Properties

Label 338.10.a.f.1.3
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,48,0,768,-248] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6144x - 66096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-10.9937\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{2} +159.509 q^{3} +256.000 q^{4} -1767.44 q^{5} +2552.15 q^{6} -6243.46 q^{7} +4096.00 q^{8} +5760.16 q^{9} -28279.1 q^{10} +41072.0 q^{11} +40834.3 q^{12} -99895.4 q^{14} -281924. q^{15} +65536.0 q^{16} +98274.9 q^{17} +92162.5 q^{18} -507054. q^{19} -452466. q^{20} -995890. q^{21} +657152. q^{22} +1.89860e6 q^{23} +653349. q^{24} +1.17074e6 q^{25} -2.22082e6 q^{27} -1.59833e6 q^{28} -321475. q^{29} -4.51078e6 q^{30} +6.09551e6 q^{31} +1.04858e6 q^{32} +6.55136e6 q^{33} +1.57240e6 q^{34} +1.10350e7 q^{35} +1.47460e6 q^{36} -1.77236e7 q^{37} -8.11287e6 q^{38} -7.23945e6 q^{40} +1.79328e7 q^{41} -1.59342e7 q^{42} -1.22817e7 q^{43} +1.05144e7 q^{44} -1.01808e7 q^{45} +3.03776e7 q^{46} -4.23821e7 q^{47} +1.04536e7 q^{48} -1.37275e6 q^{49} +1.87318e7 q^{50} +1.56757e7 q^{51} +3.92537e6 q^{53} -3.55331e7 q^{54} -7.25925e7 q^{55} -2.55732e7 q^{56} -8.08798e7 q^{57} -5.14360e6 q^{58} +1.72026e8 q^{59} -7.21724e7 q^{60} +1.36776e8 q^{61} +9.75281e7 q^{62} -3.59633e7 q^{63} +1.67772e7 q^{64} +1.04822e8 q^{66} -1.21248e8 q^{67} +2.51584e7 q^{68} +3.02844e8 q^{69} +1.76560e8 q^{70} +3.66817e8 q^{71} +2.35936e7 q^{72} +1.13266e8 q^{73} -2.83577e8 q^{74} +1.86743e8 q^{75} -1.29806e8 q^{76} -2.56432e8 q^{77} +2.79788e8 q^{79} -1.15831e8 q^{80} -4.67618e8 q^{81} +2.86926e8 q^{82} +7.50041e8 q^{83} -2.54948e8 q^{84} -1.73695e8 q^{85} -1.96507e8 q^{86} -5.12782e7 q^{87} +1.68231e8 q^{88} +7.04433e8 q^{89} -1.62892e8 q^{90} +4.86041e8 q^{92} +9.72289e8 q^{93} -6.78113e8 q^{94} +8.96190e8 q^{95} +1.67257e8 q^{96} +1.21751e9 q^{97} -2.19641e7 q^{98} +2.36581e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 48 q^{2} + 768 q^{4} - 248 q^{5} + 2956 q^{7} + 12288 q^{8} - 20863 q^{9} - 3968 q^{10} + 31324 q^{11} + 47296 q^{14} - 392140 q^{15} + 196608 q^{16} + 905228 q^{17} - 333808 q^{18} - 1726316 q^{19}+ \cdots + 304026580 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 0.707107
\(3\) 159.509 1.13695 0.568473 0.822702i \(-0.307534\pi\)
0.568473 + 0.822702i \(0.307534\pi\)
\(4\) 256.000 0.500000
\(5\) −1767.44 −1.26468 −0.632340 0.774691i \(-0.717905\pi\)
−0.632340 + 0.774691i \(0.717905\pi\)
\(6\) 2552.15 0.803942
\(7\) −6243.46 −0.982844 −0.491422 0.870922i \(-0.663523\pi\)
−0.491422 + 0.870922i \(0.663523\pi\)
\(8\) 4096.00 0.353553
\(9\) 5760.16 0.292646
\(10\) −28279.1 −0.894264
\(11\) 41072.0 0.845821 0.422911 0.906171i \(-0.361008\pi\)
0.422911 + 0.906171i \(0.361008\pi\)
\(12\) 40834.3 0.568473
\(13\) 0 0
\(14\) −99895.4 −0.694976
\(15\) −281924. −1.43787
\(16\) 65536.0 0.250000
\(17\) 98274.9 0.285379 0.142690 0.989767i \(-0.454425\pi\)
0.142690 + 0.989767i \(0.454425\pi\)
\(18\) 92162.5 0.206932
\(19\) −507054. −0.892613 −0.446307 0.894880i \(-0.647261\pi\)
−0.446307 + 0.894880i \(0.647261\pi\)
\(20\) −452466. −0.632340
\(21\) −995890. −1.11744
\(22\) 657152. 0.598086
\(23\) 1.89860e6 1.41468 0.707340 0.706874i \(-0.249895\pi\)
0.707340 + 0.706874i \(0.249895\pi\)
\(24\) 653349. 0.401971
\(25\) 1.17074e6 0.599416
\(26\) 0 0
\(27\) −2.22082e6 −0.804223
\(28\) −1.59833e6 −0.491422
\(29\) −321475. −0.0844027 −0.0422013 0.999109i \(-0.513437\pi\)
−0.0422013 + 0.999109i \(0.513437\pi\)
\(30\) −4.51078e6 −1.01673
\(31\) 6.09551e6 1.18545 0.592724 0.805406i \(-0.298053\pi\)
0.592724 + 0.805406i \(0.298053\pi\)
\(32\) 1.04858e6 0.176777
\(33\) 6.55136e6 0.961653
\(34\) 1.57240e6 0.201794
\(35\) 1.10350e7 1.24298
\(36\) 1.47460e6 0.146323
\(37\) −1.77236e7 −1.55469 −0.777344 0.629076i \(-0.783434\pi\)
−0.777344 + 0.629076i \(0.783434\pi\)
\(38\) −8.11287e6 −0.631173
\(39\) 0 0
\(40\) −7.23945e6 −0.447132
\(41\) 1.79328e7 0.991110 0.495555 0.868577i \(-0.334965\pi\)
0.495555 + 0.868577i \(0.334965\pi\)
\(42\) −1.59342e7 −0.790150
\(43\) −1.22817e7 −0.547834 −0.273917 0.961753i \(-0.588319\pi\)
−0.273917 + 0.961753i \(0.588319\pi\)
\(44\) 1.05144e7 0.422911
\(45\) −1.01808e7 −0.370104
\(46\) 3.03776e7 1.00033
\(47\) −4.23821e7 −1.26690 −0.633449 0.773784i \(-0.718361\pi\)
−0.633449 + 0.773784i \(0.718361\pi\)
\(48\) 1.04536e7 0.284237
\(49\) −1.37275e6 −0.0340181
\(50\) 1.87318e7 0.423851
\(51\) 1.56757e7 0.324461
\(52\) 0 0
\(53\) 3.92537e6 0.0683344 0.0341672 0.999416i \(-0.489122\pi\)
0.0341672 + 0.999416i \(0.489122\pi\)
\(54\) −3.55331e7 −0.568672
\(55\) −7.25925e7 −1.06969
\(56\) −2.55732e7 −0.347488
\(57\) −8.08798e7 −1.01485
\(58\) −5.14360e6 −0.0596817
\(59\) 1.72026e8 1.84824 0.924122 0.382098i \(-0.124798\pi\)
0.924122 + 0.382098i \(0.124798\pi\)
\(60\) −7.21724e7 −0.718937
\(61\) 1.36776e8 1.26481 0.632407 0.774636i \(-0.282067\pi\)
0.632407 + 0.774636i \(0.282067\pi\)
\(62\) 9.75281e7 0.838238
\(63\) −3.59633e7 −0.287626
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) 1.04822e8 0.679992
\(67\) −1.21248e8 −0.735086 −0.367543 0.930006i \(-0.619801\pi\)
−0.367543 + 0.930006i \(0.619801\pi\)
\(68\) 2.51584e7 0.142690
\(69\) 3.02844e8 1.60841
\(70\) 1.76560e8 0.878922
\(71\) 3.66817e8 1.71311 0.856557 0.516052i \(-0.172599\pi\)
0.856557 + 0.516052i \(0.172599\pi\)
\(72\) 2.35936e7 0.103466
\(73\) 1.13266e8 0.466816 0.233408 0.972379i \(-0.425012\pi\)
0.233408 + 0.972379i \(0.425012\pi\)
\(74\) −2.83577e8 −1.09933
\(75\) 1.86743e8 0.681504
\(76\) −1.29806e8 −0.446307
\(77\) −2.56432e8 −0.831310
\(78\) 0 0
\(79\) 2.79788e8 0.808179 0.404089 0.914720i \(-0.367588\pi\)
0.404089 + 0.914720i \(0.367588\pi\)
\(80\) −1.15831e8 −0.316170
\(81\) −4.67618e8 −1.20700
\(82\) 2.86926e8 0.700821
\(83\) 7.50041e8 1.73474 0.867368 0.497667i \(-0.165810\pi\)
0.867368 + 0.497667i \(0.165810\pi\)
\(84\) −2.54948e8 −0.558720
\(85\) −1.73695e8 −0.360914
\(86\) −1.96507e8 −0.387377
\(87\) −5.12782e7 −0.0959613
\(88\) 1.68231e8 0.299043
\(89\) 7.04433e8 1.19010 0.595052 0.803688i \(-0.297132\pi\)
0.595052 + 0.803688i \(0.297132\pi\)
\(90\) −1.62892e8 −0.261703
\(91\) 0 0
\(92\) 4.86041e8 0.707340
\(93\) 9.72289e8 1.34779
\(94\) −6.78113e8 −0.895832
\(95\) 8.96190e8 1.12887
\(96\) 1.67257e8 0.200986
\(97\) 1.21751e9 1.39637 0.698183 0.715920i \(-0.253992\pi\)
0.698183 + 0.715920i \(0.253992\pi\)
\(98\) −2.19641e7 −0.0240544
\(99\) 2.36581e8 0.247527
\(100\) 2.99708e8 0.299708
\(101\) −9.52618e8 −0.910904 −0.455452 0.890260i \(-0.650522\pi\)
−0.455452 + 0.890260i \(0.650522\pi\)
\(102\) 2.50812e8 0.229429
\(103\) 1.27341e9 1.11481 0.557405 0.830240i \(-0.311797\pi\)
0.557405 + 0.830240i \(0.311797\pi\)
\(104\) 0 0
\(105\) 1.76018e9 1.41320
\(106\) 6.28059e7 0.0483197
\(107\) 9.71126e8 0.716223 0.358112 0.933679i \(-0.383421\pi\)
0.358112 + 0.933679i \(0.383421\pi\)
\(108\) −5.68530e8 −0.402111
\(109\) 1.35575e9 0.919940 0.459970 0.887935i \(-0.347860\pi\)
0.459970 + 0.887935i \(0.347860\pi\)
\(110\) −1.16148e9 −0.756388
\(111\) −2.82707e9 −1.76760
\(112\) −4.09172e8 −0.245711
\(113\) 2.19491e9 1.26638 0.633189 0.773997i \(-0.281746\pi\)
0.633189 + 0.773997i \(0.281746\pi\)
\(114\) −1.29408e9 −0.717609
\(115\) −3.35567e9 −1.78912
\(116\) −8.22976e7 −0.0422013
\(117\) 0 0
\(118\) 2.75241e9 1.30691
\(119\) −6.13576e8 −0.280483
\(120\) −1.15476e9 −0.508365
\(121\) −6.71039e8 −0.284586
\(122\) 2.18842e9 0.894359
\(123\) 2.86045e9 1.12684
\(124\) 1.56045e9 0.592724
\(125\) 1.38283e9 0.506610
\(126\) −5.75413e8 −0.203382
\(127\) 2.77758e9 0.947437 0.473718 0.880676i \(-0.342911\pi\)
0.473718 + 0.880676i \(0.342911\pi\)
\(128\) 2.68435e8 0.0883883
\(129\) −1.95904e9 −0.622858
\(130\) 0 0
\(131\) −5.91870e8 −0.175592 −0.0877961 0.996138i \(-0.527982\pi\)
−0.0877961 + 0.996138i \(0.527982\pi\)
\(132\) 1.67715e9 0.480827
\(133\) 3.16578e9 0.877299
\(134\) −1.93997e9 −0.519784
\(135\) 3.92518e9 1.01708
\(136\) 4.02534e8 0.100897
\(137\) 4.78496e9 1.16048 0.580238 0.814447i \(-0.302960\pi\)
0.580238 + 0.814447i \(0.302960\pi\)
\(138\) 4.84550e9 1.13732
\(139\) −9.91846e8 −0.225360 −0.112680 0.993631i \(-0.535944\pi\)
−0.112680 + 0.993631i \(0.535944\pi\)
\(140\) 2.82495e9 0.621492
\(141\) −6.76033e9 −1.44039
\(142\) 5.86906e9 1.21135
\(143\) 0 0
\(144\) 3.77498e8 0.0731616
\(145\) 5.68189e8 0.106742
\(146\) 1.81225e9 0.330089
\(147\) −2.18967e8 −0.0386767
\(148\) −4.53723e9 −0.777344
\(149\) 7.40400e9 1.23063 0.615316 0.788280i \(-0.289028\pi\)
0.615316 + 0.788280i \(0.289028\pi\)
\(150\) 2.98789e9 0.481896
\(151\) −8.11389e9 −1.27009 −0.635043 0.772477i \(-0.719017\pi\)
−0.635043 + 0.772477i \(0.719017\pi\)
\(152\) −2.07689e9 −0.315586
\(153\) 5.66079e8 0.0835152
\(154\) −4.10290e9 −0.587825
\(155\) −1.07735e10 −1.49921
\(156\) 0 0
\(157\) −1.10905e10 −1.45681 −0.728407 0.685145i \(-0.759739\pi\)
−0.728407 + 0.685145i \(0.759739\pi\)
\(158\) 4.47661e9 0.571469
\(159\) 6.26132e8 0.0776925
\(160\) −1.85330e9 −0.223566
\(161\) −1.18538e10 −1.39041
\(162\) −7.48189e9 −0.853481
\(163\) −7.83983e8 −0.0869886 −0.0434943 0.999054i \(-0.513849\pi\)
−0.0434943 + 0.999054i \(0.513849\pi\)
\(164\) 4.59081e9 0.495555
\(165\) −1.15792e10 −1.21618
\(166\) 1.20007e10 1.22664
\(167\) −1.26374e10 −1.25729 −0.628643 0.777694i \(-0.716389\pi\)
−0.628643 + 0.777694i \(0.716389\pi\)
\(168\) −4.07916e9 −0.395075
\(169\) 0 0
\(170\) −2.77913e9 −0.255204
\(171\) −2.92071e9 −0.261220
\(172\) −3.14411e9 −0.273917
\(173\) −3.65563e9 −0.310281 −0.155140 0.987892i \(-0.549583\pi\)
−0.155140 + 0.987892i \(0.549583\pi\)
\(174\) −8.20451e8 −0.0678549
\(175\) −7.30944e9 −0.589133
\(176\) 2.69169e9 0.211455
\(177\) 2.74397e10 2.10135
\(178\) 1.12709e10 0.841530
\(179\) 1.00526e10 0.731879 0.365939 0.930639i \(-0.380748\pi\)
0.365939 + 0.930639i \(0.380748\pi\)
\(180\) −2.60627e9 −0.185052
\(181\) −6.35857e9 −0.440358 −0.220179 0.975459i \(-0.570664\pi\)
−0.220179 + 0.975459i \(0.570664\pi\)
\(182\) 0 0
\(183\) 2.18171e10 1.43803
\(184\) 7.77666e9 0.500165
\(185\) 3.13254e10 1.96618
\(186\) 1.55566e10 0.953031
\(187\) 4.03635e9 0.241380
\(188\) −1.08498e10 −0.633449
\(189\) 1.38656e10 0.790426
\(190\) 1.43390e10 0.798232
\(191\) −2.56451e10 −1.39429 −0.697146 0.716929i \(-0.745547\pi\)
−0.697146 + 0.716929i \(0.745547\pi\)
\(192\) 2.67612e9 0.142118
\(193\) −3.05861e10 −1.58678 −0.793389 0.608715i \(-0.791685\pi\)
−0.793389 + 0.608715i \(0.791685\pi\)
\(194\) 1.94801e10 0.987380
\(195\) 0 0
\(196\) −3.51425e8 −0.0170091
\(197\) 1.73305e10 0.819811 0.409905 0.912128i \(-0.365562\pi\)
0.409905 + 0.912128i \(0.365562\pi\)
\(198\) 3.78530e9 0.175028
\(199\) −1.44467e10 −0.653025 −0.326512 0.945193i \(-0.605874\pi\)
−0.326512 + 0.945193i \(0.605874\pi\)
\(200\) 4.79533e9 0.211926
\(201\) −1.93402e10 −0.835753
\(202\) −1.52419e10 −0.644107
\(203\) 2.00712e9 0.0829546
\(204\) 4.01299e9 0.162230
\(205\) −3.16953e10 −1.25344
\(206\) 2.03746e10 0.788290
\(207\) 1.09362e10 0.414001
\(208\) 0 0
\(209\) −2.08257e10 −0.754991
\(210\) 2.81629e10 0.999287
\(211\) 5.08715e10 1.76686 0.883432 0.468559i \(-0.155226\pi\)
0.883432 + 0.468559i \(0.155226\pi\)
\(212\) 1.00489e9 0.0341672
\(213\) 5.85106e10 1.94772
\(214\) 1.55380e10 0.506446
\(215\) 2.17072e10 0.692835
\(216\) −9.09648e9 −0.284336
\(217\) −3.80571e10 −1.16511
\(218\) 2.16920e10 0.650496
\(219\) 1.80669e10 0.530745
\(220\) −1.85837e10 −0.534847
\(221\) 0 0
\(222\) −4.52331e10 −1.24988
\(223\) −2.27613e10 −0.616347 −0.308174 0.951330i \(-0.599718\pi\)
−0.308174 + 0.951330i \(0.599718\pi\)
\(224\) −6.54675e9 −0.173744
\(225\) 6.74362e9 0.175417
\(226\) 3.51185e10 0.895465
\(227\) −2.24918e10 −0.562222 −0.281111 0.959675i \(-0.590703\pi\)
−0.281111 + 0.959675i \(0.590703\pi\)
\(228\) −2.07052e10 −0.507427
\(229\) −7.10153e10 −1.70644 −0.853222 0.521548i \(-0.825355\pi\)
−0.853222 + 0.521548i \(0.825355\pi\)
\(230\) −5.36907e10 −1.26510
\(231\) −4.09032e10 −0.945155
\(232\) −1.31676e9 −0.0298409
\(233\) 5.11111e10 1.13609 0.568046 0.822997i \(-0.307699\pi\)
0.568046 + 0.822997i \(0.307699\pi\)
\(234\) 0 0
\(235\) 7.49079e10 1.60222
\(236\) 4.40386e10 0.924122
\(237\) 4.46288e10 0.918856
\(238\) −9.81722e9 −0.198332
\(239\) 2.14909e10 0.426054 0.213027 0.977046i \(-0.431668\pi\)
0.213027 + 0.977046i \(0.431668\pi\)
\(240\) −1.84761e10 −0.359468
\(241\) −5.08676e10 −0.971326 −0.485663 0.874146i \(-0.661422\pi\)
−0.485663 + 0.874146i \(0.661422\pi\)
\(242\) −1.07366e10 −0.201233
\(243\) −3.08770e10 −0.568076
\(244\) 3.50147e10 0.632407
\(245\) 2.42626e9 0.0430220
\(246\) 4.57672e10 0.796795
\(247\) 0 0
\(248\) 2.49672e10 0.419119
\(249\) 1.19638e11 1.97230
\(250\) 2.21253e10 0.358228
\(251\) 4.23328e10 0.673201 0.336601 0.941647i \(-0.390723\pi\)
0.336601 + 0.941647i \(0.390723\pi\)
\(252\) −9.20662e9 −0.143813
\(253\) 7.79792e10 1.19657
\(254\) 4.44413e10 0.669939
\(255\) −2.77060e10 −0.410339
\(256\) 4.29497e9 0.0625000
\(257\) 6.92463e10 0.990142 0.495071 0.868852i \(-0.335142\pi\)
0.495071 + 0.868852i \(0.335142\pi\)
\(258\) −3.13446e10 −0.440427
\(259\) 1.10656e11 1.52802
\(260\) 0 0
\(261\) −1.85175e9 −0.0247001
\(262\) −9.46991e9 −0.124162
\(263\) −4.17509e10 −0.538102 −0.269051 0.963126i \(-0.586710\pi\)
−0.269051 + 0.963126i \(0.586710\pi\)
\(264\) 2.68344e10 0.339996
\(265\) −6.93787e9 −0.0864211
\(266\) 5.06524e10 0.620344
\(267\) 1.12363e11 1.35308
\(268\) −3.10395e10 −0.367543
\(269\) −6.76023e10 −0.787184 −0.393592 0.919285i \(-0.628768\pi\)
−0.393592 + 0.919285i \(0.628768\pi\)
\(270\) 6.28028e10 0.719188
\(271\) −7.29675e10 −0.821803 −0.410902 0.911680i \(-0.634786\pi\)
−0.410902 + 0.911680i \(0.634786\pi\)
\(272\) 6.44054e9 0.0713448
\(273\) 0 0
\(274\) 7.65594e10 0.820580
\(275\) 4.80844e10 0.506999
\(276\) 7.75280e10 0.804207
\(277\) −1.13424e10 −0.115757 −0.0578785 0.998324i \(-0.518434\pi\)
−0.0578785 + 0.998324i \(0.518434\pi\)
\(278\) −1.58695e10 −0.159354
\(279\) 3.51111e10 0.346917
\(280\) 4.51993e10 0.439461
\(281\) −9.00245e10 −0.861355 −0.430678 0.902506i \(-0.641725\pi\)
−0.430678 + 0.902506i \(0.641725\pi\)
\(282\) −1.08165e11 −1.01851
\(283\) 4.33672e10 0.401904 0.200952 0.979601i \(-0.435596\pi\)
0.200952 + 0.979601i \(0.435596\pi\)
\(284\) 9.39050e10 0.856557
\(285\) 1.42951e11 1.28346
\(286\) 0 0
\(287\) −1.11963e11 −0.974106
\(288\) 6.03996e9 0.0517330
\(289\) −1.08930e11 −0.918559
\(290\) 9.09103e9 0.0754783
\(291\) 1.94204e11 1.58759
\(292\) 2.89961e10 0.233408
\(293\) 4.06751e10 0.322422 0.161211 0.986920i \(-0.448460\pi\)
0.161211 + 0.986920i \(0.448460\pi\)
\(294\) −3.50347e9 −0.0273486
\(295\) −3.04046e11 −2.33744
\(296\) −7.25957e10 −0.549665
\(297\) −9.12135e10 −0.680229
\(298\) 1.18464e11 0.870189
\(299\) 0 0
\(300\) 4.78062e10 0.340752
\(301\) 7.66801e10 0.538435
\(302\) −1.29822e11 −0.898086
\(303\) −1.51951e11 −1.03565
\(304\) −3.32303e10 −0.223153
\(305\) −2.41745e11 −1.59959
\(306\) 9.05726e9 0.0590542
\(307\) 2.35037e11 1.51013 0.755063 0.655652i \(-0.227606\pi\)
0.755063 + 0.655652i \(0.227606\pi\)
\(308\) −6.56465e10 −0.415655
\(309\) 2.03121e11 1.26748
\(310\) −1.72376e11 −1.06010
\(311\) 1.60150e11 0.970745 0.485373 0.874307i \(-0.338684\pi\)
0.485373 + 0.874307i \(0.338684\pi\)
\(312\) 0 0
\(313\) −2.82360e11 −1.66285 −0.831426 0.555635i \(-0.812475\pi\)
−0.831426 + 0.555635i \(0.812475\pi\)
\(314\) −1.77449e11 −1.03012
\(315\) 6.35632e10 0.363754
\(316\) 7.16258e10 0.404089
\(317\) 1.27999e11 0.711936 0.355968 0.934498i \(-0.384151\pi\)
0.355968 + 0.934498i \(0.384151\pi\)
\(318\) 1.00181e10 0.0549369
\(319\) −1.32036e10 −0.0713896
\(320\) −2.96528e10 −0.158085
\(321\) 1.54903e11 0.814307
\(322\) −1.89661e11 −0.983167
\(323\) −4.98307e10 −0.254733
\(324\) −1.19710e11 −0.603502
\(325\) 0 0
\(326\) −1.25437e10 −0.0615102
\(327\) 2.16254e11 1.04592
\(328\) 7.34529e10 0.350410
\(329\) 2.64611e11 1.24516
\(330\) −1.85267e11 −0.859972
\(331\) −8.41594e10 −0.385369 −0.192684 0.981261i \(-0.561719\pi\)
−0.192684 + 0.981261i \(0.561719\pi\)
\(332\) 1.92010e11 0.867368
\(333\) −1.02091e11 −0.454974
\(334\) −2.02199e11 −0.889035
\(335\) 2.14299e11 0.929649
\(336\) −6.52666e10 −0.279360
\(337\) −3.35056e11 −1.41509 −0.707543 0.706671i \(-0.750196\pi\)
−0.707543 + 0.706671i \(0.750196\pi\)
\(338\) 0 0
\(339\) 3.50108e11 1.43980
\(340\) −4.44660e10 −0.180457
\(341\) 2.50355e11 1.00268
\(342\) −4.67314e10 −0.184710
\(343\) 2.60517e11 1.01628
\(344\) −5.03057e10 −0.193689
\(345\) −5.35260e11 −2.03413
\(346\) −5.84901e10 −0.219402
\(347\) 1.52065e11 0.563050 0.281525 0.959554i \(-0.409160\pi\)
0.281525 + 0.959554i \(0.409160\pi\)
\(348\) −1.31272e10 −0.0479806
\(349\) −3.54508e11 −1.27912 −0.639561 0.768741i \(-0.720884\pi\)
−0.639561 + 0.768741i \(0.720884\pi\)
\(350\) −1.16951e11 −0.416580
\(351\) 0 0
\(352\) 4.30671e10 0.149522
\(353\) 2.46472e11 0.844852 0.422426 0.906397i \(-0.361179\pi\)
0.422426 + 0.906397i \(0.361179\pi\)
\(354\) 4.39035e11 1.48588
\(355\) −6.48328e11 −2.16654
\(356\) 1.80335e11 0.595052
\(357\) −9.78710e10 −0.318894
\(358\) 1.60841e11 0.517516
\(359\) 2.29573e11 0.729451 0.364726 0.931115i \(-0.381163\pi\)
0.364726 + 0.931115i \(0.381163\pi\)
\(360\) −4.17004e10 −0.130852
\(361\) −6.55836e10 −0.203242
\(362\) −1.01737e11 −0.311380
\(363\) −1.07037e11 −0.323559
\(364\) 0 0
\(365\) −2.00191e11 −0.590374
\(366\) 3.49073e11 1.01684
\(367\) 5.22127e11 1.50238 0.751189 0.660087i \(-0.229481\pi\)
0.751189 + 0.660087i \(0.229481\pi\)
\(368\) 1.24427e11 0.353670
\(369\) 1.03296e11 0.290045
\(370\) 5.01207e11 1.39030
\(371\) −2.45079e10 −0.0671620
\(372\) 2.48906e11 0.673895
\(373\) 2.20771e11 0.590543 0.295272 0.955413i \(-0.404590\pi\)
0.295272 + 0.955413i \(0.404590\pi\)
\(374\) 6.45815e10 0.170681
\(375\) 2.20574e11 0.575989
\(376\) −1.73597e11 −0.447916
\(377\) 0 0
\(378\) 2.21850e11 0.558915
\(379\) −1.87709e11 −0.467314 −0.233657 0.972319i \(-0.575069\pi\)
−0.233657 + 0.972319i \(0.575069\pi\)
\(380\) 2.29425e11 0.564435
\(381\) 4.43050e11 1.07718
\(382\) −4.10321e11 −0.985913
\(383\) −6.27959e11 −1.49120 −0.745601 0.666392i \(-0.767838\pi\)
−0.745601 + 0.666392i \(0.767838\pi\)
\(384\) 4.28179e10 0.100493
\(385\) 4.53229e11 1.05134
\(386\) −4.89377e11 −1.12202
\(387\) −7.07443e10 −0.160322
\(388\) 3.11682e11 0.698183
\(389\) 8.24996e11 1.82675 0.913374 0.407122i \(-0.133467\pi\)
0.913374 + 0.407122i \(0.133467\pi\)
\(390\) 0 0
\(391\) 1.86585e11 0.403720
\(392\) −5.62280e9 −0.0120272
\(393\) −9.44086e10 −0.199639
\(394\) 2.77288e11 0.579694
\(395\) −4.94510e11 −1.02209
\(396\) 6.05648e10 0.123763
\(397\) 8.55547e11 1.72857 0.864284 0.503005i \(-0.167772\pi\)
0.864284 + 0.503005i \(0.167772\pi\)
\(398\) −2.31147e11 −0.461758
\(399\) 5.04970e11 0.997442
\(400\) 7.67253e10 0.149854
\(401\) 2.36025e11 0.455835 0.227917 0.973680i \(-0.426808\pi\)
0.227917 + 0.973680i \(0.426808\pi\)
\(402\) −3.09443e11 −0.590967
\(403\) 0 0
\(404\) −2.43870e11 −0.455452
\(405\) 8.26489e11 1.52647
\(406\) 3.21139e10 0.0586578
\(407\) −7.27942e11 −1.31499
\(408\) 6.42078e10 0.114714
\(409\) 2.21041e11 0.390587 0.195293 0.980745i \(-0.437434\pi\)
0.195293 + 0.980745i \(0.437434\pi\)
\(410\) −5.07125e11 −0.886314
\(411\) 7.63245e11 1.31940
\(412\) 3.25993e11 0.557405
\(413\) −1.07404e12 −1.81653
\(414\) 1.74980e11 0.292743
\(415\) −1.32566e12 −2.19389
\(416\) 0 0
\(417\) −1.58208e11 −0.256223
\(418\) −3.33212e11 −0.533860
\(419\) −6.43251e10 −0.101957 −0.0509786 0.998700i \(-0.516234\pi\)
−0.0509786 + 0.998700i \(0.516234\pi\)
\(420\) 4.50606e11 0.706602
\(421\) 4.06630e11 0.630855 0.315428 0.948950i \(-0.397852\pi\)
0.315428 + 0.948950i \(0.397852\pi\)
\(422\) 8.13944e11 1.24936
\(423\) −2.44127e11 −0.370753
\(424\) 1.60783e10 0.0241598
\(425\) 1.15054e11 0.171061
\(426\) 9.36169e11 1.37725
\(427\) −8.53958e11 −1.24311
\(428\) 2.48608e11 0.358112
\(429\) 0 0
\(430\) 3.47315e11 0.489908
\(431\) −1.07838e12 −1.50530 −0.752651 0.658420i \(-0.771225\pi\)
−0.752651 + 0.658420i \(0.771225\pi\)
\(432\) −1.45544e11 −0.201056
\(433\) 2.02656e11 0.277053 0.138527 0.990359i \(-0.455763\pi\)
0.138527 + 0.990359i \(0.455763\pi\)
\(434\) −6.08914e11 −0.823857
\(435\) 9.06314e10 0.121360
\(436\) 3.47071e11 0.459970
\(437\) −9.62693e11 −1.26276
\(438\) 2.89071e11 0.375293
\(439\) 9.26805e11 1.19096 0.595481 0.803369i \(-0.296961\pi\)
0.595481 + 0.803369i \(0.296961\pi\)
\(440\) −2.97339e11 −0.378194
\(441\) −7.90727e9 −0.00995527
\(442\) 0 0
\(443\) 3.93461e11 0.485383 0.242692 0.970103i \(-0.421970\pi\)
0.242692 + 0.970103i \(0.421970\pi\)
\(444\) −7.23730e11 −0.883798
\(445\) −1.24505e12 −1.50510
\(446\) −3.64181e11 −0.435823
\(447\) 1.18101e12 1.39916
\(448\) −1.04748e11 −0.122855
\(449\) −6.50584e10 −0.0755431 −0.0377716 0.999286i \(-0.512026\pi\)
−0.0377716 + 0.999286i \(0.512026\pi\)
\(450\) 1.07898e11 0.124039
\(451\) 7.36538e11 0.838302
\(452\) 5.61897e11 0.633189
\(453\) −1.29424e12 −1.44402
\(454\) −3.59869e11 −0.397551
\(455\) 0 0
\(456\) −3.31284e11 −0.358805
\(457\) −1.01701e12 −1.09069 −0.545344 0.838213i \(-0.683601\pi\)
−0.545344 + 0.838213i \(0.683601\pi\)
\(458\) −1.13624e12 −1.20664
\(459\) −2.18251e11 −0.229509
\(460\) −8.59051e11 −0.894558
\(461\) −1.74309e12 −1.79748 −0.898741 0.438480i \(-0.855517\pi\)
−0.898741 + 0.438480i \(0.855517\pi\)
\(462\) −6.54451e11 −0.668326
\(463\) −3.39417e11 −0.343257 −0.171629 0.985162i \(-0.554903\pi\)
−0.171629 + 0.985162i \(0.554903\pi\)
\(464\) −2.10682e10 −0.0211007
\(465\) −1.71847e12 −1.70452
\(466\) 8.17778e11 0.803339
\(467\) 4.76376e11 0.463473 0.231736 0.972779i \(-0.425559\pi\)
0.231736 + 0.972779i \(0.425559\pi\)
\(468\) 0 0
\(469\) 7.57008e11 0.722475
\(470\) 1.19853e12 1.13294
\(471\) −1.76904e12 −1.65632
\(472\) 7.04617e11 0.653453
\(473\) −5.04432e11 −0.463370
\(474\) 7.14060e11 0.649729
\(475\) −5.93626e11 −0.535047
\(476\) −1.57075e11 −0.140242
\(477\) 2.26107e10 0.0199978
\(478\) 3.43855e11 0.301265
\(479\) 7.63824e11 0.662954 0.331477 0.943463i \(-0.392453\pi\)
0.331477 + 0.943463i \(0.392453\pi\)
\(480\) −2.95618e11 −0.254182
\(481\) 0 0
\(482\) −8.13882e11 −0.686831
\(483\) −1.89079e12 −1.58082
\(484\) −1.71786e11 −0.142293
\(485\) −2.15188e12 −1.76596
\(486\) −4.94031e11 −0.401690
\(487\) 1.59493e12 1.28488 0.642440 0.766336i \(-0.277922\pi\)
0.642440 + 0.766336i \(0.277922\pi\)
\(488\) 5.60236e11 0.447179
\(489\) −1.25052e11 −0.0989013
\(490\) 3.88202e10 0.0304212
\(491\) −9.38889e11 −0.729034 −0.364517 0.931197i \(-0.618766\pi\)
−0.364517 + 0.931197i \(0.618766\pi\)
\(492\) 7.32276e11 0.563419
\(493\) −3.15929e10 −0.0240868
\(494\) 0 0
\(495\) −4.18144e11 −0.313042
\(496\) 3.99475e11 0.296362
\(497\) −2.29021e12 −1.68372
\(498\) 1.91421e12 1.39463
\(499\) 8.21282e11 0.592979 0.296490 0.955036i \(-0.404184\pi\)
0.296490 + 0.955036i \(0.404184\pi\)
\(500\) 3.54005e11 0.253305
\(501\) −2.01578e12 −1.42947
\(502\) 6.77324e11 0.476025
\(503\) 2.06643e12 1.43934 0.719671 0.694315i \(-0.244293\pi\)
0.719671 + 0.694315i \(0.244293\pi\)
\(504\) −1.47306e11 −0.101691
\(505\) 1.68370e12 1.15200
\(506\) 1.24767e12 0.846100
\(507\) 0 0
\(508\) 7.11061e11 0.473718
\(509\) −1.63442e12 −1.07928 −0.539638 0.841897i \(-0.681439\pi\)
−0.539638 + 0.841897i \(0.681439\pi\)
\(510\) −4.43296e11 −0.290154
\(511\) −7.07171e11 −0.458808
\(512\) 6.87195e10 0.0441942
\(513\) 1.12608e12 0.717860
\(514\) 1.10794e12 0.700136
\(515\) −2.25068e12 −1.40988
\(516\) −5.01514e11 −0.311429
\(517\) −1.74072e12 −1.07157
\(518\) 1.77050e12 1.08047
\(519\) −5.83107e11 −0.352773
\(520\) 0 0
\(521\) −2.99302e12 −1.77967 −0.889835 0.456283i \(-0.849180\pi\)
−0.889835 + 0.456283i \(0.849180\pi\)
\(522\) −2.96279e10 −0.0174656
\(523\) 1.24516e12 0.727723 0.363862 0.931453i \(-0.381458\pi\)
0.363862 + 0.931453i \(0.381458\pi\)
\(524\) −1.51519e11 −0.0877961
\(525\) −1.16592e12 −0.669812
\(526\) −6.68014e11 −0.380496
\(527\) 5.99036e11 0.338302
\(528\) 4.29350e11 0.240413
\(529\) 1.80353e12 1.00132
\(530\) −1.11006e11 −0.0611090
\(531\) 9.90895e11 0.540882
\(532\) 8.10439e11 0.438650
\(533\) 0 0
\(534\) 1.79782e12 0.956774
\(535\) −1.71641e12 −0.905793
\(536\) −4.96632e11 −0.259892
\(537\) 1.60348e12 0.832107
\(538\) −1.08164e12 −0.556623
\(539\) −5.63817e10 −0.0287732
\(540\) 1.00485e12 0.508542
\(541\) −2.83767e12 −1.42421 −0.712104 0.702074i \(-0.752258\pi\)
−0.712104 + 0.702074i \(0.752258\pi\)
\(542\) −1.16748e12 −0.581103
\(543\) −1.01425e12 −0.500663
\(544\) 1.03049e11 0.0504484
\(545\) −2.39621e12 −1.16343
\(546\) 0 0
\(547\) 2.73600e12 1.30669 0.653345 0.757060i \(-0.273365\pi\)
0.653345 + 0.757060i \(0.273365\pi\)
\(548\) 1.22495e12 0.580238
\(549\) 7.87853e11 0.370143
\(550\) 7.69351e11 0.358503
\(551\) 1.63005e11 0.0753389
\(552\) 1.24045e12 0.568660
\(553\) −1.74685e12 −0.794313
\(554\) −1.81479e11 −0.0818526
\(555\) 4.99669e12 2.23544
\(556\) −2.53913e11 −0.112680
\(557\) 3.63597e12 1.60056 0.800279 0.599627i \(-0.204685\pi\)
0.800279 + 0.599627i \(0.204685\pi\)
\(558\) 5.61777e11 0.245307
\(559\) 0 0
\(560\) 7.23188e11 0.310746
\(561\) 6.43834e11 0.274436
\(562\) −1.44039e12 −0.609070
\(563\) 1.81268e12 0.760385 0.380192 0.924907i \(-0.375858\pi\)
0.380192 + 0.924907i \(0.375858\pi\)
\(564\) −1.73064e12 −0.720197
\(565\) −3.87938e12 −1.60156
\(566\) 6.93876e11 0.284189
\(567\) 2.91956e12 1.18630
\(568\) 1.50248e12 0.605677
\(569\) −2.53400e12 −1.01345 −0.506723 0.862109i \(-0.669143\pi\)
−0.506723 + 0.862109i \(0.669143\pi\)
\(570\) 2.28721e12 0.907547
\(571\) 1.44649e12 0.569446 0.284723 0.958610i \(-0.408098\pi\)
0.284723 + 0.958610i \(0.408098\pi\)
\(572\) 0 0
\(573\) −4.09062e12 −1.58523
\(574\) −1.79141e12 −0.688797
\(575\) 2.22276e12 0.847982
\(576\) 9.66394e10 0.0365808
\(577\) 1.45725e12 0.547321 0.273661 0.961826i \(-0.411766\pi\)
0.273661 + 0.961826i \(0.411766\pi\)
\(578\) −1.74288e12 −0.649519
\(579\) −4.87876e12 −1.80408
\(580\) 1.45456e11 0.0533712
\(581\) −4.68285e12 −1.70498
\(582\) 3.10726e12 1.12260
\(583\) 1.61223e11 0.0577987
\(584\) 4.63937e11 0.165045
\(585\) 0 0
\(586\) 6.50801e11 0.227986
\(587\) 1.98221e12 0.689095 0.344547 0.938769i \(-0.388032\pi\)
0.344547 + 0.938769i \(0.388032\pi\)
\(588\) −5.60555e10 −0.0193384
\(589\) −3.09075e12 −1.05815
\(590\) −4.86473e12 −1.65282
\(591\) 2.76438e12 0.932081
\(592\) −1.16153e12 −0.388672
\(593\) −5.30729e12 −1.76249 −0.881246 0.472658i \(-0.843295\pi\)
−0.881246 + 0.472658i \(0.843295\pi\)
\(594\) −1.45942e12 −0.480995
\(595\) 1.08446e12 0.354722
\(596\) 1.89542e12 0.615316
\(597\) −2.30438e12 −0.742454
\(598\) 0 0
\(599\) −2.54920e12 −0.809064 −0.404532 0.914524i \(-0.632566\pi\)
−0.404532 + 0.914524i \(0.632566\pi\)
\(600\) 7.64899e11 0.240948
\(601\) 1.77817e12 0.555952 0.277976 0.960588i \(-0.410336\pi\)
0.277976 + 0.960588i \(0.410336\pi\)
\(602\) 1.22688e12 0.380731
\(603\) −6.98408e11 −0.215120
\(604\) −2.07716e12 −0.635043
\(605\) 1.18602e12 0.359910
\(606\) −2.43122e12 −0.732315
\(607\) −6.45909e11 −0.193118 −0.0965588 0.995327i \(-0.530784\pi\)
−0.0965588 + 0.995327i \(0.530784\pi\)
\(608\) −5.31685e11 −0.157793
\(609\) 3.20154e11 0.0943150
\(610\) −3.86791e12 −1.13108
\(611\) 0 0
\(612\) 1.44916e11 0.0417576
\(613\) −2.63173e12 −0.752782 −0.376391 0.926461i \(-0.622835\pi\)
−0.376391 + 0.926461i \(0.622835\pi\)
\(614\) 3.76059e12 1.06782
\(615\) −5.05569e12 −1.42509
\(616\) −1.05034e12 −0.293913
\(617\) −3.85338e12 −1.07043 −0.535216 0.844716i \(-0.679770\pi\)
−0.535216 + 0.844716i \(0.679770\pi\)
\(618\) 3.24993e12 0.896244
\(619\) 6.18414e12 1.69306 0.846529 0.532343i \(-0.178688\pi\)
0.846529 + 0.532343i \(0.178688\pi\)
\(620\) −2.75801e12 −0.749606
\(621\) −4.21645e12 −1.13772
\(622\) 2.56240e12 0.686421
\(623\) −4.39810e12 −1.16969
\(624\) 0 0
\(625\) −4.73067e12 −1.24012
\(626\) −4.51776e12 −1.17581
\(627\) −3.32189e12 −0.858384
\(628\) −2.83918e12 −0.728407
\(629\) −1.74178e12 −0.443676
\(630\) 1.01701e12 0.257213
\(631\) −1.63522e8 −4.10623e−5 0 −2.05311e−5 1.00000i \(-0.500007\pi\)
−2.05311e−5 1.00000i \(0.500007\pi\)
\(632\) 1.14601e12 0.285734
\(633\) 8.11447e12 2.00883
\(634\) 2.04799e12 0.503415
\(635\) −4.90922e12 −1.19820
\(636\) 1.60290e11 0.0388462
\(637\) 0 0
\(638\) −2.11258e11 −0.0504801
\(639\) 2.11292e12 0.501337
\(640\) −4.74445e11 −0.111783
\(641\) 2.70983e11 0.0633988 0.0316994 0.999497i \(-0.489908\pi\)
0.0316994 + 0.999497i \(0.489908\pi\)
\(642\) 2.47845e12 0.575802
\(643\) −1.80868e12 −0.417265 −0.208632 0.977994i \(-0.566901\pi\)
−0.208632 + 0.977994i \(0.566901\pi\)
\(644\) −3.03458e12 −0.695204
\(645\) 3.46249e12 0.787716
\(646\) −7.97292e11 −0.180124
\(647\) −4.85979e12 −1.09031 −0.545153 0.838337i \(-0.683528\pi\)
−0.545153 + 0.838337i \(0.683528\pi\)
\(648\) −1.91536e12 −0.426741
\(649\) 7.06544e12 1.56328
\(650\) 0 0
\(651\) −6.07045e12 −1.32467
\(652\) −2.00700e11 −0.0434943
\(653\) −5.49983e10 −0.0118369 −0.00591847 0.999982i \(-0.501884\pi\)
−0.00591847 + 0.999982i \(0.501884\pi\)
\(654\) 3.46006e12 0.739578
\(655\) 1.04610e12 0.222068
\(656\) 1.17525e12 0.247777
\(657\) 6.52429e11 0.136612
\(658\) 4.23377e12 0.880463
\(659\) 5.88872e12 1.21629 0.608144 0.793827i \(-0.291914\pi\)
0.608144 + 0.793827i \(0.291914\pi\)
\(660\) −2.96427e12 −0.608092
\(661\) −5.52398e12 −1.12550 −0.562750 0.826627i \(-0.690257\pi\)
−0.562750 + 0.826627i \(0.690257\pi\)
\(662\) −1.34655e12 −0.272497
\(663\) 0 0
\(664\) 3.07217e12 0.613322
\(665\) −5.59533e12 −1.10950
\(666\) −1.63345e12 −0.321715
\(667\) −6.10352e11 −0.119403
\(668\) −3.23518e12 −0.628643
\(669\) −3.63064e12 −0.700754
\(670\) 3.42879e12 0.657361
\(671\) 5.61768e12 1.06981
\(672\) −1.04427e12 −0.197537
\(673\) 6.15531e12 1.15660 0.578298 0.815825i \(-0.303717\pi\)
0.578298 + 0.815825i \(0.303717\pi\)
\(674\) −5.36089e12 −1.00062
\(675\) −2.59999e12 −0.482064
\(676\) 0 0
\(677\) 5.73319e12 1.04893 0.524466 0.851432i \(-0.324265\pi\)
0.524466 + 0.851432i \(0.324265\pi\)
\(678\) 5.60173e12 1.01810
\(679\) −7.60147e12 −1.37241
\(680\) −7.11457e11 −0.127602
\(681\) −3.58765e12 −0.639216
\(682\) 4.00568e12 0.709000
\(683\) 3.72368e12 0.654756 0.327378 0.944894i \(-0.393835\pi\)
0.327378 + 0.944894i \(0.393835\pi\)
\(684\) −7.47702e11 −0.130610
\(685\) −8.45715e12 −1.46763
\(686\) 4.16827e12 0.718617
\(687\) −1.13276e13 −1.94013
\(688\) −8.04891e11 −0.136959
\(689\) 0 0
\(690\) −8.56415e12 −1.43835
\(691\) 1.21804e11 0.0203240 0.0101620 0.999948i \(-0.496765\pi\)
0.0101620 + 0.999948i \(0.496765\pi\)
\(692\) −9.35842e11 −0.155140
\(693\) −1.47709e12 −0.243280
\(694\) 2.43304e12 0.398137
\(695\) 1.75303e12 0.285009
\(696\) −2.10035e11 −0.0339274
\(697\) 1.76235e12 0.282842
\(698\) −5.67213e12 −0.904475
\(699\) 8.15269e12 1.29168
\(700\) −1.87122e12 −0.294566
\(701\) 7.48411e12 1.17060 0.585300 0.810816i \(-0.300977\pi\)
0.585300 + 0.810816i \(0.300977\pi\)
\(702\) 0 0
\(703\) 8.98681e12 1.38774
\(704\) 6.89074e11 0.105728
\(705\) 1.19485e13 1.82164
\(706\) 3.94354e12 0.597400
\(707\) 5.94764e12 0.895277
\(708\) 7.02455e12 1.05068
\(709\) −2.03611e12 −0.302616 −0.151308 0.988487i \(-0.548349\pi\)
−0.151308 + 0.988487i \(0.548349\pi\)
\(710\) −1.03732e13 −1.53198
\(711\) 1.61162e12 0.236511
\(712\) 2.88536e12 0.420765
\(713\) 1.15729e13 1.67703
\(714\) −1.56594e12 −0.225492
\(715\) 0 0
\(716\) 2.57346e12 0.365939
\(717\) 3.42800e12 0.484400
\(718\) 3.67317e12 0.515800
\(719\) 1.45945e12 0.203661 0.101831 0.994802i \(-0.467530\pi\)
0.101831 + 0.994802i \(0.467530\pi\)
\(720\) −6.67206e11 −0.0925260
\(721\) −7.95050e12 −1.09569
\(722\) −1.04934e12 −0.143714
\(723\) −8.11385e12 −1.10435
\(724\) −1.62779e12 −0.220179
\(725\) −3.76362e11 −0.0505923
\(726\) −1.71259e12 −0.228791
\(727\) −8.61854e10 −0.0114427 −0.00572135 0.999984i \(-0.501821\pi\)
−0.00572135 + 0.999984i \(0.501821\pi\)
\(728\) 0 0
\(729\) 4.27897e12 0.561133
\(730\) −3.20306e12 −0.417457
\(731\) −1.20698e12 −0.156341
\(732\) 5.58517e12 0.719013
\(733\) 6.94903e12 0.889111 0.444556 0.895751i \(-0.353362\pi\)
0.444556 + 0.895751i \(0.353362\pi\)
\(734\) 8.35404e12 1.06234
\(735\) 3.87011e11 0.0489137
\(736\) 1.99083e12 0.250082
\(737\) −4.97990e12 −0.621752
\(738\) 1.65274e12 0.205093
\(739\) −2.94805e12 −0.363609 −0.181804 0.983335i \(-0.558194\pi\)
−0.181804 + 0.983335i \(0.558194\pi\)
\(740\) 8.01931e12 0.983092
\(741\) 0 0
\(742\) −3.92127e11 −0.0474907
\(743\) 1.30043e13 1.56544 0.782719 0.622375i \(-0.213832\pi\)
0.782719 + 0.622375i \(0.213832\pi\)
\(744\) 3.98250e12 0.476516
\(745\) −1.30862e13 −1.55636
\(746\) 3.53233e12 0.417577
\(747\) 4.32035e12 0.507664
\(748\) 1.03330e12 0.120690
\(749\) −6.06319e12 −0.703936
\(750\) 3.52919e12 0.407285
\(751\) −1.57055e12 −0.180166 −0.0900829 0.995934i \(-0.528713\pi\)
−0.0900829 + 0.995934i \(0.528713\pi\)
\(752\) −2.77755e12 −0.316725
\(753\) 6.75246e12 0.765394
\(754\) 0 0
\(755\) 1.43408e13 1.60625
\(756\) 3.54960e12 0.395213
\(757\) −9.58378e12 −1.06073 −0.530366 0.847769i \(-0.677945\pi\)
−0.530366 + 0.847769i \(0.677945\pi\)
\(758\) −3.00335e12 −0.330441
\(759\) 1.24384e13 1.36043
\(760\) 3.67080e12 0.399116
\(761\) 7.11276e12 0.768789 0.384395 0.923169i \(-0.374410\pi\)
0.384395 + 0.923169i \(0.374410\pi\)
\(762\) 7.08879e12 0.761684
\(763\) −8.46456e12 −0.904157
\(764\) −6.56514e12 −0.697146
\(765\) −1.00051e12 −0.105620
\(766\) −1.00473e13 −1.05444
\(767\) 0 0
\(768\) 6.85086e11 0.0710591
\(769\) 1.73274e13 1.78676 0.893379 0.449304i \(-0.148328\pi\)
0.893379 + 0.449304i \(0.148328\pi\)
\(770\) 7.25166e12 0.743411
\(771\) 1.10454e13 1.12574
\(772\) −7.83004e12 −0.793389
\(773\) 9.87303e12 0.994587 0.497294 0.867582i \(-0.334327\pi\)
0.497294 + 0.867582i \(0.334327\pi\)
\(774\) −1.13191e12 −0.113365
\(775\) 7.13623e12 0.710577
\(776\) 4.98691e12 0.493690
\(777\) 1.76507e13 1.73727
\(778\) 1.31999e13 1.29171
\(779\) −9.09293e12 −0.884678
\(780\) 0 0
\(781\) 1.50659e13 1.44899
\(782\) 2.98535e12 0.285473
\(783\) 7.13938e11 0.0678786
\(784\) −8.99647e10 −0.00850453
\(785\) 1.96019e13 1.84240
\(786\) −1.51054e12 −0.141166
\(787\) 6.54652e12 0.608309 0.304155 0.952623i \(-0.401626\pi\)
0.304155 + 0.952623i \(0.401626\pi\)
\(788\) 4.43661e12 0.409905
\(789\) −6.65964e12 −0.611793
\(790\) −7.91216e12 −0.722725
\(791\) −1.37038e13 −1.24465
\(792\) 9.69036e11 0.0875138
\(793\) 0 0
\(794\) 1.36887e13 1.22228
\(795\) −1.10665e12 −0.0982562
\(796\) −3.69836e12 −0.326512
\(797\) 4.91818e12 0.431760 0.215880 0.976420i \(-0.430738\pi\)
0.215880 + 0.976420i \(0.430738\pi\)
\(798\) 8.07952e12 0.705298
\(799\) −4.16509e12 −0.361547
\(800\) 1.22760e12 0.105963
\(801\) 4.05764e12 0.348279
\(802\) 3.77639e12 0.322324
\(803\) 4.65205e12 0.394843
\(804\) −4.95108e12 −0.417877
\(805\) 2.09510e13 1.75842
\(806\) 0 0
\(807\) −1.07832e13 −0.894986
\(808\) −3.90193e12 −0.322053
\(809\) 8.28568e12 0.680080 0.340040 0.940411i \(-0.389559\pi\)
0.340040 + 0.940411i \(0.389559\pi\)
\(810\) 1.32238e13 1.07938
\(811\) 2.06397e13 1.67537 0.837684 0.546155i \(-0.183909\pi\)
0.837684 + 0.546155i \(0.183909\pi\)
\(812\) 5.13822e11 0.0414773
\(813\) −1.16390e13 −0.934346
\(814\) −1.16471e13 −0.929837
\(815\) 1.38565e12 0.110013
\(816\) 1.02733e12 0.0811152
\(817\) 6.22747e12 0.489004
\(818\) 3.53665e12 0.276187
\(819\) 0 0
\(820\) −8.11400e12 −0.626719
\(821\) 1.24767e9 9.58422e−5 0 4.79211e−5 1.00000i \(-0.499985\pi\)
4.79211e−5 1.00000i \(0.499985\pi\)
\(822\) 1.22119e13 0.932955
\(823\) 1.23070e13 0.935090 0.467545 0.883969i \(-0.345139\pi\)
0.467545 + 0.883969i \(0.345139\pi\)
\(824\) 5.21589e12 0.394145
\(825\) 7.66990e12 0.576431
\(826\) −1.71846e13 −1.28448
\(827\) −5.07786e12 −0.377490 −0.188745 0.982026i \(-0.560442\pi\)
−0.188745 + 0.982026i \(0.560442\pi\)
\(828\) 2.79967e12 0.207000
\(829\) −1.95629e13 −1.43859 −0.719295 0.694705i \(-0.755535\pi\)
−0.719295 + 0.694705i \(0.755535\pi\)
\(830\) −2.12105e13 −1.55131
\(831\) −1.80922e12 −0.131610
\(832\) 0 0
\(833\) −1.34907e11 −0.00970806
\(834\) −2.53133e12 −0.181177
\(835\) 2.23359e13 1.59006
\(836\) −5.33139e12 −0.377496
\(837\) −1.35370e13 −0.953364
\(838\) −1.02920e12 −0.0720946
\(839\) 1.50732e13 1.05021 0.525107 0.851036i \(-0.324025\pi\)
0.525107 + 0.851036i \(0.324025\pi\)
\(840\) 7.20970e12 0.499643
\(841\) −1.44038e13 −0.992876
\(842\) 6.50608e12 0.446082
\(843\) −1.43597e13 −0.979315
\(844\) 1.30231e13 0.883432
\(845\) 0 0
\(846\) −3.90604e12 −0.262162
\(847\) 4.18961e12 0.279704
\(848\) 2.57253e11 0.0170836
\(849\) 6.91747e12 0.456944
\(850\) 1.84086e12 0.120958
\(851\) −3.36499e13 −2.19939
\(852\) 1.49787e13 0.973859
\(853\) −5.33191e12 −0.344835 −0.172418 0.985024i \(-0.555158\pi\)
−0.172418 + 0.985024i \(0.555158\pi\)
\(854\) −1.36633e13 −0.879015
\(855\) 5.16220e12 0.330360
\(856\) 3.97773e12 0.253223
\(857\) −7.95292e12 −0.503631 −0.251816 0.967775i \(-0.581028\pi\)
−0.251816 + 0.967775i \(0.581028\pi\)
\(858\) 0 0
\(859\) 4.62716e12 0.289965 0.144982 0.989434i \(-0.453687\pi\)
0.144982 + 0.989434i \(0.453687\pi\)
\(860\) 5.55703e12 0.346418
\(861\) −1.78591e13 −1.10751
\(862\) −1.72541e13 −1.06441
\(863\) −6.60844e12 −0.405556 −0.202778 0.979225i \(-0.564997\pi\)
−0.202778 + 0.979225i \(0.564997\pi\)
\(864\) −2.32870e12 −0.142168
\(865\) 6.46113e12 0.392406
\(866\) 3.24249e12 0.195906
\(867\) −1.73753e13 −1.04435
\(868\) −9.74262e12 −0.582555
\(869\) 1.14915e13 0.683575
\(870\) 1.45010e12 0.0858147
\(871\) 0 0
\(872\) 5.55314e12 0.325248
\(873\) 7.01304e12 0.408641
\(874\) −1.54031e13 −0.892907
\(875\) −8.63366e12 −0.497919
\(876\) 4.62514e12 0.265373
\(877\) −3.39068e12 −0.193548 −0.0967739 0.995306i \(-0.530852\pi\)
−0.0967739 + 0.995306i \(0.530852\pi\)
\(878\) 1.48289e13 0.842138
\(879\) 6.48805e12 0.366576
\(880\) −4.75742e12 −0.267423
\(881\) 1.20785e13 0.675495 0.337748 0.941237i \(-0.390335\pi\)
0.337748 + 0.941237i \(0.390335\pi\)
\(882\) −1.26516e11 −0.00703944
\(883\) 5.33631e12 0.295405 0.147702 0.989032i \(-0.452812\pi\)
0.147702 + 0.989032i \(0.452812\pi\)
\(884\) 0 0
\(885\) −4.84981e13 −2.65754
\(886\) 6.29538e12 0.343218
\(887\) 1.35083e13 0.732731 0.366366 0.930471i \(-0.380602\pi\)
0.366366 + 0.930471i \(0.380602\pi\)
\(888\) −1.15797e13 −0.624940
\(889\) −1.73417e13 −0.931182
\(890\) −1.99207e13 −1.06427
\(891\) −1.92060e13 −1.02091
\(892\) −5.82690e12 −0.308174
\(893\) 2.14900e13 1.13085
\(894\) 1.88961e13 0.989358
\(895\) −1.77674e13 −0.925593
\(896\) −1.67597e12 −0.0868719
\(897\) 0 0
\(898\) −1.04093e12 −0.0534170
\(899\) −1.95955e12 −0.100055
\(900\) 1.72637e12 0.0877085
\(901\) 3.85765e11 0.0195012
\(902\) 1.17846e13 0.592769
\(903\) 1.22312e13 0.612172
\(904\) 8.99035e12 0.447732
\(905\) 1.12384e13 0.556912
\(906\) −2.07078e13 −1.02108
\(907\) 2.95151e13 1.44814 0.724071 0.689726i \(-0.242269\pi\)
0.724071 + 0.689726i \(0.242269\pi\)
\(908\) −5.75790e12 −0.281111
\(909\) −5.48723e12 −0.266573
\(910\) 0 0
\(911\) −2.98046e12 −0.143368 −0.0716838 0.997427i \(-0.522837\pi\)
−0.0716838 + 0.997427i \(0.522837\pi\)
\(912\) −5.30054e12 −0.253713
\(913\) 3.08057e13 1.46728
\(914\) −1.62721e13 −0.771232
\(915\) −3.85605e13 −1.81864
\(916\) −1.81799e13 −0.853222
\(917\) 3.69532e12 0.172580
\(918\) −3.49201e12 −0.162287
\(919\) −3.51732e13 −1.62664 −0.813321 0.581815i \(-0.802343\pi\)
−0.813321 + 0.581815i \(0.802343\pi\)
\(920\) −1.37448e13 −0.632548
\(921\) 3.74905e13 1.71693
\(922\) −2.78894e13 −1.27101
\(923\) 0 0
\(924\) −1.04712e13 −0.472578
\(925\) −2.07496e13 −0.931906
\(926\) −5.43068e12 −0.242720
\(927\) 7.33505e12 0.326245
\(928\) −3.37091e11 −0.0149204
\(929\) 2.56701e13 1.13072 0.565361 0.824843i \(-0.308737\pi\)
0.565361 + 0.824843i \(0.308737\pi\)
\(930\) −2.74955e13 −1.20528
\(931\) 6.96060e11 0.0303650
\(932\) 1.30844e13 0.568046
\(933\) 2.55454e13 1.10368
\(934\) 7.62202e12 0.327725
\(935\) −7.13402e12 −0.305268
\(936\) 0 0
\(937\) 3.44586e11 0.0146039 0.00730197 0.999973i \(-0.497676\pi\)
0.00730197 + 0.999973i \(0.497676\pi\)
\(938\) 1.21121e13 0.510867
\(939\) −4.50390e13 −1.89057
\(940\) 1.91764e13 0.801111
\(941\) −1.04276e13 −0.433542 −0.216771 0.976223i \(-0.569552\pi\)
−0.216771 + 0.976223i \(0.569552\pi\)
\(942\) −2.83047e13 −1.17119
\(943\) 3.40473e13 1.40210
\(944\) 1.12739e13 0.462061
\(945\) −2.45067e13 −0.999636
\(946\) −8.07092e12 −0.327652
\(947\) −3.05879e13 −1.23588 −0.617939 0.786226i \(-0.712032\pi\)
−0.617939 + 0.786226i \(0.712032\pi\)
\(948\) 1.14250e13 0.459428
\(949\) 0 0
\(950\) −9.49802e12 −0.378335
\(951\) 2.04171e13 0.809433
\(952\) −2.51321e12 −0.0991658
\(953\) −3.43552e13 −1.34919 −0.674596 0.738187i \(-0.735682\pi\)
−0.674596 + 0.738187i \(0.735682\pi\)
\(954\) 3.61772e11 0.0141406
\(955\) 4.53262e13 1.76333
\(956\) 5.50167e12 0.213027
\(957\) −2.10610e12 −0.0811661
\(958\) 1.22212e13 0.468780
\(959\) −2.98747e13 −1.14057
\(960\) −4.72989e12 −0.179734
\(961\) 1.07156e13 0.405286
\(962\) 0 0
\(963\) 5.59384e12 0.209600
\(964\) −1.30221e13 −0.485663
\(965\) 5.40592e13 2.00677
\(966\) −3.02527e13 −1.11781
\(967\) −5.29016e13 −1.94558 −0.972791 0.231685i \(-0.925576\pi\)
−0.972791 + 0.231685i \(0.925576\pi\)
\(968\) −2.74858e12 −0.100616
\(969\) −7.94845e12 −0.289618
\(970\) −3.44301e13 −1.24872
\(971\) 3.46593e13 1.25122 0.625610 0.780136i \(-0.284850\pi\)
0.625610 + 0.780136i \(0.284850\pi\)
\(972\) −7.90450e12 −0.284038
\(973\) 6.19255e12 0.221494
\(974\) 2.55190e13 0.908547
\(975\) 0 0
\(976\) 8.96377e12 0.316204
\(977\) −1.48680e13 −0.522069 −0.261035 0.965329i \(-0.584064\pi\)
−0.261035 + 0.965329i \(0.584064\pi\)
\(978\) −2.00084e12 −0.0699338
\(979\) 2.89325e13 1.00661
\(980\) 6.21124e11 0.0215110
\(981\) 7.80932e12 0.269217
\(982\) −1.50222e13 −0.515505
\(983\) −1.71439e13 −0.585624 −0.292812 0.956170i \(-0.594591\pi\)
−0.292812 + 0.956170i \(0.594591\pi\)
\(984\) 1.17164e13 0.398398
\(985\) −3.06307e13 −1.03680
\(986\) −5.05487e11 −0.0170319
\(987\) 4.22079e13 1.41568
\(988\) 0 0
\(989\) −2.33180e13 −0.775010
\(990\) −6.69030e12 −0.221354
\(991\) 3.48129e13 1.14659 0.573296 0.819348i \(-0.305664\pi\)
0.573296 + 0.819348i \(0.305664\pi\)
\(992\) 6.39160e12 0.209560
\(993\) −1.34242e13 −0.438144
\(994\) −3.66433e13 −1.19057
\(995\) 2.55337e13 0.825868
\(996\) 3.06274e13 0.986151
\(997\) −3.63962e13 −1.16662 −0.583308 0.812251i \(-0.698242\pi\)
−0.583308 + 0.812251i \(0.698242\pi\)
\(998\) 1.31405e13 0.419300
\(999\) 3.93609e13 1.25032
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.f.1.3 3
13.12 even 2 26.10.a.d.1.3 3
39.38 odd 2 234.10.a.l.1.1 3
52.51 odd 2 208.10.a.e.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.a.d.1.3 3 13.12 even 2
208.10.a.e.1.1 3 52.51 odd 2
234.10.a.l.1.1 3 39.38 odd 2
338.10.a.f.1.3 3 1.1 even 1 trivial