Properties

Label 338.10.a.i.1.4
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,80,81,1280,914] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 55443x^{3} - 74771x^{2} + 273667790x + 7141148352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(85.2901\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{2} +101.290 q^{3} +256.000 q^{4} -496.759 q^{5} +1620.64 q^{6} -4702.56 q^{7} +4096.00 q^{8} -9423.31 q^{9} -7948.14 q^{10} -77003.3 q^{11} +25930.3 q^{12} -75241.0 q^{14} -50316.8 q^{15} +65536.0 q^{16} +66918.1 q^{17} -150773. q^{18} +998917. q^{19} -127170. q^{20} -476323. q^{21} -1.23205e6 q^{22} +118136. q^{23} +414884. q^{24} -1.70636e6 q^{25} -2.94818e6 q^{27} -1.20386e6 q^{28} +926412. q^{29} -805068. q^{30} -1.69046e6 q^{31} +1.04858e6 q^{32} -7.79967e6 q^{33} +1.07069e6 q^{34} +2.33604e6 q^{35} -2.41237e6 q^{36} -2.46364e6 q^{37} +1.59827e7 q^{38} -2.03472e6 q^{40} +2.99902e7 q^{41} -7.62117e6 q^{42} +9.51190e6 q^{43} -1.97128e7 q^{44} +4.68111e6 q^{45} +1.89018e6 q^{46} +6.47000e7 q^{47} +6.63815e6 q^{48} -1.82395e7 q^{49} -2.73017e7 q^{50} +6.77814e6 q^{51} +4.73931e7 q^{53} -4.71709e7 q^{54} +3.82521e7 q^{55} -1.92617e7 q^{56} +1.01180e8 q^{57} +1.48226e7 q^{58} +6.57744e7 q^{59} -1.28811e7 q^{60} -7.54398e7 q^{61} -2.70474e7 q^{62} +4.43137e7 q^{63} +1.67772e7 q^{64} -1.24795e8 q^{66} -5.34676e7 q^{67} +1.71310e7 q^{68} +1.19660e7 q^{69} +3.73766e7 q^{70} +2.65576e8 q^{71} -3.85979e7 q^{72} -2.19898e7 q^{73} -3.94183e7 q^{74} -1.72837e8 q^{75} +2.55723e8 q^{76} +3.62113e8 q^{77} -2.38980e7 q^{79} -3.25556e7 q^{80} -1.13143e8 q^{81} +4.79842e8 q^{82} +3.61556e8 q^{83} -1.21939e8 q^{84} -3.32421e7 q^{85} +1.52190e8 q^{86} +9.38364e7 q^{87} -3.15405e8 q^{88} +6.70531e8 q^{89} +7.48978e7 q^{90} +3.02428e7 q^{92} -1.71227e8 q^{93} +1.03520e9 q^{94} -4.96221e8 q^{95} +1.06210e8 q^{96} -1.22647e9 q^{97} -2.91832e8 q^{98} +7.25626e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 80 q^{2} + 81 q^{3} + 1280 q^{4} + 914 q^{5} + 1296 q^{6} + 3323 q^{7} + 20480 q^{8} + 13784 q^{9} + 14624 q^{10} + 53337 q^{11} + 20736 q^{12} + 53168 q^{14} + 65996 q^{15} + 327680 q^{16} + 173255 q^{17}+ \cdots + 970554586 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 0.707107
\(3\) 101.290 0.721974 0.360987 0.932571i \(-0.382440\pi\)
0.360987 + 0.932571i \(0.382440\pi\)
\(4\) 256.000 0.500000
\(5\) −496.759 −0.355452 −0.177726 0.984080i \(-0.556874\pi\)
−0.177726 + 0.984080i \(0.556874\pi\)
\(6\) 1620.64 0.510513
\(7\) −4702.56 −0.740275 −0.370138 0.928977i \(-0.620689\pi\)
−0.370138 + 0.928977i \(0.620689\pi\)
\(8\) 4096.00 0.353553
\(9\) −9423.31 −0.478754
\(10\) −7948.14 −0.251342
\(11\) −77003.3 −1.58578 −0.792888 0.609367i \(-0.791424\pi\)
−0.792888 + 0.609367i \(0.791424\pi\)
\(12\) 25930.3 0.360987
\(13\) 0 0
\(14\) −75241.0 −0.523454
\(15\) −50316.8 −0.256627
\(16\) 65536.0 0.250000
\(17\) 66918.1 0.194323 0.0971613 0.995269i \(-0.469024\pi\)
0.0971613 + 0.995269i \(0.469024\pi\)
\(18\) −150773. −0.338530
\(19\) 998917. 1.75848 0.879241 0.476376i \(-0.158050\pi\)
0.879241 + 0.476376i \(0.158050\pi\)
\(20\) −127170. −0.177726
\(21\) −476323. −0.534459
\(22\) −1.23205e6 −1.12131
\(23\) 118136. 0.0880253 0.0440126 0.999031i \(-0.485986\pi\)
0.0440126 + 0.999031i \(0.485986\pi\)
\(24\) 414884. 0.255256
\(25\) −1.70636e6 −0.873654
\(26\) 0 0
\(27\) −2.94818e6 −1.06762
\(28\) −1.20386e6 −0.370138
\(29\) 926412. 0.243228 0.121614 0.992577i \(-0.461193\pi\)
0.121614 + 0.992577i \(0.461193\pi\)
\(30\) −805068. −0.181463
\(31\) −1.69046e6 −0.328759 −0.164380 0.986397i \(-0.552562\pi\)
−0.164380 + 0.986397i \(0.552562\pi\)
\(32\) 1.04858e6 0.176777
\(33\) −7.79967e6 −1.14489
\(34\) 1.07069e6 0.137407
\(35\) 2.33604e6 0.263132
\(36\) −2.41237e6 −0.239377
\(37\) −2.46364e6 −0.216107 −0.108054 0.994145i \(-0.534462\pi\)
−0.108054 + 0.994145i \(0.534462\pi\)
\(38\) 1.59827e7 1.24344
\(39\) 0 0
\(40\) −2.03472e6 −0.125671
\(41\) 2.99902e7 1.65749 0.828746 0.559625i \(-0.189055\pi\)
0.828746 + 0.559625i \(0.189055\pi\)
\(42\) −7.62117e6 −0.377920
\(43\) 9.51190e6 0.424287 0.212143 0.977239i \(-0.431956\pi\)
0.212143 + 0.977239i \(0.431956\pi\)
\(44\) −1.97128e7 −0.792888
\(45\) 4.68111e6 0.170174
\(46\) 1.89018e6 0.0622433
\(47\) 6.47000e7 1.93403 0.967017 0.254713i \(-0.0819811\pi\)
0.967017 + 0.254713i \(0.0819811\pi\)
\(48\) 6.63815e6 0.180493
\(49\) −1.82395e7 −0.451992
\(50\) −2.73017e7 −0.617767
\(51\) 6.77814e6 0.140296
\(52\) 0 0
\(53\) 4.73931e7 0.825038 0.412519 0.910949i \(-0.364649\pi\)
0.412519 + 0.910949i \(0.364649\pi\)
\(54\) −4.71709e7 −0.754922
\(55\) 3.82521e7 0.563667
\(56\) −1.92617e7 −0.261727
\(57\) 1.01180e8 1.26958
\(58\) 1.48226e7 0.171988
\(59\) 6.57744e7 0.706681 0.353340 0.935495i \(-0.385046\pi\)
0.353340 + 0.935495i \(0.385046\pi\)
\(60\) −1.28811e7 −0.128313
\(61\) −7.54398e7 −0.697615 −0.348808 0.937194i \(-0.613413\pi\)
−0.348808 + 0.937194i \(0.613413\pi\)
\(62\) −2.70474e7 −0.232468
\(63\) 4.43137e7 0.354410
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) −1.24795e8 −0.809559
\(67\) −5.34676e7 −0.324156 −0.162078 0.986778i \(-0.551820\pi\)
−0.162078 + 0.986778i \(0.551820\pi\)
\(68\) 1.71310e7 0.0971613
\(69\) 1.19660e7 0.0635519
\(70\) 3.73766e7 0.186062
\(71\) 2.65576e8 1.24030 0.620150 0.784483i \(-0.287072\pi\)
0.620150 + 0.784483i \(0.287072\pi\)
\(72\) −3.85979e7 −0.169265
\(73\) −2.19898e7 −0.0906293 −0.0453147 0.998973i \(-0.514429\pi\)
−0.0453147 + 0.998973i \(0.514429\pi\)
\(74\) −3.94183e7 −0.152811
\(75\) −1.72837e8 −0.630755
\(76\) 2.55723e8 0.879241
\(77\) 3.62113e8 1.17391
\(78\) 0 0
\(79\) −2.38980e7 −0.0690302 −0.0345151 0.999404i \(-0.510989\pi\)
−0.0345151 + 0.999404i \(0.510989\pi\)
\(80\) −3.25556e7 −0.0888629
\(81\) −1.13143e8 −0.292041
\(82\) 4.79842e8 1.17202
\(83\) 3.61556e8 0.836226 0.418113 0.908395i \(-0.362692\pi\)
0.418113 + 0.908395i \(0.362692\pi\)
\(84\) −1.21939e8 −0.267230
\(85\) −3.32421e7 −0.0690723
\(86\) 1.52190e8 0.300016
\(87\) 9.38364e7 0.175604
\(88\) −3.15405e8 −0.560657
\(89\) 6.70531e8 1.13283 0.566414 0.824121i \(-0.308330\pi\)
0.566414 + 0.824121i \(0.308330\pi\)
\(90\) 7.48978e7 0.120331
\(91\) 0 0
\(92\) 3.02428e7 0.0440126
\(93\) −1.71227e8 −0.237355
\(94\) 1.03520e9 1.36757
\(95\) −4.96221e8 −0.625056
\(96\) 1.06210e8 0.127628
\(97\) −1.22647e9 −1.40665 −0.703324 0.710869i \(-0.748302\pi\)
−0.703324 + 0.710869i \(0.748302\pi\)
\(98\) −2.91832e8 −0.319607
\(99\) 7.25626e8 0.759197
\(100\) −4.36827e8 −0.436827
\(101\) 8.40879e8 0.804058 0.402029 0.915627i \(-0.368305\pi\)
0.402029 + 0.915627i \(0.368305\pi\)
\(102\) 1.08450e8 0.0992041
\(103\) 1.42090e9 1.24393 0.621967 0.783043i \(-0.286334\pi\)
0.621967 + 0.783043i \(0.286334\pi\)
\(104\) 0 0
\(105\) 2.36618e8 0.189974
\(106\) 7.58290e8 0.583390
\(107\) 4.04662e8 0.298446 0.149223 0.988804i \(-0.452323\pi\)
0.149223 + 0.988804i \(0.452323\pi\)
\(108\) −7.54735e8 −0.533811
\(109\) 9.19763e8 0.624103 0.312052 0.950065i \(-0.398984\pi\)
0.312052 + 0.950065i \(0.398984\pi\)
\(110\) 6.12033e8 0.398573
\(111\) −2.49543e8 −0.156024
\(112\) −3.08187e8 −0.185069
\(113\) −2.53394e9 −1.46198 −0.730992 0.682386i \(-0.760942\pi\)
−0.730992 + 0.682386i \(0.760942\pi\)
\(114\) 1.61889e9 0.897728
\(115\) −5.86851e7 −0.0312887
\(116\) 2.37161e8 0.121614
\(117\) 0 0
\(118\) 1.05239e9 0.499699
\(119\) −3.14686e8 −0.143852
\(120\) −2.06097e8 −0.0907313
\(121\) 3.57156e9 1.51469
\(122\) −1.20704e9 −0.493289
\(123\) 3.03771e9 1.19667
\(124\) −4.32758e8 −0.164380
\(125\) 1.81788e9 0.665993
\(126\) 7.09019e8 0.250605
\(127\) 3.61563e9 1.23330 0.616648 0.787239i \(-0.288490\pi\)
0.616648 + 0.787239i \(0.288490\pi\)
\(128\) 2.68435e8 0.0883883
\(129\) 9.63462e8 0.306324
\(130\) 0 0
\(131\) −3.45874e9 −1.02612 −0.513059 0.858353i \(-0.671488\pi\)
−0.513059 + 0.858353i \(0.671488\pi\)
\(132\) −1.99672e9 −0.572445
\(133\) −4.69747e9 −1.30176
\(134\) −8.55482e8 −0.229213
\(135\) 1.46454e9 0.379488
\(136\) 2.74096e8 0.0687034
\(137\) −2.90188e9 −0.703781 −0.351890 0.936041i \(-0.614461\pi\)
−0.351890 + 0.936041i \(0.614461\pi\)
\(138\) 1.91456e8 0.0449380
\(139\) −5.78382e8 −0.131416 −0.0657080 0.997839i \(-0.520931\pi\)
−0.0657080 + 0.997839i \(0.520931\pi\)
\(140\) 5.98026e8 0.131566
\(141\) 6.55347e9 1.39632
\(142\) 4.24922e9 0.877025
\(143\) 0 0
\(144\) −6.17566e8 −0.119688
\(145\) −4.60203e8 −0.0864557
\(146\) −3.51837e8 −0.0640846
\(147\) −1.84748e9 −0.326327
\(148\) −6.30692e8 −0.108054
\(149\) −1.47865e9 −0.245769 −0.122884 0.992421i \(-0.539214\pi\)
−0.122884 + 0.992421i \(0.539214\pi\)
\(150\) −2.76539e9 −0.446011
\(151\) −1.09605e10 −1.71568 −0.857840 0.513918i \(-0.828194\pi\)
−0.857840 + 0.513918i \(0.828194\pi\)
\(152\) 4.09156e9 0.621718
\(153\) −6.30590e8 −0.0930327
\(154\) 5.79380e9 0.830081
\(155\) 8.39752e8 0.116858
\(156\) 0 0
\(157\) 4.74736e9 0.623597 0.311798 0.950148i \(-0.399069\pi\)
0.311798 + 0.950148i \(0.399069\pi\)
\(158\) −3.82368e8 −0.0488117
\(159\) 4.80046e9 0.595656
\(160\) −5.20889e8 −0.0628356
\(161\) −5.55542e8 −0.0651629
\(162\) −1.81028e9 −0.206504
\(163\) 7.22749e9 0.801943 0.400971 0.916091i \(-0.368673\pi\)
0.400971 + 0.916091i \(0.368673\pi\)
\(164\) 7.67748e9 0.828746
\(165\) 3.87456e9 0.406953
\(166\) 5.78489e9 0.591301
\(167\) −1.60515e10 −1.59695 −0.798475 0.602028i \(-0.794360\pi\)
−0.798475 + 0.602028i \(0.794360\pi\)
\(168\) −1.95102e9 −0.188960
\(169\) 0 0
\(170\) −5.31874e8 −0.0488415
\(171\) −9.41310e9 −0.841880
\(172\) 2.43505e9 0.212143
\(173\) −1.32848e10 −1.12758 −0.563791 0.825917i \(-0.690658\pi\)
−0.563791 + 0.825917i \(0.690658\pi\)
\(174\) 1.50138e9 0.124171
\(175\) 8.02424e9 0.646745
\(176\) −5.04649e9 −0.396444
\(177\) 6.66230e9 0.510205
\(178\) 1.07285e10 0.801030
\(179\) 2.15712e10 1.57049 0.785245 0.619185i \(-0.212537\pi\)
0.785245 + 0.619185i \(0.212537\pi\)
\(180\) 1.19836e9 0.0850869
\(181\) 1.69038e10 1.17066 0.585331 0.810795i \(-0.300965\pi\)
0.585331 + 0.810795i \(0.300965\pi\)
\(182\) 0 0
\(183\) −7.64130e9 −0.503660
\(184\) 4.83885e8 0.0311216
\(185\) 1.22384e9 0.0768157
\(186\) −2.73963e9 −0.167836
\(187\) −5.15291e9 −0.308152
\(188\) 1.65632e10 0.967017
\(189\) 1.38640e10 0.790334
\(190\) −7.93953e9 −0.441981
\(191\) 6.59988e9 0.358827 0.179414 0.983774i \(-0.442580\pi\)
0.179414 + 0.983774i \(0.442580\pi\)
\(192\) 1.69937e9 0.0902467
\(193\) 3.53743e10 1.83519 0.917593 0.397522i \(-0.130130\pi\)
0.917593 + 0.397522i \(0.130130\pi\)
\(194\) −1.96236e10 −0.994651
\(195\) 0 0
\(196\) −4.66932e9 −0.225996
\(197\) 2.31046e10 1.09295 0.546476 0.837475i \(-0.315969\pi\)
0.546476 + 0.837475i \(0.315969\pi\)
\(198\) 1.16100e10 0.536833
\(199\) −3.00516e10 −1.35841 −0.679203 0.733951i \(-0.737674\pi\)
−0.679203 + 0.733951i \(0.737674\pi\)
\(200\) −6.98923e9 −0.308883
\(201\) −5.41574e9 −0.234032
\(202\) 1.34541e10 0.568555
\(203\) −4.35651e9 −0.180056
\(204\) 1.73520e9 0.0701479
\(205\) −1.48979e10 −0.589158
\(206\) 2.27345e10 0.879594
\(207\) −1.11323e9 −0.0421424
\(208\) 0 0
\(209\) −7.69199e10 −2.78856
\(210\) 3.78588e9 0.134332
\(211\) −4.28559e10 −1.48847 −0.744234 0.667918i \(-0.767185\pi\)
−0.744234 + 0.667918i \(0.767185\pi\)
\(212\) 1.21326e10 0.412519
\(213\) 2.69003e10 0.895465
\(214\) 6.47460e9 0.211033
\(215\) −4.72512e9 −0.150813
\(216\) −1.20758e10 −0.377461
\(217\) 7.94950e9 0.243372
\(218\) 1.47162e10 0.441308
\(219\) −2.22735e9 −0.0654320
\(220\) 9.79253e9 0.281834
\(221\) 0 0
\(222\) −3.99268e9 −0.110326
\(223\) 3.17732e10 0.860378 0.430189 0.902739i \(-0.358447\pi\)
0.430189 + 0.902739i \(0.358447\pi\)
\(224\) −4.93099e9 −0.130863
\(225\) 1.60795e10 0.418265
\(226\) −4.05430e10 −1.03378
\(227\) −7.11270e9 −0.177794 −0.0888972 0.996041i \(-0.528334\pi\)
−0.0888972 + 0.996041i \(0.528334\pi\)
\(228\) 2.59022e10 0.634789
\(229\) 3.39605e10 0.816046 0.408023 0.912972i \(-0.366218\pi\)
0.408023 + 0.912972i \(0.366218\pi\)
\(230\) −9.38962e8 −0.0221245
\(231\) 3.66784e10 0.847533
\(232\) 3.79458e9 0.0859940
\(233\) 2.07087e10 0.460311 0.230155 0.973154i \(-0.426077\pi\)
0.230155 + 0.973154i \(0.426077\pi\)
\(234\) 0 0
\(235\) −3.21403e10 −0.687455
\(236\) 1.68383e10 0.353340
\(237\) −2.42063e9 −0.0498380
\(238\) −5.03498e9 −0.101719
\(239\) −5.76591e10 −1.14308 −0.571541 0.820574i \(-0.693654\pi\)
−0.571541 + 0.820574i \(0.693654\pi\)
\(240\) −3.29756e9 −0.0641567
\(241\) 9.93359e10 1.89684 0.948418 0.317024i \(-0.102683\pi\)
0.948418 + 0.317024i \(0.102683\pi\)
\(242\) 5.71449e10 1.07105
\(243\) 4.65688e10 0.856776
\(244\) −1.93126e10 −0.348808
\(245\) 9.06064e9 0.160661
\(246\) 4.86033e10 0.846170
\(247\) 0 0
\(248\) −6.92413e9 −0.116234
\(249\) 3.66220e10 0.603733
\(250\) 2.90861e10 0.470928
\(251\) −7.09479e10 −1.12826 −0.564129 0.825687i \(-0.690788\pi\)
−0.564129 + 0.825687i \(0.690788\pi\)
\(252\) 1.13443e10 0.177205
\(253\) −9.09686e9 −0.139588
\(254\) 5.78501e10 0.872072
\(255\) −3.36710e9 −0.0498684
\(256\) 4.29497e9 0.0625000
\(257\) 3.64522e10 0.521225 0.260612 0.965444i \(-0.416076\pi\)
0.260612 + 0.965444i \(0.416076\pi\)
\(258\) 1.54154e10 0.216604
\(259\) 1.15854e10 0.159979
\(260\) 0 0
\(261\) −8.72987e9 −0.116446
\(262\) −5.53399e10 −0.725575
\(263\) 9.72635e10 1.25357 0.626785 0.779192i \(-0.284370\pi\)
0.626785 + 0.779192i \(0.284370\pi\)
\(264\) −3.19475e10 −0.404780
\(265\) −2.35430e10 −0.293261
\(266\) −7.51595e10 −0.920484
\(267\) 6.79182e10 0.817872
\(268\) −1.36877e10 −0.162078
\(269\) −7.28970e10 −0.848837 −0.424418 0.905466i \(-0.639521\pi\)
−0.424418 + 0.905466i \(0.639521\pi\)
\(270\) 2.34326e10 0.268338
\(271\) 1.47255e11 1.65847 0.829235 0.558900i \(-0.188776\pi\)
0.829235 + 0.558900i \(0.188776\pi\)
\(272\) 4.38554e9 0.0485806
\(273\) 0 0
\(274\) −4.64301e10 −0.497648
\(275\) 1.31395e11 1.38542
\(276\) 3.06330e9 0.0317760
\(277\) −7.41672e10 −0.756926 −0.378463 0.925617i \(-0.623547\pi\)
−0.378463 + 0.925617i \(0.623547\pi\)
\(278\) −9.25411e9 −0.0929252
\(279\) 1.59297e10 0.157395
\(280\) 9.56841e9 0.0930312
\(281\) 1.17698e11 1.12614 0.563068 0.826410i \(-0.309621\pi\)
0.563068 + 0.826410i \(0.309621\pi\)
\(282\) 1.04856e11 0.987348
\(283\) −2.40423e10 −0.222811 −0.111406 0.993775i \(-0.535535\pi\)
−0.111406 + 0.993775i \(0.535535\pi\)
\(284\) 6.79876e10 0.620150
\(285\) −5.02623e10 −0.451274
\(286\) 0 0
\(287\) −1.41031e11 −1.22700
\(288\) −9.88106e9 −0.0846325
\(289\) −1.14110e11 −0.962239
\(290\) −7.36325e9 −0.0611334
\(291\) −1.24230e11 −1.01556
\(292\) −5.62939e9 −0.0453147
\(293\) 1.54985e11 1.22853 0.614264 0.789101i \(-0.289453\pi\)
0.614264 + 0.789101i \(0.289453\pi\)
\(294\) −2.95597e10 −0.230748
\(295\) −3.26740e10 −0.251191
\(296\) −1.00911e10 −0.0764055
\(297\) 2.27020e11 1.69301
\(298\) −2.36584e10 −0.173785
\(299\) 0 0
\(300\) −4.42463e10 −0.315378
\(301\) −4.47303e10 −0.314089
\(302\) −1.75369e11 −1.21317
\(303\) 8.51727e10 0.580509
\(304\) 6.54650e10 0.439621
\(305\) 3.74754e10 0.247969
\(306\) −1.00894e10 −0.0657840
\(307\) 9.17019e10 0.589191 0.294595 0.955622i \(-0.404815\pi\)
0.294595 + 0.955622i \(0.404815\pi\)
\(308\) 9.27008e10 0.586956
\(309\) 1.43924e11 0.898088
\(310\) 1.34360e10 0.0826310
\(311\) 1.15680e11 0.701190 0.350595 0.936527i \(-0.385979\pi\)
0.350595 + 0.936527i \(0.385979\pi\)
\(312\) 0 0
\(313\) −1.79916e11 −1.05954 −0.529772 0.848140i \(-0.677723\pi\)
−0.529772 + 0.848140i \(0.677723\pi\)
\(314\) 7.59578e10 0.440950
\(315\) −2.20132e10 −0.125975
\(316\) −6.11788e9 −0.0345151
\(317\) −2.85448e11 −1.58767 −0.793836 0.608133i \(-0.791919\pi\)
−0.793836 + 0.608133i \(0.791919\pi\)
\(318\) 7.68073e10 0.421192
\(319\) −7.13367e10 −0.385705
\(320\) −8.33423e9 −0.0444315
\(321\) 4.09883e10 0.215470
\(322\) −8.88867e9 −0.0460771
\(323\) 6.68456e10 0.341713
\(324\) −2.89645e10 −0.146020
\(325\) 0 0
\(326\) 1.15640e11 0.567059
\(327\) 9.31629e10 0.450586
\(328\) 1.22840e11 0.586012
\(329\) −3.04256e11 −1.43172
\(330\) 6.19929e10 0.287759
\(331\) −5.37068e10 −0.245925 −0.122963 0.992411i \(-0.539240\pi\)
−0.122963 + 0.992411i \(0.539240\pi\)
\(332\) 9.25582e10 0.418113
\(333\) 2.32157e10 0.103462
\(334\) −2.56824e11 −1.12921
\(335\) 2.65605e10 0.115222
\(336\) −3.12163e10 −0.133615
\(337\) −1.31238e11 −0.554276 −0.277138 0.960830i \(-0.589386\pi\)
−0.277138 + 0.960830i \(0.589386\pi\)
\(338\) 0 0
\(339\) −2.56663e11 −1.05551
\(340\) −8.50999e9 −0.0345361
\(341\) 1.30171e11 0.521338
\(342\) −1.50610e11 −0.595299
\(343\) 2.75538e11 1.07487
\(344\) 3.89608e10 0.150008
\(345\) −5.94422e9 −0.0225896
\(346\) −2.12557e11 −0.797321
\(347\) 1.86715e11 0.691346 0.345673 0.938355i \(-0.387651\pi\)
0.345673 + 0.938355i \(0.387651\pi\)
\(348\) 2.40221e10 0.0878020
\(349\) −4.23843e11 −1.52929 −0.764646 0.644450i \(-0.777086\pi\)
−0.764646 + 0.644450i \(0.777086\pi\)
\(350\) 1.28388e11 0.457317
\(351\) 0 0
\(352\) −8.07438e10 −0.280328
\(353\) −1.80107e11 −0.617370 −0.308685 0.951164i \(-0.599889\pi\)
−0.308685 + 0.951164i \(0.599889\pi\)
\(354\) 1.06597e11 0.360769
\(355\) −1.31927e11 −0.440867
\(356\) 1.71656e11 0.566414
\(357\) −3.18746e10 −0.103858
\(358\) 3.45139e11 1.11050
\(359\) 1.96595e11 0.624666 0.312333 0.949973i \(-0.398889\pi\)
0.312333 + 0.949973i \(0.398889\pi\)
\(360\) 1.91738e10 0.0601655
\(361\) 6.75147e11 2.09226
\(362\) 2.70461e11 0.827783
\(363\) 3.61763e11 1.09357
\(364\) 0 0
\(365\) 1.09236e10 0.0322144
\(366\) −1.22261e11 −0.356141
\(367\) 6.62820e10 0.190721 0.0953605 0.995443i \(-0.469600\pi\)
0.0953605 + 0.995443i \(0.469600\pi\)
\(368\) 7.74217e9 0.0220063
\(369\) −2.82607e11 −0.793530
\(370\) 1.95814e10 0.0543169
\(371\) −2.22869e11 −0.610755
\(372\) −4.38341e10 −0.118678
\(373\) 3.50337e11 0.937122 0.468561 0.883431i \(-0.344773\pi\)
0.468561 + 0.883431i \(0.344773\pi\)
\(374\) −8.24466e10 −0.217897
\(375\) 1.84133e11 0.480830
\(376\) 2.65011e11 0.683784
\(377\) 0 0
\(378\) 2.21824e11 0.558850
\(379\) 6.46678e11 1.60995 0.804974 0.593311i \(-0.202179\pi\)
0.804974 + 0.593311i \(0.202179\pi\)
\(380\) −1.27033e11 −0.312528
\(381\) 3.66228e11 0.890407
\(382\) 1.05598e11 0.253729
\(383\) 3.89455e11 0.924832 0.462416 0.886663i \(-0.346983\pi\)
0.462416 + 0.886663i \(0.346983\pi\)
\(384\) 2.71899e10 0.0638141
\(385\) −1.79883e11 −0.417269
\(386\) 5.65989e11 1.29767
\(387\) −8.96336e10 −0.203129
\(388\) −3.13977e11 −0.703324
\(389\) −1.09573e11 −0.242622 −0.121311 0.992615i \(-0.538710\pi\)
−0.121311 + 0.992615i \(0.538710\pi\)
\(390\) 0 0
\(391\) 7.90544e9 0.0171053
\(392\) −7.47091e10 −0.159803
\(393\) −3.50336e11 −0.740830
\(394\) 3.69674e11 0.772833
\(395\) 1.18715e10 0.0245369
\(396\) 1.85760e11 0.379598
\(397\) −6.77015e11 −1.36786 −0.683929 0.729548i \(-0.739730\pi\)
−0.683929 + 0.729548i \(0.739730\pi\)
\(398\) −4.80826e11 −0.960538
\(399\) −4.75807e11 −0.939838
\(400\) −1.11828e11 −0.218414
\(401\) 7.84448e10 0.151501 0.0757504 0.997127i \(-0.475865\pi\)
0.0757504 + 0.997127i \(0.475865\pi\)
\(402\) −8.66518e10 −0.165486
\(403\) 0 0
\(404\) 2.15265e11 0.402029
\(405\) 5.62046e10 0.103806
\(406\) −6.97041e10 −0.127318
\(407\) 1.89708e11 0.342698
\(408\) 2.77633e10 0.0496021
\(409\) 6.73620e11 1.19031 0.595155 0.803611i \(-0.297091\pi\)
0.595155 + 0.803611i \(0.297091\pi\)
\(410\) −2.38366e11 −0.416598
\(411\) −2.93932e11 −0.508111
\(412\) 3.63752e11 0.621967
\(413\) −3.09308e11 −0.523138
\(414\) −1.78117e10 −0.0297992
\(415\) −1.79606e11 −0.297238
\(416\) 0 0
\(417\) −5.85844e10 −0.0948789
\(418\) −1.23072e12 −1.97181
\(419\) 4.42161e11 0.700837 0.350419 0.936593i \(-0.386039\pi\)
0.350419 + 0.936593i \(0.386039\pi\)
\(420\) 6.05741e10 0.0949872
\(421\) 6.78641e11 1.05286 0.526430 0.850218i \(-0.323530\pi\)
0.526430 + 0.850218i \(0.323530\pi\)
\(422\) −6.85695e11 −1.05251
\(423\) −6.09688e11 −0.925926
\(424\) 1.94122e11 0.291695
\(425\) −1.14186e11 −0.169771
\(426\) 4.30404e11 0.633189
\(427\) 3.54760e11 0.516427
\(428\) 1.03594e11 0.149223
\(429\) 0 0
\(430\) −7.56020e10 −0.106641
\(431\) −9.44035e11 −1.31777 −0.658886 0.752243i \(-0.728972\pi\)
−0.658886 + 0.752243i \(0.728972\pi\)
\(432\) −1.93212e11 −0.266905
\(433\) −5.80138e11 −0.793114 −0.396557 0.918010i \(-0.629795\pi\)
−0.396557 + 0.918010i \(0.629795\pi\)
\(434\) 1.27192e11 0.172090
\(435\) −4.66140e10 −0.0624188
\(436\) 2.35459e11 0.312052
\(437\) 1.18008e11 0.154791
\(438\) −3.56376e10 −0.0462674
\(439\) 4.59761e11 0.590801 0.295401 0.955373i \(-0.404547\pi\)
0.295401 + 0.955373i \(0.404547\pi\)
\(440\) 1.56680e11 0.199286
\(441\) 1.71877e11 0.216393
\(442\) 0 0
\(443\) 8.88513e11 1.09609 0.548046 0.836448i \(-0.315372\pi\)
0.548046 + 0.836448i \(0.315372\pi\)
\(444\) −6.38829e10 −0.0780120
\(445\) −3.33092e11 −0.402665
\(446\) 5.08371e11 0.608379
\(447\) −1.49772e11 −0.177439
\(448\) −7.88959e10 −0.0925344
\(449\) 2.23151e11 0.259114 0.129557 0.991572i \(-0.458645\pi\)
0.129557 + 0.991572i \(0.458645\pi\)
\(450\) 2.57272e11 0.295758
\(451\) −2.30934e12 −2.62841
\(452\) −6.48688e11 −0.730992
\(453\) −1.11020e12 −1.23868
\(454\) −1.13803e11 −0.125720
\(455\) 0 0
\(456\) 4.14435e11 0.448864
\(457\) 1.56152e12 1.67466 0.837328 0.546701i \(-0.184117\pi\)
0.837328 + 0.546701i \(0.184117\pi\)
\(458\) 5.43368e11 0.577031
\(459\) −1.97287e11 −0.207463
\(460\) −1.50234e10 −0.0156444
\(461\) −4.99833e11 −0.515432 −0.257716 0.966221i \(-0.582970\pi\)
−0.257716 + 0.966221i \(0.582970\pi\)
\(462\) 5.86855e11 0.599297
\(463\) 9.34281e11 0.944850 0.472425 0.881371i \(-0.343379\pi\)
0.472425 + 0.881371i \(0.343379\pi\)
\(464\) 6.07133e10 0.0608069
\(465\) 8.50585e10 0.0843684
\(466\) 3.31339e11 0.325489
\(467\) −5.01006e11 −0.487435 −0.243717 0.969846i \(-0.578367\pi\)
−0.243717 + 0.969846i \(0.578367\pi\)
\(468\) 0 0
\(469\) 2.51435e11 0.239965
\(470\) −5.14245e11 −0.486104
\(471\) 4.80861e11 0.450221
\(472\) 2.69412e11 0.249849
\(473\) −7.32448e11 −0.672824
\(474\) −3.87301e10 −0.0352408
\(475\) −1.70451e12 −1.53631
\(476\) −8.05597e10 −0.0719261
\(477\) −4.46600e11 −0.394990
\(478\) −9.22546e11 −0.808281
\(479\) −1.95563e12 −1.69737 −0.848686 0.528897i \(-0.822606\pi\)
−0.848686 + 0.528897i \(0.822606\pi\)
\(480\) −5.27609e10 −0.0453656
\(481\) 0 0
\(482\) 1.58937e12 1.34127
\(483\) −5.62709e10 −0.0470459
\(484\) 9.14318e11 0.757344
\(485\) 6.09262e11 0.499996
\(486\) 7.45101e11 0.605832
\(487\) −1.11907e12 −0.901523 −0.450762 0.892644i \(-0.648848\pi\)
−0.450762 + 0.892644i \(0.648848\pi\)
\(488\) −3.09001e11 −0.246644
\(489\) 7.32073e11 0.578982
\(490\) 1.44970e11 0.113605
\(491\) −5.24548e11 −0.407304 −0.203652 0.979043i \(-0.565281\pi\)
−0.203652 + 0.979043i \(0.565281\pi\)
\(492\) 7.77653e11 0.598333
\(493\) 6.19937e10 0.0472646
\(494\) 0 0
\(495\) −3.60461e11 −0.269858
\(496\) −1.10786e11 −0.0821898
\(497\) −1.24889e12 −0.918164
\(498\) 5.85952e11 0.426904
\(499\) 4.23413e11 0.305712 0.152856 0.988248i \(-0.451153\pi\)
0.152856 + 0.988248i \(0.451153\pi\)
\(500\) 4.65377e11 0.332997
\(501\) −1.62586e12 −1.15296
\(502\) −1.13517e12 −0.797798
\(503\) −1.16252e12 −0.809736 −0.404868 0.914375i \(-0.632683\pi\)
−0.404868 + 0.914375i \(0.632683\pi\)
\(504\) 1.81509e11 0.125303
\(505\) −4.17714e11 −0.285804
\(506\) −1.45550e11 −0.0987039
\(507\) 0 0
\(508\) 9.25601e11 0.616648
\(509\) 5.37636e11 0.355025 0.177512 0.984119i \(-0.443195\pi\)
0.177512 + 0.984119i \(0.443195\pi\)
\(510\) −5.38736e10 −0.0352623
\(511\) 1.03408e11 0.0670907
\(512\) 6.87195e10 0.0441942
\(513\) −2.94499e12 −1.87739
\(514\) 5.83236e11 0.368561
\(515\) −7.05847e11 −0.442158
\(516\) 2.46646e11 0.153162
\(517\) −4.98211e12 −3.06695
\(518\) 1.85367e11 0.113122
\(519\) −1.34562e12 −0.814085
\(520\) 0 0
\(521\) −1.67587e12 −0.996486 −0.498243 0.867037i \(-0.666021\pi\)
−0.498243 + 0.867037i \(0.666021\pi\)
\(522\) −1.39678e11 −0.0823399
\(523\) −1.18623e12 −0.693285 −0.346643 0.937997i \(-0.612678\pi\)
−0.346643 + 0.937997i \(0.612678\pi\)
\(524\) −8.85438e11 −0.513059
\(525\) 8.12776e11 0.466933
\(526\) 1.55622e12 0.886408
\(527\) −1.13122e11 −0.0638853
\(528\) −5.11159e11 −0.286222
\(529\) −1.78720e12 −0.992252
\(530\) −3.76687e11 −0.207367
\(531\) −6.19813e11 −0.338326
\(532\) −1.20255e12 −0.650881
\(533\) 0 0
\(534\) 1.08669e12 0.578323
\(535\) −2.01020e11 −0.106083
\(536\) −2.19003e11 −0.114606
\(537\) 2.18495e12 1.13385
\(538\) −1.16635e12 −0.600218
\(539\) 1.40450e12 0.716759
\(540\) 3.74921e11 0.189744
\(541\) 3.39486e11 0.170386 0.0851932 0.996364i \(-0.472849\pi\)
0.0851932 + 0.996364i \(0.472849\pi\)
\(542\) 2.35608e12 1.17272
\(543\) 1.71219e12 0.845187
\(544\) 7.01687e10 0.0343517
\(545\) −4.56900e11 −0.221839
\(546\) 0 0
\(547\) 2.09386e12 1.00001 0.500006 0.866022i \(-0.333331\pi\)
0.500006 + 0.866022i \(0.333331\pi\)
\(548\) −7.42882e11 −0.351890
\(549\) 7.10892e11 0.333986
\(550\) 2.10232e12 0.979640
\(551\) 9.25408e11 0.427712
\(552\) 4.90128e10 0.0224690
\(553\) 1.12382e11 0.0511013
\(554\) −1.18668e12 −0.535227
\(555\) 1.23962e11 0.0554590
\(556\) −1.48066e11 −0.0657080
\(557\) −4.22682e12 −1.86065 −0.930327 0.366732i \(-0.880477\pi\)
−0.930327 + 0.366732i \(0.880477\pi\)
\(558\) 2.54876e11 0.111295
\(559\) 0 0
\(560\) 1.53095e11 0.0657830
\(561\) −5.21939e11 −0.222478
\(562\) 1.88317e12 0.796299
\(563\) 1.42927e12 0.599552 0.299776 0.954010i \(-0.403088\pi\)
0.299776 + 0.954010i \(0.403088\pi\)
\(564\) 1.67769e12 0.698161
\(565\) 1.25875e12 0.519665
\(566\) −3.84677e11 −0.157551
\(567\) 5.32060e11 0.216191
\(568\) 1.08780e12 0.438513
\(569\) −1.13224e12 −0.452826 −0.226413 0.974031i \(-0.572700\pi\)
−0.226413 + 0.974031i \(0.572700\pi\)
\(570\) −8.04196e11 −0.319099
\(571\) −2.72935e11 −0.107448 −0.0537238 0.998556i \(-0.517109\pi\)
−0.0537238 + 0.998556i \(0.517109\pi\)
\(572\) 0 0
\(573\) 6.68502e11 0.259064
\(574\) −2.25649e12 −0.867620
\(575\) −2.01582e11 −0.0769036
\(576\) −1.58097e11 −0.0598442
\(577\) −3.68253e12 −1.38311 −0.691553 0.722326i \(-0.743073\pi\)
−0.691553 + 0.722326i \(0.743073\pi\)
\(578\) −1.82576e12 −0.680406
\(579\) 3.58307e12 1.32496
\(580\) −1.17812e11 −0.0432279
\(581\) −1.70024e12 −0.619038
\(582\) −1.98768e12 −0.718112
\(583\) −3.64943e12 −1.30833
\(584\) −9.00703e10 −0.0320423
\(585\) 0 0
\(586\) 2.47976e12 0.868700
\(587\) 3.73912e12 1.29986 0.649932 0.759992i \(-0.274797\pi\)
0.649932 + 0.759992i \(0.274797\pi\)
\(588\) −4.72956e11 −0.163163
\(589\) −1.68863e12 −0.578117
\(590\) −5.22785e11 −0.177619
\(591\) 2.34027e12 0.789082
\(592\) −1.61457e11 −0.0540269
\(593\) 3.36951e11 0.111898 0.0559488 0.998434i \(-0.482182\pi\)
0.0559488 + 0.998434i \(0.482182\pi\)
\(594\) 3.63231e12 1.19714
\(595\) 1.56323e11 0.0511325
\(596\) −3.78534e11 −0.122884
\(597\) −3.04393e12 −0.980733
\(598\) 0 0
\(599\) −2.35939e12 −0.748823 −0.374412 0.927263i \(-0.622155\pi\)
−0.374412 + 0.927263i \(0.622155\pi\)
\(600\) −7.07940e11 −0.223006
\(601\) 2.73229e12 0.854264 0.427132 0.904189i \(-0.359524\pi\)
0.427132 + 0.904189i \(0.359524\pi\)
\(602\) −7.15685e11 −0.222094
\(603\) 5.03842e11 0.155191
\(604\) −2.80590e12 −0.857840
\(605\) −1.77420e12 −0.538399
\(606\) 1.36276e12 0.410482
\(607\) 1.41433e12 0.422866 0.211433 0.977392i \(-0.432187\pi\)
0.211433 + 0.977392i \(0.432187\pi\)
\(608\) 1.04744e12 0.310859
\(609\) −4.41271e11 −0.129995
\(610\) 5.99606e11 0.175340
\(611\) 0 0
\(612\) −1.61431e11 −0.0465163
\(613\) 4.58402e12 1.31122 0.655608 0.755101i \(-0.272412\pi\)
0.655608 + 0.755101i \(0.272412\pi\)
\(614\) 1.46723e12 0.416621
\(615\) −1.50901e12 −0.425357
\(616\) 1.48321e12 0.415040
\(617\) −3.76391e12 −1.04558 −0.522788 0.852463i \(-0.675108\pi\)
−0.522788 + 0.852463i \(0.675108\pi\)
\(618\) 2.30278e12 0.635044
\(619\) −4.45737e12 −1.22031 −0.610156 0.792281i \(-0.708893\pi\)
−0.610156 + 0.792281i \(0.708893\pi\)
\(620\) 2.14976e11 0.0584290
\(621\) −3.48287e11 −0.0939777
\(622\) 1.85088e12 0.495817
\(623\) −3.15321e12 −0.838604
\(624\) 0 0
\(625\) 2.42968e12 0.636926
\(626\) −2.87865e12 −0.749211
\(627\) −7.79122e12 −2.01327
\(628\) 1.21532e12 0.311798
\(629\) −1.64862e11 −0.0419945
\(630\) −3.52212e11 −0.0890781
\(631\) −7.09673e12 −1.78208 −0.891038 0.453928i \(-0.850022\pi\)
−0.891038 + 0.453928i \(0.850022\pi\)
\(632\) −9.78861e10 −0.0244059
\(633\) −4.34088e12 −1.07464
\(634\) −4.56717e12 −1.12265
\(635\) −1.79610e12 −0.438377
\(636\) 1.22892e12 0.297828
\(637\) 0 0
\(638\) −1.14139e12 −0.272735
\(639\) −2.50261e12 −0.593799
\(640\) −1.33348e11 −0.0314178
\(641\) −3.91333e12 −0.915556 −0.457778 0.889066i \(-0.651355\pi\)
−0.457778 + 0.889066i \(0.651355\pi\)
\(642\) 6.55813e11 0.152360
\(643\) 1.96199e12 0.452634 0.226317 0.974054i \(-0.427332\pi\)
0.226317 + 0.974054i \(0.427332\pi\)
\(644\) −1.42219e11 −0.0325815
\(645\) −4.78608e11 −0.108883
\(646\) 1.06953e12 0.241628
\(647\) −2.05456e12 −0.460946 −0.230473 0.973079i \(-0.574027\pi\)
−0.230473 + 0.973079i \(0.574027\pi\)
\(648\) −4.63432e11 −0.103252
\(649\) −5.06485e12 −1.12064
\(650\) 0 0
\(651\) 8.05206e11 0.175708
\(652\) 1.85024e12 0.400971
\(653\) −1.86912e12 −0.402280 −0.201140 0.979563i \(-0.564465\pi\)
−0.201140 + 0.979563i \(0.564465\pi\)
\(654\) 1.49061e12 0.318613
\(655\) 1.71816e12 0.364735
\(656\) 1.96543e12 0.414373
\(657\) 2.07217e11 0.0433891
\(658\) −4.86809e12 −1.01238
\(659\) −6.92414e10 −0.0143015 −0.00715074 0.999974i \(-0.502276\pi\)
−0.00715074 + 0.999974i \(0.502276\pi\)
\(660\) 9.91886e11 0.203476
\(661\) 3.41365e12 0.695525 0.347762 0.937583i \(-0.386942\pi\)
0.347762 + 0.937583i \(0.386942\pi\)
\(662\) −8.59308e11 −0.173895
\(663\) 0 0
\(664\) 1.48093e12 0.295651
\(665\) 2.33351e12 0.462713
\(666\) 3.71451e11 0.0731589
\(667\) 1.09443e11 0.0214102
\(668\) −4.10918e12 −0.798475
\(669\) 3.21831e12 0.621170
\(670\) 4.24968e11 0.0814741
\(671\) 5.80911e12 1.10626
\(672\) −4.99461e11 −0.0944800
\(673\) 1.00166e13 1.88214 0.941072 0.338208i \(-0.109821\pi\)
0.941072 + 0.338208i \(0.109821\pi\)
\(674\) −2.09981e12 −0.391932
\(675\) 5.03065e12 0.932732
\(676\) 0 0
\(677\) −1.04118e13 −1.90492 −0.952458 0.304669i \(-0.901454\pi\)
−0.952458 + 0.304669i \(0.901454\pi\)
\(678\) −4.10660e12 −0.746361
\(679\) 5.76757e12 1.04131
\(680\) −1.36160e11 −0.0244207
\(681\) −7.20446e11 −0.128363
\(682\) 2.08274e12 0.368642
\(683\) −9.64615e12 −1.69614 −0.848069 0.529886i \(-0.822235\pi\)
−0.848069 + 0.529886i \(0.822235\pi\)
\(684\) −2.40975e12 −0.420940
\(685\) 1.44154e12 0.250160
\(686\) 4.40860e12 0.760051
\(687\) 3.43986e12 0.589164
\(688\) 6.23372e11 0.106072
\(689\) 0 0
\(690\) −9.51076e10 −0.0159733
\(691\) −3.06746e12 −0.511832 −0.255916 0.966699i \(-0.582377\pi\)
−0.255916 + 0.966699i \(0.582377\pi\)
\(692\) −3.40091e12 −0.563791
\(693\) −3.41230e12 −0.562015
\(694\) 2.98743e12 0.488856
\(695\) 2.87316e11 0.0467120
\(696\) 3.84354e11 0.0620854
\(697\) 2.00688e12 0.322088
\(698\) −6.78149e12 −1.08137
\(699\) 2.09759e12 0.332332
\(700\) 2.05421e12 0.323372
\(701\) 1.05088e13 1.64370 0.821849 0.569705i \(-0.192943\pi\)
0.821849 + 0.569705i \(0.192943\pi\)
\(702\) 0 0
\(703\) −2.46097e12 −0.380021
\(704\) −1.29190e12 −0.198222
\(705\) −3.25549e12 −0.496325
\(706\) −2.88172e12 −0.436546
\(707\) −3.95429e12 −0.595224
\(708\) 1.70555e12 0.255102
\(709\) 9.77052e12 1.45214 0.726072 0.687619i \(-0.241344\pi\)
0.726072 + 0.687619i \(0.241344\pi\)
\(710\) −2.11084e12 −0.311740
\(711\) 2.25198e11 0.0330485
\(712\) 2.74649e12 0.400515
\(713\) −1.99704e11 −0.0289391
\(714\) −5.09994e11 −0.0734384
\(715\) 0 0
\(716\) 5.52222e12 0.785245
\(717\) −5.84030e12 −0.825275
\(718\) 3.14552e12 0.441706
\(719\) 3.18190e12 0.444025 0.222012 0.975044i \(-0.428737\pi\)
0.222012 + 0.975044i \(0.428737\pi\)
\(720\) 3.06781e11 0.0425435
\(721\) −6.68189e12 −0.920854
\(722\) 1.08024e13 1.47945
\(723\) 1.00617e13 1.36947
\(724\) 4.32738e12 0.585331
\(725\) −1.58079e12 −0.212497
\(726\) 5.78821e12 0.773268
\(727\) 3.49152e12 0.463565 0.231782 0.972768i \(-0.425544\pi\)
0.231782 + 0.972768i \(0.425544\pi\)
\(728\) 0 0
\(729\) 6.94395e12 0.910611
\(730\) 1.74778e11 0.0227790
\(731\) 6.36518e11 0.0824485
\(732\) −1.95617e12 −0.251830
\(733\) −1.89661e12 −0.242667 −0.121333 0.992612i \(-0.538717\pi\)
−0.121333 + 0.992612i \(0.538717\pi\)
\(734\) 1.06051e12 0.134860
\(735\) 9.17754e11 0.115993
\(736\) 1.23875e11 0.0155608
\(737\) 4.11718e12 0.514039
\(738\) −4.52170e12 −0.561111
\(739\) 1.42558e13 1.75829 0.879145 0.476554i \(-0.158114\pi\)
0.879145 + 0.476554i \(0.158114\pi\)
\(740\) 3.13302e11 0.0384079
\(741\) 0 0
\(742\) −3.56591e12 −0.431869
\(743\) 8.28027e12 0.996770 0.498385 0.866956i \(-0.333927\pi\)
0.498385 + 0.866956i \(0.333927\pi\)
\(744\) −7.01346e11 −0.0839178
\(745\) 7.34532e11 0.0873589
\(746\) 5.60539e12 0.662645
\(747\) −3.40705e12 −0.400346
\(748\) −1.31914e12 −0.154076
\(749\) −1.90295e12 −0.220932
\(750\) 2.94613e12 0.339998
\(751\) 1.62220e13 1.86091 0.930456 0.366405i \(-0.119411\pi\)
0.930456 + 0.366405i \(0.119411\pi\)
\(752\) 4.24018e12 0.483508
\(753\) −7.18633e12 −0.814572
\(754\) 0 0
\(755\) 5.44475e12 0.609841
\(756\) 3.54919e12 0.395167
\(757\) 1.48658e13 1.64535 0.822674 0.568514i \(-0.192481\pi\)
0.822674 + 0.568514i \(0.192481\pi\)
\(758\) 1.03468e13 1.13840
\(759\) −9.21423e11 −0.100779
\(760\) −2.03252e12 −0.220991
\(761\) −3.76818e12 −0.407287 −0.203644 0.979045i \(-0.565278\pi\)
−0.203644 + 0.979045i \(0.565278\pi\)
\(762\) 5.85964e12 0.629613
\(763\) −4.32524e12 −0.462008
\(764\) 1.68957e12 0.179414
\(765\) 3.13251e11 0.0330686
\(766\) 6.23128e12 0.653955
\(767\) 0 0
\(768\) 4.35038e11 0.0451234
\(769\) 5.13616e12 0.529627 0.264814 0.964300i \(-0.414690\pi\)
0.264814 + 0.964300i \(0.414690\pi\)
\(770\) −2.87812e12 −0.295054
\(771\) 3.69225e12 0.376311
\(772\) 9.05582e12 0.917593
\(773\) 1.14329e13 1.15172 0.575861 0.817548i \(-0.304667\pi\)
0.575861 + 0.817548i \(0.304667\pi\)
\(774\) −1.43414e12 −0.143634
\(775\) 2.88453e12 0.287222
\(776\) −5.02364e12 −0.497325
\(777\) 1.17349e12 0.115501
\(778\) −1.75317e12 −0.171560
\(779\) 2.99577e13 2.91467
\(780\) 0 0
\(781\) −2.04503e13 −1.96684
\(782\) 1.26487e11 0.0120953
\(783\) −2.73123e12 −0.259675
\(784\) −1.19535e12 −0.112998
\(785\) −2.35829e12 −0.221659
\(786\) −5.60538e12 −0.523846
\(787\) 2.50726e12 0.232977 0.116488 0.993192i \(-0.462836\pi\)
0.116488 + 0.993192i \(0.462836\pi\)
\(788\) 5.91478e12 0.546476
\(789\) 9.85183e12 0.905045
\(790\) 1.89944e11 0.0173502
\(791\) 1.19160e13 1.08227
\(792\) 2.97216e12 0.268417
\(793\) 0 0
\(794\) −1.08322e13 −0.967222
\(795\) −2.38467e12 −0.211727
\(796\) −7.69322e12 −0.679203
\(797\) −8.66588e12 −0.760764 −0.380382 0.924829i \(-0.624208\pi\)
−0.380382 + 0.924829i \(0.624208\pi\)
\(798\) −7.61291e12 −0.664566
\(799\) 4.32960e12 0.375826
\(800\) −1.78924e12 −0.154442
\(801\) −6.31862e12 −0.542345
\(802\) 1.25512e12 0.107127
\(803\) 1.69329e12 0.143718
\(804\) −1.38643e12 −0.117016
\(805\) 2.75970e11 0.0231623
\(806\) 0 0
\(807\) −7.38374e12 −0.612838
\(808\) 3.44424e12 0.284277
\(809\) 2.35307e12 0.193137 0.0965686 0.995326i \(-0.469213\pi\)
0.0965686 + 0.995326i \(0.469213\pi\)
\(810\) 8.99274e11 0.0734022
\(811\) −3.27323e12 −0.265695 −0.132847 0.991137i \(-0.542412\pi\)
−0.132847 + 0.991137i \(0.542412\pi\)
\(812\) −1.11527e12 −0.0900278
\(813\) 1.49155e13 1.19737
\(814\) 3.03533e12 0.242324
\(815\) −3.59032e12 −0.285052
\(816\) 4.44212e11 0.0350740
\(817\) 9.50160e12 0.746101
\(818\) 1.07779e13 0.841676
\(819\) 0 0
\(820\) −3.81385e12 −0.294579
\(821\) 1.17584e13 0.903244 0.451622 0.892209i \(-0.350846\pi\)
0.451622 + 0.892209i \(0.350846\pi\)
\(822\) −4.70291e12 −0.359289
\(823\) −4.19155e12 −0.318475 −0.159238 0.987240i \(-0.550904\pi\)
−0.159238 + 0.987240i \(0.550904\pi\)
\(824\) 5.82002e12 0.439797
\(825\) 1.33090e13 1.00024
\(826\) −4.94893e12 −0.369915
\(827\) −7.54455e12 −0.560866 −0.280433 0.959874i \(-0.590478\pi\)
−0.280433 + 0.959874i \(0.590478\pi\)
\(828\) −2.84988e11 −0.0210712
\(829\) −6.79874e12 −0.499958 −0.249979 0.968251i \(-0.580424\pi\)
−0.249979 + 0.968251i \(0.580424\pi\)
\(830\) −2.87370e12 −0.210179
\(831\) −7.51241e12 −0.546480
\(832\) 0 0
\(833\) −1.22055e12 −0.0878323
\(834\) −9.37350e11 −0.0670895
\(835\) 7.97372e12 0.567638
\(836\) −1.96915e13 −1.39428
\(837\) 4.98379e12 0.350990
\(838\) 7.07457e12 0.495567
\(839\) 7.28219e12 0.507380 0.253690 0.967286i \(-0.418356\pi\)
0.253690 + 0.967286i \(0.418356\pi\)
\(840\) 9.69186e11 0.0671661
\(841\) −1.36489e13 −0.940840
\(842\) 1.08583e13 0.744485
\(843\) 1.19217e13 0.813041
\(844\) −1.09711e13 −0.744234
\(845\) 0 0
\(846\) −9.75501e12 −0.654728
\(847\) −1.67955e13 −1.12129
\(848\) 3.10596e12 0.206259
\(849\) −2.43525e12 −0.160864
\(850\) −1.82698e12 −0.120046
\(851\) −2.91045e11 −0.0190229
\(852\) 6.88647e12 0.447732
\(853\) 1.07546e13 0.695544 0.347772 0.937579i \(-0.386938\pi\)
0.347772 + 0.937579i \(0.386938\pi\)
\(854\) 5.67616e12 0.365169
\(855\) 4.67604e12 0.299248
\(856\) 1.65750e12 0.105517
\(857\) −1.46070e13 −0.925010 −0.462505 0.886617i \(-0.653049\pi\)
−0.462505 + 0.886617i \(0.653049\pi\)
\(858\) 0 0
\(859\) −2.51984e13 −1.57908 −0.789541 0.613698i \(-0.789681\pi\)
−0.789541 + 0.613698i \(0.789681\pi\)
\(860\) −1.20963e12 −0.0754067
\(861\) −1.42850e13 −0.885862
\(862\) −1.51046e13 −0.931806
\(863\) 7.53859e12 0.462639 0.231319 0.972878i \(-0.425696\pi\)
0.231319 + 0.972878i \(0.425696\pi\)
\(864\) −3.09139e12 −0.188731
\(865\) 6.59935e12 0.400801
\(866\) −9.28220e12 −0.560816
\(867\) −1.15582e13 −0.694711
\(868\) 2.03507e12 0.121686
\(869\) 1.84022e12 0.109466
\(870\) −7.45825e11 −0.0441367
\(871\) 0 0
\(872\) 3.76735e12 0.220654
\(873\) 1.15575e13 0.673439
\(874\) 1.88813e12 0.109454
\(875\) −8.54869e12 −0.493019
\(876\) −5.70202e11 −0.0327160
\(877\) −1.14927e13 −0.656031 −0.328016 0.944672i \(-0.606380\pi\)
−0.328016 + 0.944672i \(0.606380\pi\)
\(878\) 7.35617e12 0.417760
\(879\) 1.56984e13 0.886965
\(880\) 2.50689e12 0.140917
\(881\) 5.66962e12 0.317075 0.158538 0.987353i \(-0.449322\pi\)
0.158538 + 0.987353i \(0.449322\pi\)
\(882\) 2.75003e12 0.153013
\(883\) 7.46294e12 0.413130 0.206565 0.978433i \(-0.433771\pi\)
0.206565 + 0.978433i \(0.433771\pi\)
\(884\) 0 0
\(885\) −3.30956e12 −0.181353
\(886\) 1.42162e13 0.775054
\(887\) 1.84813e13 1.00248 0.501241 0.865308i \(-0.332877\pi\)
0.501241 + 0.865308i \(0.332877\pi\)
\(888\) −1.02213e12 −0.0551628
\(889\) −1.70027e13 −0.912979
\(890\) −5.32947e12 −0.284727
\(891\) 8.71235e12 0.463112
\(892\) 8.13394e12 0.430189
\(893\) 6.46299e13 3.40096
\(894\) −2.39636e12 −0.125468
\(895\) −1.07157e13 −0.558233
\(896\) −1.26233e12 −0.0654317
\(897\) 0 0
\(898\) 3.57041e12 0.183221
\(899\) −1.56606e12 −0.0799633
\(900\) 4.11636e12 0.209133
\(901\) 3.17146e12 0.160323
\(902\) −3.69494e13 −1.85857
\(903\) −4.53074e12 −0.226764
\(904\) −1.03790e13 −0.516889
\(905\) −8.39712e12 −0.416113
\(906\) −1.77631e13 −0.875876
\(907\) −2.57747e13 −1.26462 −0.632311 0.774715i \(-0.717893\pi\)
−0.632311 + 0.774715i \(0.717893\pi\)
\(908\) −1.82085e12 −0.0888972
\(909\) −7.92387e12 −0.384946
\(910\) 0 0
\(911\) 2.01177e13 0.967711 0.483855 0.875148i \(-0.339236\pi\)
0.483855 + 0.875148i \(0.339236\pi\)
\(912\) 6.63096e12 0.317395
\(913\) −2.78410e13 −1.32607
\(914\) 2.49844e13 1.18416
\(915\) 3.79588e12 0.179027
\(916\) 8.69389e12 0.408023
\(917\) 1.62649e13 0.759610
\(918\) −3.15659e12 −0.146698
\(919\) 2.82215e13 1.30515 0.652575 0.757724i \(-0.273689\pi\)
0.652575 + 0.757724i \(0.273689\pi\)
\(920\) −2.40374e11 −0.0110622
\(921\) 9.28850e12 0.425380
\(922\) −7.99733e12 −0.364465
\(923\) 0 0
\(924\) 9.38968e12 0.423767
\(925\) 4.20385e12 0.188803
\(926\) 1.49485e13 0.668110
\(927\) −1.33896e13 −0.595538
\(928\) 9.71413e11 0.0429970
\(929\) −1.80531e13 −0.795207 −0.397603 0.917557i \(-0.630158\pi\)
−0.397603 + 0.917557i \(0.630158\pi\)
\(930\) 1.36094e12 0.0596574
\(931\) −1.82198e13 −0.794821
\(932\) 5.30142e12 0.230155
\(933\) 1.17172e13 0.506241
\(934\) −8.01609e12 −0.344669
\(935\) 2.55975e12 0.109533
\(936\) 0 0
\(937\) 3.60858e13 1.52936 0.764678 0.644412i \(-0.222898\pi\)
0.764678 + 0.644412i \(0.222898\pi\)
\(938\) 4.02296e12 0.169681
\(939\) −1.82237e13 −0.764964
\(940\) −8.22792e12 −0.343728
\(941\) −3.72613e12 −0.154919 −0.0774594 0.996996i \(-0.524681\pi\)
−0.0774594 + 0.996996i \(0.524681\pi\)
\(942\) 7.69377e12 0.318354
\(943\) 3.54292e12 0.145901
\(944\) 4.31059e12 0.176670
\(945\) −6.88707e12 −0.280925
\(946\) −1.17192e13 −0.475758
\(947\) −2.97301e13 −1.20122 −0.600609 0.799543i \(-0.705075\pi\)
−0.600609 + 0.799543i \(0.705075\pi\)
\(948\) −6.19681e11 −0.0249190
\(949\) 0 0
\(950\) −2.72721e13 −1.08633
\(951\) −2.89131e13 −1.14626
\(952\) −1.28896e12 −0.0508594
\(953\) 4.04208e13 1.58740 0.793702 0.608307i \(-0.208151\pi\)
0.793702 + 0.608307i \(0.208151\pi\)
\(954\) −7.14560e12 −0.279300
\(955\) −3.27855e12 −0.127546
\(956\) −1.47607e13 −0.571541
\(957\) −7.22571e12 −0.278469
\(958\) −3.12901e13 −1.20022
\(959\) 1.36463e13 0.520991
\(960\) −8.44175e11 −0.0320783
\(961\) −2.35820e13 −0.891918
\(962\) 0 0
\(963\) −3.81326e12 −0.142882
\(964\) 2.54300e13 0.948418
\(965\) −1.75725e13 −0.652320
\(966\) −9.00335e11 −0.0332665
\(967\) 6.05671e12 0.222750 0.111375 0.993778i \(-0.464475\pi\)
0.111375 + 0.993778i \(0.464475\pi\)
\(968\) 1.46291e13 0.535523
\(969\) 6.77080e12 0.246708
\(970\) 9.74819e12 0.353550
\(971\) 1.65027e13 0.595755 0.297878 0.954604i \(-0.403721\pi\)
0.297878 + 0.954604i \(0.403721\pi\)
\(972\) 1.19216e13 0.428388
\(973\) 2.71988e12 0.0972840
\(974\) −1.79051e13 −0.637473
\(975\) 0 0
\(976\) −4.94402e12 −0.174404
\(977\) −4.17148e13 −1.46475 −0.732377 0.680899i \(-0.761589\pi\)
−0.732377 + 0.680899i \(0.761589\pi\)
\(978\) 1.17132e13 0.409402
\(979\) −5.16331e13 −1.79641
\(980\) 2.31952e12 0.0803307
\(981\) −8.66721e12 −0.298792
\(982\) −8.39277e12 −0.288007
\(983\) −2.06209e13 −0.704397 −0.352198 0.935925i \(-0.614566\pi\)
−0.352198 + 0.935925i \(0.614566\pi\)
\(984\) 1.24424e13 0.423085
\(985\) −1.14774e13 −0.388491
\(986\) 9.91899e11 0.0334211
\(987\) −3.08181e13 −1.03366
\(988\) 0 0
\(989\) 1.12370e12 0.0373479
\(990\) −5.76738e12 −0.190818
\(991\) −8.03119e11 −0.0264514 −0.0132257 0.999913i \(-0.504210\pi\)
−0.0132257 + 0.999913i \(0.504210\pi\)
\(992\) −1.77258e12 −0.0581169
\(993\) −5.43997e12 −0.177552
\(994\) −1.99822e13 −0.649240
\(995\) 1.49284e13 0.482847
\(996\) 9.37524e12 0.301867
\(997\) −2.93266e13 −0.940011 −0.470005 0.882664i \(-0.655748\pi\)
−0.470005 + 0.882664i \(0.655748\pi\)
\(998\) 6.77461e12 0.216171
\(999\) 7.26326e12 0.230721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.i.1.4 5
13.4 even 6 26.10.c.a.3.2 10
13.10 even 6 26.10.c.a.9.2 yes 10
13.12 even 2 338.10.a.h.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.c.a.3.2 10 13.4 even 6
26.10.c.a.9.2 yes 10 13.10 even 6
338.10.a.h.1.4 5 13.12 even 2
338.10.a.i.1.4 5 1.1 even 1 trivial