724913
\(867\) −4.98458e12 −0.299600
\(868\) −8.71490e10 −0.00521103
\(869\) −1.49592e12 −0.0889854
\(870\) −5.09048e12 −0.301246
\(871\) 0 0
\(872\) 2.80502e11 0.0164290
\(873\) 1.45598e12 0.0848380
\(874\) −1.47724e13 −0.856345
\(875\) −3.74066e11 −0.0215731
\(876\) 2.99311e12 0.171733
\(877\) −3.70350e12 −0.211405 −0.105702 0.994398i \(-0.533709\pi\)
−0.105702 + 0.994398i \(0.533709\pi\)
\(878\) 1.13441e13 0.644238
\(879\) −1.82885e13 −1.03330
\(880\) 2.12842e12 0.119643
\(881\) −1.78613e13 −0.998897 −0.499449 0.866344i \(-0.666464\pi\)
−0.499449 + 0.866344i \(0.666464\pi\)
\(882\) 8.77444e12 0.488215
\(883\) −1.97547e13 −1.09357 −0.546785 0.837273i \(-0.684149\pi\)
−0.546785 + 0.837273i \(0.684149\pi\)
\(884\) 0 0
\(885\) 3.64634e12 0.199808
\(886\) −2.04317e13 −1.11392
\(887\) 1.68967e13 0.916527 0.458263 0.888816i \(-0.348472\pi\)
0.458263 + 0.888816i \(0.348472\pi\)
\(888\) 3.47510e12 0.187546
\(889\) 6.33988e11 0.0340426
\(890\) 4.09836e12 0.218955
\(891\) −1.57752e12 −0.0838545
\(892\) −8.06950e12 −0.426780
\(893\) 2.56176e13 1.34805
\(894\) 5.13618e12 0.268919
\(895\) −4.01588e12 −0.209207
\(896\) −3.54818e10 −0.00183916
\(897\) 0 0
\(898\) −2.16023e13 −1.10855
\(899\) −7.84433e12 −0.400532
\(900\) 5.59021e11 0.0284012
\(901\) −1.59454e13 −0.806070
\(902\) −4.68275e12 −0.235544
\(903\) −2.20564e11 −0.0110393
\(904\) −1.10300e13 −0.549312
\(905\) 1.25163e13 0.620237
\(906\) 5.11573e12 0.252250
\(907\) −2.64871e13 −1.29958 −0.649788 0.760115i \(-0.725142\pi\)
−0.649788 + 0.760115i \(0.725142\pi\)
\(908\) 1.43354e13 0.699880
\(909\) −1.86427e13 −0.905673
\(910\) 0 0
\(911\) 8.31999e12 0.400212 0.200106 0.979774i \(-0.435871\pi\)
0.200106 + 0.979774i \(0.435871\pi\)
\(912\) 4.85291e12 0.232287
\(913\) 1.17085e13 0.557677
\(914\) −8.09452e12 −0.383648
\(915\) −1.65386e13 −0.780017
\(916\) 1.46159e13 0.685953
\(917\) 2.98051e10 0.00139197
\(918\) −1.77459e13 −0.824721
\(919\) 3.21794e13 1.48819 0.744095 0.668074i \(-0.232881\pi\)
0.744095 + 0.668074i \(0.232881\pi\)
\(920\) −5.33467e12 −0.245506
\(921\) 4.55165e12 0.208449
\(922\) −2.53618e13 −1.15582
\(923\) 0 0
\(924\) −6.40415e10 −0.00289027
\(925\) 1.74655e12 0.0784411
\(926\) −1.08634e13 −0.485530
\(927\) −2.68532e13 −1.19436
\(928\) −3.19374e12 −0.141362
\(929\) 7.79638e12 0.343417 0.171709 0.985148i \(-0.445071\pi\)
0.171709 + 0.985148i \(0.445071\pi\)
\(930\) 4.30443e12 0.188687
\(931\) 3.82832e13 1.67007
\(932\) −1.76737e13 −0.767285
\(933\) 4.91967e11 0.0212553
\(934\) −1.86718e13 −0.802833
\(935\) −1.38733e13 −0.593648
\(936\) 0 0
\(937\) 1.98759e13 0.842361 0.421181 0.906977i \(-0.361616\pi\)
0.421181 + 0.906977i \(0.361616\pi\)
\(938\) −1.43052e11 −0.00603368
\(939\) −1.56853e12 −0.0658412
\(940\) 9.25113e12 0.386473
\(941\) 3.05247e13 1.26910 0.634552 0.772880i \(-0.281184\pi\)
0.634552 + 0.772880i \(0.281184\pi\)
\(942\) −1.38913e13 −0.574796
\(943\) 1.17368e13 0.483335
\(944\) 2.28770e12 0.0937615
\(945\) 4.59487e11 0.0187426
\(946\) 8.30094e12 0.336990
\(947\) 1.20948e13 0.488677 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(948\) −1.23171e12 −0.0495303
\(949\) 0 0
\(950\) 2.43903e12 0.0971539
\(951\) 2.58512e11 0.0102487
\(952\) 2.31275e11 0.00912563
\(953\) −2.96674e12 −0.116510 −0.0582548 0.998302i \(-0.518554\pi\)
−0.0582548 + 0.998302i \(0.518554\pi\)
\(954\) −8.12001e12 −0.317387
\(955\) 6.81796e12 0.265240
\(956\) 2.83481e12 0.109765
\(957\) −5.76441e12 −0.222152
\(958\) −1.53344e13 −0.588196
\(959\) −7.77443e11 −0.0296814
\(960\) 1.75250e12 0.0665945
\(961\) −1.98066e13 −0.749125
\(962\) 0 0
\(963\) −3.06530e13 −1.14856
\(964\) −6.40328e12 −0.238812
\(965\) −1.82901e13 −0.678957
\(966\) 1.60513e11 0.00593081
\(967\) 2.38826e13 0.878341 0.439170 0.898404i \(-0.355272\pi\)
0.439170 + 0.898404i \(0.355272\pi\)
\(968\) −7.24795e12 −0.265324
\(969\) −3.16319e13 −1.15257
\(970\) 2.29403e12 0.0832007
\(971\) 3.98840e13 1.43983 0.719916 0.694061i \(-0.244180\pi\)
0.719916 + 0.694061i \(0.244180\pi\)
\(972\) −1.43819e13 −0.516795
\(973\) −6.59009e11 −0.0235713
\(974\) 3.46343e13 1.23308
\(975\) 0 0
\(976\) −1.03762e13 −0.366029
\(977\) 2.32835e13 0.817567 0.408783 0.912631i \(-0.365953\pi\)
0.408783 + 0.912631i \(0.365953\pi\)
\(978\) −1.68906e13 −0.590366
\(979\) 4.64095e12 0.161467
\(980\) 1.38250e13 0.478793
\(981\) −9.31067e11 −0.0320975
\(982\) −4.98034e12 −0.170906
\(983\) −1.80946e13 −0.618099 −0.309050 0.951046i \(-0.600011\pi\)
−0.309050 + 0.951046i \(0.600011\pi\)
\(984\) −3.85569e12 −0.131106
\(985\) 3.31143e12 0.112086
\(986\) 2.08172e13 0.701417
\(987\) −2.78355e11 −0.00933623
\(988\) 0 0
\(989\) −2.08054e13 −0.691502
\(990\) −7.06486e12 −0.233746
\(991\) 2.89588e13 0.953780 0.476890 0.878963i \(-0.341764\pi\)
0.476890 + 0.878963i \(0.341764\pi\)
\(992\) 2.70057e12 0.0885429
\(993\) 1.12968e13 0.368709
\(994\) −2.42748e11 −0.00788710
\(995\) −5.82943e13 −1.88548
\(996\) 9.64056e12 0.310410
\(997\) −3.17778e12 −0.101858 −0.0509291 0.998702i \(-0.516218\pi\)
−0.0509291 + 0.998702i \(0.516218\pi\)
\(998\) 2.27064e13 0.724537
\(999\) −2.82342e13 −0.896872
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.l.1.3 6
13.3 even 3 26.10.c.b.9.4 yes 12
13.9 even 3 26.10.c.b.3.4 12
13.12 even 2 338.10.a.k.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.c.b.3.4 12 13.9 even 3
26.10.c.b.9.4 yes 12 13.3 even 3
338.10.a.k.1.3 6 13.12 even 2
338.10.a.l.1.3 6 1.1 even 1 trivial