Properties

Label 3360.2.z.b.1231.4
Level $3360$
Weight $2$
Character 3360.1231
Analytic conductor $26.830$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(1231,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.1231"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.z (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1231.4
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 3360.1231
Dual form 3360.2.z.b.1231.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +1.00000 q^{5} +(1.00000 + 2.44949i) q^{7} -1.00000 q^{9} -2.00000 q^{11} +6.89898 q^{13} +1.00000i q^{15} -4.89898i q^{17} -6.89898i q^{19} +(-2.44949 + 1.00000i) q^{21} -6.00000i q^{23} +1.00000 q^{25} -1.00000i q^{27} -8.89898i q^{29} -2.00000 q^{31} -2.00000i q^{33} +(1.00000 + 2.44949i) q^{35} -7.79796i q^{37} +6.89898i q^{39} -2.89898i q^{41} +8.89898 q^{43} -1.00000 q^{45} -10.8990 q^{47} +(-5.00000 + 4.89898i) q^{49} +4.89898 q^{51} -9.79796i q^{53} -2.00000 q^{55} +6.89898 q^{57} +3.10102i q^{59} -0.898979 q^{61} +(-1.00000 - 2.44949i) q^{63} +6.89898 q^{65} +4.89898 q^{67} +6.00000 q^{69} +12.8990i q^{71} +8.89898i q^{73} +1.00000i q^{75} +(-2.00000 - 4.89898i) q^{77} -4.00000i q^{79} +1.00000 q^{81} +4.00000i q^{83} -4.89898i q^{85} +8.89898 q^{87} +1.10102i q^{89} +(6.89898 + 16.8990i) q^{91} -2.00000i q^{93} -6.89898i q^{95} +0.898979i q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 4 q^{7} - 4 q^{9} - 8 q^{11} + 8 q^{13} + 4 q^{25} - 8 q^{31} + 4 q^{35} + 16 q^{43} - 4 q^{45} - 24 q^{47} - 20 q^{49} - 8 q^{55} + 8 q^{57} + 16 q^{61} - 4 q^{63} + 8 q^{65} + 24 q^{69}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.00000 + 2.44949i 0.377964 + 0.925820i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 6.89898 1.91343 0.956716 0.291022i \(-0.0939953\pi\)
0.956716 + 0.291022i \(0.0939953\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 4.89898i 1.18818i −0.804400 0.594089i \(-0.797513\pi\)
0.804400 0.594089i \(-0.202487\pi\)
\(18\) 0 0
\(19\) 6.89898i 1.58273i −0.611341 0.791367i \(-0.709370\pi\)
0.611341 0.791367i \(-0.290630\pi\)
\(20\) 0 0
\(21\) −2.44949 + 1.00000i −0.534522 + 0.218218i
\(22\) 0 0
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 8.89898i 1.65250i −0.563304 0.826250i \(-0.690470\pi\)
0.563304 0.826250i \(-0.309530\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 1.00000 + 2.44949i 0.169031 + 0.414039i
\(36\) 0 0
\(37\) 7.79796i 1.28198i −0.767551 0.640988i \(-0.778525\pi\)
0.767551 0.640988i \(-0.221475\pi\)
\(38\) 0 0
\(39\) 6.89898i 1.10472i
\(40\) 0 0
\(41\) 2.89898i 0.452745i −0.974041 0.226372i \(-0.927313\pi\)
0.974041 0.226372i \(-0.0726866\pi\)
\(42\) 0 0
\(43\) 8.89898 1.35708 0.678541 0.734563i \(-0.262613\pi\)
0.678541 + 0.734563i \(0.262613\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −10.8990 −1.58978 −0.794890 0.606754i \(-0.792471\pi\)
−0.794890 + 0.606754i \(0.792471\pi\)
\(48\) 0 0
\(49\) −5.00000 + 4.89898i −0.714286 + 0.699854i
\(50\) 0 0
\(51\) 4.89898 0.685994
\(52\) 0 0
\(53\) 9.79796i 1.34585i −0.739709 0.672927i \(-0.765037\pi\)
0.739709 0.672927i \(-0.234963\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 6.89898 0.913792
\(58\) 0 0
\(59\) 3.10102i 0.403718i 0.979415 + 0.201859i \(0.0646984\pi\)
−0.979415 + 0.201859i \(0.935302\pi\)
\(60\) 0 0
\(61\) −0.898979 −0.115103 −0.0575513 0.998343i \(-0.518329\pi\)
−0.0575513 + 0.998343i \(0.518329\pi\)
\(62\) 0 0
\(63\) −1.00000 2.44949i −0.125988 0.308607i
\(64\) 0 0
\(65\) 6.89898 0.855713
\(66\) 0 0
\(67\) 4.89898 0.598506 0.299253 0.954174i \(-0.403263\pi\)
0.299253 + 0.954174i \(0.403263\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 12.8990i 1.53083i 0.643539 + 0.765414i \(0.277466\pi\)
−0.643539 + 0.765414i \(0.722534\pi\)
\(72\) 0 0
\(73\) 8.89898i 1.04155i 0.853695 + 0.520773i \(0.174356\pi\)
−0.853695 + 0.520773i \(0.825644\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) −2.00000 4.89898i −0.227921 0.558291i
\(78\) 0 0
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 0 0
\(85\) 4.89898i 0.531369i
\(86\) 0 0
\(87\) 8.89898 0.954071
\(88\) 0 0
\(89\) 1.10102i 0.116708i 0.998296 + 0.0583540i \(0.0185852\pi\)
−0.998296 + 0.0583540i \(0.981415\pi\)
\(90\) 0 0
\(91\) 6.89898 + 16.8990i 0.723210 + 1.77149i
\(92\) 0 0
\(93\) 2.00000i 0.207390i
\(94\) 0 0
\(95\) 6.89898i 0.707820i
\(96\) 0 0
\(97\) 0.898979i 0.0912775i 0.998958 + 0.0456388i \(0.0145323\pi\)
−0.998958 + 0.0456388i \(0.985468\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −3.79796 −0.377911 −0.188956 0.981986i \(-0.560510\pi\)
−0.188956 + 0.981986i \(0.560510\pi\)
\(102\) 0 0
\(103\) 0.202041 0.0199077 0.00995385 0.999950i \(-0.496832\pi\)
0.00995385 + 0.999950i \(0.496832\pi\)
\(104\) 0 0
\(105\) −2.44949 + 1.00000i −0.239046 + 0.0975900i
\(106\) 0 0
\(107\) 7.79796 0.753857 0.376929 0.926242i \(-0.376980\pi\)
0.376929 + 0.926242i \(0.376980\pi\)
\(108\) 0 0
\(109\) 4.00000i 0.383131i 0.981480 + 0.191565i \(0.0613564\pi\)
−0.981480 + 0.191565i \(0.938644\pi\)
\(110\) 0 0
\(111\) 7.79796 0.740150
\(112\) 0 0
\(113\) −1.79796 −0.169138 −0.0845689 0.996418i \(-0.526951\pi\)
−0.0845689 + 0.996418i \(0.526951\pi\)
\(114\) 0 0
\(115\) 6.00000i 0.559503i
\(116\) 0 0
\(117\) −6.89898 −0.637811
\(118\) 0 0
\(119\) 12.0000 4.89898i 1.10004 0.449089i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 2.89898 0.261392
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.898979i 0.0797715i −0.999204 0.0398858i \(-0.987301\pi\)
0.999204 0.0398858i \(-0.0126994\pi\)
\(128\) 0 0
\(129\) 8.89898i 0.783511i
\(130\) 0 0
\(131\) 7.10102i 0.620419i −0.950668 0.310210i \(-0.899601\pi\)
0.950668 0.310210i \(-0.100399\pi\)
\(132\) 0 0
\(133\) 16.8990 6.89898i 1.46533 0.598217i
\(134\) 0 0
\(135\) 1.00000i 0.0860663i
\(136\) 0 0
\(137\) 13.7980 1.17884 0.589420 0.807827i \(-0.299356\pi\)
0.589420 + 0.807827i \(0.299356\pi\)
\(138\) 0 0
\(139\) 6.89898i 0.585164i −0.956240 0.292582i \(-0.905486\pi\)
0.956240 0.292582i \(-0.0945144\pi\)
\(140\) 0 0
\(141\) 10.8990i 0.917860i
\(142\) 0 0
\(143\) −13.7980 −1.15384
\(144\) 0 0
\(145\) 8.89898i 0.739020i
\(146\) 0 0
\(147\) −4.89898 5.00000i −0.404061 0.412393i
\(148\) 0 0
\(149\) 16.8990i 1.38442i 0.721697 + 0.692209i \(0.243362\pi\)
−0.721697 + 0.692209i \(0.756638\pi\)
\(150\) 0 0
\(151\) 5.79796i 0.471831i −0.971774 0.235916i \(-0.924191\pi\)
0.971774 0.235916i \(-0.0758089\pi\)
\(152\) 0 0
\(153\) 4.89898i 0.396059i
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) 0 0
\(157\) 16.6969 1.33256 0.666280 0.745701i \(-0.267885\pi\)
0.666280 + 0.745701i \(0.267885\pi\)
\(158\) 0 0
\(159\) 9.79796 0.777029
\(160\) 0 0
\(161\) 14.6969 6.00000i 1.15828 0.472866i
\(162\) 0 0
\(163\) −22.6969 −1.77776 −0.888881 0.458139i \(-0.848516\pi\)
−0.888881 + 0.458139i \(0.848516\pi\)
\(164\) 0 0
\(165\) 2.00000i 0.155700i
\(166\) 0 0
\(167\) −10.8990 −0.843388 −0.421694 0.906738i \(-0.638564\pi\)
−0.421694 + 0.906738i \(0.638564\pi\)
\(168\) 0 0
\(169\) 34.5959 2.66122
\(170\) 0 0
\(171\) 6.89898i 0.527578i
\(172\) 0 0
\(173\) −11.7980 −0.896982 −0.448491 0.893787i \(-0.648038\pi\)
−0.448491 + 0.893787i \(0.648038\pi\)
\(174\) 0 0
\(175\) 1.00000 + 2.44949i 0.0755929 + 0.185164i
\(176\) 0 0
\(177\) −3.10102 −0.233087
\(178\) 0 0
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) −20.8990 −1.55341 −0.776704 0.629865i \(-0.783110\pi\)
−0.776704 + 0.629865i \(0.783110\pi\)
\(182\) 0 0
\(183\) 0.898979i 0.0664545i
\(184\) 0 0
\(185\) 7.79796i 0.573317i
\(186\) 0 0
\(187\) 9.79796i 0.716498i
\(188\) 0 0
\(189\) 2.44949 1.00000i 0.178174 0.0727393i
\(190\) 0 0
\(191\) 7.10102i 0.513812i −0.966436 0.256906i \(-0.917297\pi\)
0.966436 0.256906i \(-0.0827030\pi\)
\(192\) 0 0
\(193\) −0.202041 −0.0145432 −0.00727162 0.999974i \(-0.502315\pi\)
−0.00727162 + 0.999974i \(0.502315\pi\)
\(194\) 0 0
\(195\) 6.89898i 0.494046i
\(196\) 0 0
\(197\) 13.7980i 0.983064i 0.870860 + 0.491532i \(0.163563\pi\)
−0.870860 + 0.491532i \(0.836437\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 4.89898i 0.345547i
\(202\) 0 0
\(203\) 21.7980 8.89898i 1.52992 0.624586i
\(204\) 0 0
\(205\) 2.89898i 0.202474i
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 0 0
\(209\) 13.7980i 0.954425i
\(210\) 0 0
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) 0 0
\(213\) −12.8990 −0.883824
\(214\) 0 0
\(215\) 8.89898 0.606905
\(216\) 0 0
\(217\) −2.00000 4.89898i −0.135769 0.332564i
\(218\) 0 0
\(219\) −8.89898 −0.601337
\(220\) 0 0
\(221\) 33.7980i 2.27350i
\(222\) 0 0
\(223\) 6.00000 0.401790 0.200895 0.979613i \(-0.435615\pi\)
0.200895 + 0.979613i \(0.435615\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) 24.4949 1.61867 0.809334 0.587348i \(-0.199828\pi\)
0.809334 + 0.587348i \(0.199828\pi\)
\(230\) 0 0
\(231\) 4.89898 2.00000i 0.322329 0.131590i
\(232\) 0 0
\(233\) −16.0000 −1.04819 −0.524097 0.851658i \(-0.675597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 0 0
\(235\) −10.8990 −0.710971
\(236\) 0 0
\(237\) 4.00000 0.259828
\(238\) 0 0
\(239\) 2.69694i 0.174450i −0.996189 0.0872252i \(-0.972200\pi\)
0.996189 0.0872252i \(-0.0278000\pi\)
\(240\) 0 0
\(241\) 20.0000i 1.28831i 0.764894 + 0.644157i \(0.222792\pi\)
−0.764894 + 0.644157i \(0.777208\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −5.00000 + 4.89898i −0.319438 + 0.312984i
\(246\) 0 0
\(247\) 47.5959i 3.02846i
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) 12.8990i 0.814176i 0.913389 + 0.407088i \(0.133456\pi\)
−0.913389 + 0.407088i \(0.866544\pi\)
\(252\) 0 0
\(253\) 12.0000i 0.754434i
\(254\) 0 0
\(255\) 4.89898 0.306786
\(256\) 0 0
\(257\) 15.1010i 0.941976i 0.882140 + 0.470988i \(0.156102\pi\)
−0.882140 + 0.470988i \(0.843898\pi\)
\(258\) 0 0
\(259\) 19.1010 7.79796i 1.18688 0.484542i
\(260\) 0 0
\(261\) 8.89898i 0.550833i
\(262\) 0 0
\(263\) 11.7980i 0.727493i −0.931498 0.363747i \(-0.881497\pi\)
0.931498 0.363747i \(-0.118503\pi\)
\(264\) 0 0
\(265\) 9.79796i 0.601884i
\(266\) 0 0
\(267\) −1.10102 −0.0673814
\(268\) 0 0
\(269\) 15.7980 0.963219 0.481609 0.876386i \(-0.340052\pi\)
0.481609 + 0.876386i \(0.340052\pi\)
\(270\) 0 0
\(271\) 23.7980 1.44562 0.722812 0.691045i \(-0.242849\pi\)
0.722812 + 0.691045i \(0.242849\pi\)
\(272\) 0 0
\(273\) −16.8990 + 6.89898i −1.02277 + 0.417545i
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) 3.79796i 0.228197i 0.993469 + 0.114099i \(0.0363980\pi\)
−0.993469 + 0.114099i \(0.963602\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) 27.7980 1.65829 0.829144 0.559036i \(-0.188829\pi\)
0.829144 + 0.559036i \(0.188829\pi\)
\(282\) 0 0
\(283\) 9.79796i 0.582428i 0.956658 + 0.291214i \(0.0940592\pi\)
−0.956658 + 0.291214i \(0.905941\pi\)
\(284\) 0 0
\(285\) 6.89898 0.408660
\(286\) 0 0
\(287\) 7.10102 2.89898i 0.419160 0.171121i
\(288\) 0 0
\(289\) −7.00000 −0.411765
\(290\) 0 0
\(291\) −0.898979 −0.0526991
\(292\) 0 0
\(293\) −17.5959 −1.02796 −0.513982 0.857801i \(-0.671830\pi\)
−0.513982 + 0.857801i \(0.671830\pi\)
\(294\) 0 0
\(295\) 3.10102i 0.180548i
\(296\) 0 0
\(297\) 2.00000i 0.116052i
\(298\) 0 0
\(299\) 41.3939i 2.39387i
\(300\) 0 0
\(301\) 8.89898 + 21.7980i 0.512929 + 1.25641i
\(302\) 0 0
\(303\) 3.79796i 0.218187i
\(304\) 0 0
\(305\) −0.898979 −0.0514754
\(306\) 0 0
\(307\) 23.5959i 1.34669i 0.739328 + 0.673345i \(0.235143\pi\)
−0.739328 + 0.673345i \(0.764857\pi\)
\(308\) 0 0
\(309\) 0.202041i 0.0114937i
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) 20.4949i 1.15844i 0.815171 + 0.579220i \(0.196643\pi\)
−0.815171 + 0.579220i \(0.803357\pi\)
\(314\) 0 0
\(315\) −1.00000 2.44949i −0.0563436 0.138013i
\(316\) 0 0
\(317\) 12.0000i 0.673987i −0.941507 0.336994i \(-0.890590\pi\)
0.941507 0.336994i \(-0.109410\pi\)
\(318\) 0 0
\(319\) 17.7980i 0.996494i
\(320\) 0 0
\(321\) 7.79796i 0.435240i
\(322\) 0 0
\(323\) −33.7980 −1.88057
\(324\) 0 0
\(325\) 6.89898 0.382687
\(326\) 0 0
\(327\) −4.00000 −0.221201
\(328\) 0 0
\(329\) −10.8990 26.6969i −0.600880 1.47185i
\(330\) 0 0
\(331\) 35.3939 1.94542 0.972712 0.232017i \(-0.0745325\pi\)
0.972712 + 0.232017i \(0.0745325\pi\)
\(332\) 0 0
\(333\) 7.79796i 0.427326i
\(334\) 0 0
\(335\) 4.89898 0.267660
\(336\) 0 0
\(337\) 12.2020 0.664688 0.332344 0.943158i \(-0.392161\pi\)
0.332344 + 0.943158i \(0.392161\pi\)
\(338\) 0 0
\(339\) 1.79796i 0.0976517i
\(340\) 0 0
\(341\) 4.00000 0.216612
\(342\) 0 0
\(343\) −17.0000 7.34847i −0.917914 0.396780i
\(344\) 0 0
\(345\) 6.00000 0.323029
\(346\) 0 0
\(347\) 13.5959 0.729867 0.364934 0.931034i \(-0.381092\pi\)
0.364934 + 0.931034i \(0.381092\pi\)
\(348\) 0 0
\(349\) −1.30306 −0.0697513 −0.0348756 0.999392i \(-0.511104\pi\)
−0.0348756 + 0.999392i \(0.511104\pi\)
\(350\) 0 0
\(351\) 6.89898i 0.368240i
\(352\) 0 0
\(353\) 5.30306i 0.282253i −0.989992 0.141127i \(-0.954927\pi\)
0.989992 0.141127i \(-0.0450725\pi\)
\(354\) 0 0
\(355\) 12.8990i 0.684607i
\(356\) 0 0
\(357\) 4.89898 + 12.0000i 0.259281 + 0.635107i
\(358\) 0 0
\(359\) 16.8990i 0.891894i −0.895059 0.445947i \(-0.852867\pi\)
0.895059 0.445947i \(-0.147133\pi\)
\(360\) 0 0
\(361\) −28.5959 −1.50505
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) 8.89898i 0.465794i
\(366\) 0 0
\(367\) −3.79796 −0.198252 −0.0991259 0.995075i \(-0.531605\pi\)
−0.0991259 + 0.995075i \(0.531605\pi\)
\(368\) 0 0
\(369\) 2.89898i 0.150915i
\(370\) 0 0
\(371\) 24.0000 9.79796i 1.24602 0.508685i
\(372\) 0 0
\(373\) 14.0000i 0.724893i −0.932005 0.362446i \(-0.881942\pi\)
0.932005 0.362446i \(-0.118058\pi\)
\(374\) 0 0
\(375\) 1.00000i 0.0516398i
\(376\) 0 0
\(377\) 61.3939i 3.16195i
\(378\) 0 0
\(379\) 27.3939 1.40713 0.703564 0.710631i \(-0.251591\pi\)
0.703564 + 0.710631i \(0.251591\pi\)
\(380\) 0 0
\(381\) 0.898979 0.0460561
\(382\) 0 0
\(383\) 18.8990 0.965693 0.482846 0.875705i \(-0.339603\pi\)
0.482846 + 0.875705i \(0.339603\pi\)
\(384\) 0 0
\(385\) −2.00000 4.89898i −0.101929 0.249675i
\(386\) 0 0
\(387\) −8.89898 −0.452361
\(388\) 0 0
\(389\) 2.69694i 0.136740i 0.997660 + 0.0683701i \(0.0217799\pi\)
−0.997660 + 0.0683701i \(0.978220\pi\)
\(390\) 0 0
\(391\) −29.3939 −1.48651
\(392\) 0 0
\(393\) 7.10102 0.358199
\(394\) 0 0
\(395\) 4.00000i 0.201262i
\(396\) 0 0
\(397\) 16.6969 0.837995 0.418998 0.907987i \(-0.362382\pi\)
0.418998 + 0.907987i \(0.362382\pi\)
\(398\) 0 0
\(399\) 6.89898 + 16.8990i 0.345381 + 0.846007i
\(400\) 0 0
\(401\) 7.79796 0.389411 0.194706 0.980862i \(-0.437625\pi\)
0.194706 + 0.980862i \(0.437625\pi\)
\(402\) 0 0
\(403\) −13.7980 −0.687325
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 15.5959i 0.773061i
\(408\) 0 0
\(409\) 4.00000i 0.197787i 0.995098 + 0.0988936i \(0.0315304\pi\)
−0.995098 + 0.0988936i \(0.968470\pi\)
\(410\) 0 0
\(411\) 13.7980i 0.680603i
\(412\) 0 0
\(413\) −7.59592 + 3.10102i −0.373771 + 0.152591i
\(414\) 0 0
\(415\) 4.00000i 0.196352i
\(416\) 0 0
\(417\) 6.89898 0.337844
\(418\) 0 0
\(419\) 34.2929i 1.67532i −0.546195 0.837658i \(-0.683924\pi\)
0.546195 0.837658i \(-0.316076\pi\)
\(420\) 0 0
\(421\) 25.7980i 1.25732i 0.777682 + 0.628658i \(0.216395\pi\)
−0.777682 + 0.628658i \(0.783605\pi\)
\(422\) 0 0
\(423\) 10.8990 0.529927
\(424\) 0 0
\(425\) 4.89898i 0.237635i
\(426\) 0 0
\(427\) −0.898979 2.20204i −0.0435047 0.106564i
\(428\) 0 0
\(429\) 13.7980i 0.666172i
\(430\) 0 0
\(431\) 12.8990i 0.621322i −0.950521 0.310661i \(-0.899450\pi\)
0.950521 0.310661i \(-0.100550\pi\)
\(432\) 0 0
\(433\) 34.6969i 1.66743i 0.552196 + 0.833714i \(0.313790\pi\)
−0.552196 + 0.833714i \(0.686210\pi\)
\(434\) 0 0
\(435\) 8.89898 0.426673
\(436\) 0 0
\(437\) −41.3939 −1.98014
\(438\) 0 0
\(439\) −4.20204 −0.200552 −0.100276 0.994960i \(-0.531973\pi\)
−0.100276 + 0.994960i \(0.531973\pi\)
\(440\) 0 0
\(441\) 5.00000 4.89898i 0.238095 0.233285i
\(442\) 0 0
\(443\) 6.00000 0.285069 0.142534 0.989790i \(-0.454475\pi\)
0.142534 + 0.989790i \(0.454475\pi\)
\(444\) 0 0
\(445\) 1.10102i 0.0521934i
\(446\) 0 0
\(447\) −16.8990 −0.799294
\(448\) 0 0
\(449\) 4.20204 0.198307 0.0991533 0.995072i \(-0.468387\pi\)
0.0991533 + 0.995072i \(0.468387\pi\)
\(450\) 0 0
\(451\) 5.79796i 0.273015i
\(452\) 0 0
\(453\) 5.79796 0.272412
\(454\) 0 0
\(455\) 6.89898 + 16.8990i 0.323429 + 0.792236i
\(456\) 0 0
\(457\) −7.79796 −0.364773 −0.182387 0.983227i \(-0.558382\pi\)
−0.182387 + 0.983227i \(0.558382\pi\)
\(458\) 0 0
\(459\) −4.89898 −0.228665
\(460\) 0 0
\(461\) −23.7980 −1.10838 −0.554191 0.832390i \(-0.686972\pi\)
−0.554191 + 0.832390i \(0.686972\pi\)
\(462\) 0 0
\(463\) 2.69694i 0.125337i 0.998034 + 0.0626687i \(0.0199611\pi\)
−0.998034 + 0.0626687i \(0.980039\pi\)
\(464\) 0 0
\(465\) 2.00000i 0.0927478i
\(466\) 0 0
\(467\) 2.20204i 0.101898i −0.998701 0.0509492i \(-0.983775\pi\)
0.998701 0.0509492i \(-0.0162246\pi\)
\(468\) 0 0
\(469\) 4.89898 + 12.0000i 0.226214 + 0.554109i
\(470\) 0 0
\(471\) 16.6969i 0.769354i
\(472\) 0 0
\(473\) −17.7980 −0.818351
\(474\) 0 0
\(475\) 6.89898i 0.316547i
\(476\) 0 0
\(477\) 9.79796i 0.448618i
\(478\) 0 0
\(479\) 11.5959 0.529831 0.264916 0.964272i \(-0.414656\pi\)
0.264916 + 0.964272i \(0.414656\pi\)
\(480\) 0 0
\(481\) 53.7980i 2.45298i
\(482\) 0 0
\(483\) 6.00000 + 14.6969i 0.273009 + 0.668734i
\(484\) 0 0
\(485\) 0.898979i 0.0408206i
\(486\) 0 0
\(487\) 24.8990i 1.12828i 0.825679 + 0.564140i \(0.190792\pi\)
−0.825679 + 0.564140i \(0.809208\pi\)
\(488\) 0 0
\(489\) 22.6969i 1.02639i
\(490\) 0 0
\(491\) −13.5959 −0.613575 −0.306788 0.951778i \(-0.599254\pi\)
−0.306788 + 0.951778i \(0.599254\pi\)
\(492\) 0 0
\(493\) −43.5959 −1.96346
\(494\) 0 0
\(495\) 2.00000 0.0898933
\(496\) 0 0
\(497\) −31.5959 + 12.8990i −1.41727 + 0.578598i
\(498\) 0 0
\(499\) −10.0000 −0.447661 −0.223831 0.974628i \(-0.571856\pi\)
−0.223831 + 0.974628i \(0.571856\pi\)
\(500\) 0 0
\(501\) 10.8990i 0.486930i
\(502\) 0 0
\(503\) −38.4949 −1.71640 −0.858201 0.513313i \(-0.828418\pi\)
−0.858201 + 0.513313i \(0.828418\pi\)
\(504\) 0 0
\(505\) −3.79796 −0.169007
\(506\) 0 0
\(507\) 34.5959i 1.53646i
\(508\) 0 0
\(509\) −1.59592 −0.0707378 −0.0353689 0.999374i \(-0.511261\pi\)
−0.0353689 + 0.999374i \(0.511261\pi\)
\(510\) 0 0
\(511\) −21.7980 + 8.89898i −0.964285 + 0.393668i
\(512\) 0 0
\(513\) −6.89898 −0.304597
\(514\) 0 0
\(515\) 0.202041 0.00890299
\(516\) 0 0
\(517\) 21.7980 0.958673
\(518\) 0 0
\(519\) 11.7980i 0.517873i
\(520\) 0 0
\(521\) 42.8990i 1.87944i 0.341947 + 0.939719i \(0.388914\pi\)
−0.341947 + 0.939719i \(0.611086\pi\)
\(522\) 0 0
\(523\) 35.5959i 1.55650i 0.627954 + 0.778250i \(0.283893\pi\)
−0.627954 + 0.778250i \(0.716107\pi\)
\(524\) 0 0
\(525\) −2.44949 + 1.00000i −0.106904 + 0.0436436i
\(526\) 0 0
\(527\) 9.79796i 0.426806i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 3.10102i 0.134573i
\(532\) 0 0
\(533\) 20.0000i 0.866296i
\(534\) 0 0
\(535\) 7.79796 0.337135
\(536\) 0 0
\(537\) 10.0000i 0.431532i
\(538\) 0 0
\(539\) 10.0000 9.79796i 0.430730 0.422028i
\(540\) 0 0
\(541\) 17.3939i 0.747821i 0.927465 + 0.373911i \(0.121983\pi\)
−0.927465 + 0.373911i \(0.878017\pi\)
\(542\) 0 0
\(543\) 20.8990i 0.896861i
\(544\) 0 0
\(545\) 4.00000i 0.171341i
\(546\) 0 0
\(547\) −38.2929 −1.63728 −0.818642 0.574304i \(-0.805273\pi\)
−0.818642 + 0.574304i \(0.805273\pi\)
\(548\) 0 0
\(549\) 0.898979 0.0383675
\(550\) 0 0
\(551\) −61.3939 −2.61547
\(552\) 0 0
\(553\) 9.79796 4.00000i 0.416652 0.170097i
\(554\) 0 0
\(555\) 7.79796 0.331005
\(556\) 0 0
\(557\) 13.7980i 0.584638i 0.956321 + 0.292319i \(0.0944269\pi\)
−0.956321 + 0.292319i \(0.905573\pi\)
\(558\) 0 0
\(559\) 61.3939 2.59668
\(560\) 0 0
\(561\) −9.79796 −0.413670
\(562\) 0 0
\(563\) 21.7980i 0.918674i −0.888262 0.459337i \(-0.848087\pi\)
0.888262 0.459337i \(-0.151913\pi\)
\(564\) 0 0
\(565\) −1.79796 −0.0756407
\(566\) 0 0
\(567\) 1.00000 + 2.44949i 0.0419961 + 0.102869i
\(568\) 0 0
\(569\) −21.5959 −0.905348 −0.452674 0.891676i \(-0.649530\pi\)
−0.452674 + 0.891676i \(0.649530\pi\)
\(570\) 0 0
\(571\) 3.79796 0.158940 0.0794698 0.996837i \(-0.474677\pi\)
0.0794698 + 0.996837i \(0.474677\pi\)
\(572\) 0 0
\(573\) 7.10102 0.296649
\(574\) 0 0
\(575\) 6.00000i 0.250217i
\(576\) 0 0
\(577\) 15.1010i 0.628664i 0.949313 + 0.314332i \(0.101780\pi\)
−0.949313 + 0.314332i \(0.898220\pi\)
\(578\) 0 0
\(579\) 0.202041i 0.00839654i
\(580\) 0 0
\(581\) −9.79796 + 4.00000i −0.406488 + 0.165948i
\(582\) 0 0
\(583\) 19.5959i 0.811580i
\(584\) 0 0
\(585\) −6.89898 −0.285238
\(586\) 0 0
\(587\) 26.2020i 1.08147i 0.841192 + 0.540737i \(0.181855\pi\)
−0.841192 + 0.540737i \(0.818145\pi\)
\(588\) 0 0
\(589\) 13.7980i 0.568535i
\(590\) 0 0
\(591\) −13.7980 −0.567572
\(592\) 0 0
\(593\) 3.10102i 0.127344i 0.997971 + 0.0636718i \(0.0202811\pi\)
−0.997971 + 0.0636718i \(0.979719\pi\)
\(594\) 0 0
\(595\) 12.0000 4.89898i 0.491952 0.200839i
\(596\) 0 0
\(597\) 10.0000i 0.409273i
\(598\) 0 0
\(599\) 8.89898i 0.363602i 0.983335 + 0.181801i \(0.0581927\pi\)
−0.983335 + 0.181801i \(0.941807\pi\)
\(600\) 0 0
\(601\) 5.79796i 0.236504i 0.992984 + 0.118252i \(0.0377290\pi\)
−0.992984 + 0.118252i \(0.962271\pi\)
\(602\) 0 0
\(603\) −4.89898 −0.199502
\(604\) 0 0
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) 8.89898 + 21.7980i 0.360605 + 0.883298i
\(610\) 0 0
\(611\) −75.1918 −3.04194
\(612\) 0 0
\(613\) 19.7980i 0.799632i −0.916595 0.399816i \(-0.869074\pi\)
0.916595 0.399816i \(-0.130926\pi\)
\(614\) 0 0
\(615\) 2.89898 0.116898
\(616\) 0 0
\(617\) 22.2020 0.893821 0.446910 0.894579i \(-0.352524\pi\)
0.446910 + 0.894579i \(0.352524\pi\)
\(618\) 0 0
\(619\) 24.2929i 0.976412i −0.872728 0.488206i \(-0.837651\pi\)
0.872728 0.488206i \(-0.162349\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 0 0
\(623\) −2.69694 + 1.10102i −0.108051 + 0.0441115i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −13.7980 −0.551037
\(628\) 0 0
\(629\) −38.2020 −1.52322
\(630\) 0 0
\(631\) 5.79796i 0.230813i −0.993318 0.115407i \(-0.963183\pi\)
0.993318 0.115407i \(-0.0368171\pi\)
\(632\) 0 0
\(633\) 22.0000i 0.874421i
\(634\) 0 0
\(635\) 0.898979i 0.0356749i
\(636\) 0 0
\(637\) −34.4949 + 33.7980i −1.36674 + 1.33912i
\(638\) 0 0
\(639\) 12.8990i 0.510276i
\(640\) 0 0
\(641\) −6.40408 −0.252946 −0.126473 0.991970i \(-0.540366\pi\)
−0.126473 + 0.991970i \(0.540366\pi\)
\(642\) 0 0
\(643\) 36.0000i 1.41970i −0.704352 0.709851i \(-0.748762\pi\)
0.704352 0.709851i \(-0.251238\pi\)
\(644\) 0 0
\(645\) 8.89898i 0.350397i
\(646\) 0 0
\(647\) 3.30306 0.129857 0.0649284 0.997890i \(-0.479318\pi\)
0.0649284 + 0.997890i \(0.479318\pi\)
\(648\) 0 0
\(649\) 6.20204i 0.243451i
\(650\) 0 0
\(651\) 4.89898 2.00000i 0.192006 0.0783862i
\(652\) 0 0
\(653\) 44.0000i 1.72185i −0.508729 0.860927i \(-0.669885\pi\)
0.508729 0.860927i \(-0.330115\pi\)
\(654\) 0 0
\(655\) 7.10102i 0.277460i
\(656\) 0 0
\(657\) 8.89898i 0.347182i
\(658\) 0 0
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) 30.6969 1.19397 0.596986 0.802251i \(-0.296365\pi\)
0.596986 + 0.802251i \(0.296365\pi\)
\(662\) 0 0
\(663\) 33.7980 1.31260
\(664\) 0 0
\(665\) 16.8990 6.89898i 0.655314 0.267531i
\(666\) 0 0
\(667\) −53.3939 −2.06742
\(668\) 0 0
\(669\) 6.00000i 0.231973i
\(670\) 0 0
\(671\) 1.79796 0.0694094
\(672\) 0 0
\(673\) 25.5959 0.986650 0.493325 0.869845i \(-0.335781\pi\)
0.493325 + 0.869845i \(0.335781\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) 12.2020 0.468963 0.234481 0.972121i \(-0.424661\pi\)
0.234481 + 0.972121i \(0.424661\pi\)
\(678\) 0 0
\(679\) −2.20204 + 0.898979i −0.0845066 + 0.0344997i
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 31.7980 1.21672 0.608358 0.793663i \(-0.291829\pi\)
0.608358 + 0.793663i \(0.291829\pi\)
\(684\) 0 0
\(685\) 13.7980 0.527193
\(686\) 0 0
\(687\) 24.4949i 0.934539i
\(688\) 0 0
\(689\) 67.5959i 2.57520i
\(690\) 0 0
\(691\) 14.4949i 0.551412i −0.961242 0.275706i \(-0.911088\pi\)
0.961242 0.275706i \(-0.0889116\pi\)
\(692\) 0 0
\(693\) 2.00000 + 4.89898i 0.0759737 + 0.186097i
\(694\) 0 0
\(695\) 6.89898i 0.261693i
\(696\) 0 0
\(697\) −14.2020 −0.537941
\(698\) 0 0
\(699\) 16.0000i 0.605176i
\(700\) 0 0
\(701\) 32.8990i 1.24258i 0.783582 + 0.621289i \(0.213391\pi\)
−0.783582 + 0.621289i \(0.786609\pi\)
\(702\) 0 0
\(703\) −53.7980 −2.02903
\(704\) 0 0
\(705\) 10.8990i 0.410479i
\(706\) 0 0
\(707\) −3.79796 9.30306i −0.142837 0.349878i
\(708\) 0 0
\(709\) 10.2020i 0.383146i −0.981478 0.191573i \(-0.938641\pi\)
0.981478 0.191573i \(-0.0613588\pi\)
\(710\) 0 0
\(711\) 4.00000i 0.150012i
\(712\) 0 0
\(713\) 12.0000i 0.449404i
\(714\) 0 0
\(715\) −13.7980 −0.516014
\(716\) 0 0
\(717\) 2.69694 0.100719
\(718\) 0 0
\(719\) −45.7980 −1.70798 −0.853988 0.520293i \(-0.825823\pi\)
−0.853988 + 0.520293i \(0.825823\pi\)
\(720\) 0 0
\(721\) 0.202041 + 0.494897i 0.00752440 + 0.0184309i
\(722\) 0 0
\(723\) −20.0000 −0.743808
\(724\) 0 0
\(725\) 8.89898i 0.330500i
\(726\) 0 0
\(727\) 19.3939 0.719279 0.359640 0.933091i \(-0.382900\pi\)
0.359640 + 0.933091i \(0.382900\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 43.5959i 1.61245i
\(732\) 0 0
\(733\) −50.4949 −1.86507 −0.932536 0.361078i \(-0.882409\pi\)
−0.932536 + 0.361078i \(0.882409\pi\)
\(734\) 0 0
\(735\) −4.89898 5.00000i −0.180702 0.184428i
\(736\) 0 0
\(737\) −9.79796 −0.360912
\(738\) 0 0
\(739\) 10.0000 0.367856 0.183928 0.982940i \(-0.441119\pi\)
0.183928 + 0.982940i \(0.441119\pi\)
\(740\) 0 0
\(741\) 47.5959 1.74848
\(742\) 0 0
\(743\) 6.00000i 0.220119i −0.993925 0.110059i \(-0.964896\pi\)
0.993925 0.110059i \(-0.0351041\pi\)
\(744\) 0 0
\(745\) 16.8990i 0.619131i
\(746\) 0 0
\(747\) 4.00000i 0.146352i
\(748\) 0 0
\(749\) 7.79796 + 19.1010i 0.284931 + 0.697936i
\(750\) 0 0
\(751\) 5.79796i 0.211571i 0.994389 + 0.105785i \(0.0337356\pi\)
−0.994389 + 0.105785i \(0.966264\pi\)
\(752\) 0 0
\(753\) −12.8990 −0.470065
\(754\) 0 0
\(755\) 5.79796i 0.211009i
\(756\) 0 0
\(757\) 33.5959i 1.22106i −0.791991 0.610532i \(-0.790956\pi\)
0.791991 0.610532i \(-0.209044\pi\)
\(758\) 0 0
\(759\) −12.0000 −0.435572
\(760\) 0 0
\(761\) 28.6969i 1.04026i 0.854086 + 0.520132i \(0.174117\pi\)
−0.854086 + 0.520132i \(0.825883\pi\)
\(762\) 0 0
\(763\) −9.79796 + 4.00000i −0.354710 + 0.144810i
\(764\) 0 0
\(765\) 4.89898i 0.177123i
\(766\) 0 0
\(767\) 21.3939i 0.772488i
\(768\) 0 0
\(769\) 12.4041i 0.447303i 0.974669 + 0.223651i \(0.0717977\pi\)
−0.974669 + 0.223651i \(0.928202\pi\)
\(770\) 0 0
\(771\) −15.1010 −0.543850
\(772\) 0 0
\(773\) −0.202041 −0.00726691 −0.00363346 0.999993i \(-0.501157\pi\)
−0.00363346 + 0.999993i \(0.501157\pi\)
\(774\) 0 0
\(775\) −2.00000 −0.0718421
\(776\) 0 0
\(777\) 7.79796 + 19.1010i 0.279750 + 0.685245i
\(778\) 0 0
\(779\) −20.0000 −0.716574
\(780\) 0 0
\(781\) 25.7980i 0.923124i
\(782\) 0 0
\(783\) −8.89898 −0.318024
\(784\) 0 0
\(785\) 16.6969 0.595939
\(786\) 0 0
\(787\) 3.59592i 0.128181i 0.997944 + 0.0640903i \(0.0204146\pi\)
−0.997944 + 0.0640903i \(0.979585\pi\)
\(788\) 0 0
\(789\) 11.7980 0.420018
\(790\) 0 0
\(791\) −1.79796 4.40408i −0.0639281 0.156591i
\(792\) 0 0
\(793\) −6.20204 −0.220241
\(794\) 0 0
\(795\) 9.79796 0.347498
\(796\) 0 0
\(797\) −13.5959 −0.481592 −0.240796 0.970576i \(-0.577408\pi\)
−0.240796 + 0.970576i \(0.577408\pi\)
\(798\) 0 0
\(799\) 53.3939i 1.88894i
\(800\) 0 0
\(801\) 1.10102i 0.0389026i
\(802\) 0 0
\(803\) 17.7980i 0.628076i
\(804\) 0 0
\(805\) 14.6969 6.00000i 0.517999 0.211472i
\(806\) 0 0
\(807\) 15.7980i 0.556114i
\(808\) 0 0
\(809\) 4.20204 0.147736 0.0738679 0.997268i \(-0.476466\pi\)
0.0738679 + 0.997268i \(0.476466\pi\)
\(810\) 0 0
\(811\) 22.8990i 0.804092i −0.915619 0.402046i \(-0.868299\pi\)
0.915619 0.402046i \(-0.131701\pi\)
\(812\) 0 0
\(813\) 23.7980i 0.834631i
\(814\) 0 0
\(815\) −22.6969 −0.795039
\(816\) 0 0
\(817\) 61.3939i 2.14790i
\(818\) 0 0
\(819\) −6.89898 16.8990i −0.241070 0.590498i
\(820\) 0 0
\(821\) 18.6969i 0.652528i −0.945279 0.326264i \(-0.894210\pi\)
0.945279 0.326264i \(-0.105790\pi\)
\(822\) 0 0
\(823\) 8.49490i 0.296114i 0.988979 + 0.148057i \(0.0473018\pi\)
−0.988979 + 0.148057i \(0.952698\pi\)
\(824\) 0 0
\(825\) 2.00000i 0.0696311i
\(826\) 0 0
\(827\) 45.1918 1.57147 0.785737 0.618561i \(-0.212284\pi\)
0.785737 + 0.618561i \(0.212284\pi\)
\(828\) 0 0
\(829\) 38.6969 1.34400 0.672000 0.740551i \(-0.265435\pi\)
0.672000 + 0.740551i \(0.265435\pi\)
\(830\) 0 0
\(831\) −3.79796 −0.131750
\(832\) 0 0
\(833\) 24.0000 + 24.4949i 0.831551 + 0.848698i
\(834\) 0 0
\(835\) −10.8990 −0.377175
\(836\) 0 0
\(837\) 2.00000i 0.0691301i
\(838\) 0 0
\(839\) 45.7980 1.58112 0.790561 0.612384i \(-0.209789\pi\)
0.790561 + 0.612384i \(0.209789\pi\)
\(840\) 0 0
\(841\) −50.1918 −1.73075
\(842\) 0 0
\(843\) 27.7980i 0.957413i
\(844\) 0 0
\(845\) 34.5959 1.19014
\(846\) 0 0
\(847\) −7.00000 17.1464i −0.240523 0.589158i
\(848\) 0 0
\(849\) −9.79796 −0.336265
\(850\) 0 0
\(851\) −46.7878 −1.60386
\(852\) 0 0
\(853\) 15.3031 0.523967 0.261983 0.965072i \(-0.415623\pi\)
0.261983 + 0.965072i \(0.415623\pi\)
\(854\) 0 0
\(855\) 6.89898i 0.235940i
\(856\) 0 0
\(857\) 36.4949i 1.24664i −0.781966 0.623321i \(-0.785783\pi\)
0.781966 0.623321i \(-0.214217\pi\)
\(858\) 0 0
\(859\) 18.8990i 0.644825i 0.946599 + 0.322412i \(0.104494\pi\)
−0.946599 + 0.322412i \(0.895506\pi\)
\(860\) 0 0
\(861\) 2.89898 + 7.10102i 0.0987970 + 0.242002i
\(862\) 0 0
\(863\) 6.00000i 0.204242i −0.994772 0.102121i \(-0.967437\pi\)
0.994772 0.102121i \(-0.0325630\pi\)
\(864\) 0 0
\(865\) −11.7980 −0.401143
\(866\) 0 0
\(867\) 7.00000i 0.237732i
\(868\) 0 0
\(869\) 8.00000i 0.271381i
\(870\) 0 0
\(871\) 33.7980 1.14520
\(872\) 0 0
\(873\) 0.898979i 0.0304258i
\(874\) 0 0
\(875\) 1.00000 + 2.44949i 0.0338062 + 0.0828079i
\(876\) 0 0
\(877\) 22.0000i 0.742887i −0.928456 0.371444i \(-0.878863\pi\)
0.928456 0.371444i \(-0.121137\pi\)
\(878\) 0 0
\(879\) 17.5959i 0.593496i
\(880\) 0 0
\(881\) 28.6969i 0.966824i 0.875393 + 0.483412i \(0.160603\pi\)
−0.875393 + 0.483412i \(0.839397\pi\)
\(882\) 0 0
\(883\) −8.49490 −0.285876 −0.142938 0.989732i \(-0.545655\pi\)
−0.142938 + 0.989732i \(0.545655\pi\)
\(884\) 0 0
\(885\) −3.10102 −0.104240
\(886\) 0 0
\(887\) 6.49490 0.218077 0.109039 0.994038i \(-0.465223\pi\)
0.109039 + 0.994038i \(0.465223\pi\)
\(888\) 0 0
\(889\) 2.20204 0.898979i 0.0738541 0.0301508i
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 75.1918i 2.51620i
\(894\) 0 0
\(895\) 10.0000 0.334263
\(896\) 0 0
\(897\) 41.3939 1.38210
\(898\) 0 0
\(899\) 17.7980i 0.593595i
\(900\) 0 0
\(901\) −48.0000 −1.59911
\(902\) 0 0
\(903\) −21.7980 + 8.89898i −0.725391 + 0.296139i
\(904\) 0 0
\(905\) −20.8990 −0.694706
\(906\) 0 0
\(907\) −12.4949 −0.414886 −0.207443 0.978247i \(-0.566514\pi\)
−0.207443 + 0.978247i \(0.566514\pi\)
\(908\) 0 0
\(909\) 3.79796 0.125970
\(910\) 0 0
\(911\) 32.8990i 1.08999i 0.838439 + 0.544996i \(0.183469\pi\)
−0.838439 + 0.544996i \(0.816531\pi\)
\(912\) 0 0
\(913\) 8.00000i 0.264761i
\(914\) 0 0
\(915\) 0.898979i 0.0297193i
\(916\) 0 0
\(917\) 17.3939 7.10102i 0.574396 0.234496i
\(918\) 0 0
\(919\) 33.3939i 1.10156i 0.834650 + 0.550781i \(0.185670\pi\)
−0.834650 + 0.550781i \(0.814330\pi\)
\(920\) 0 0
\(921\) −23.5959 −0.777512
\(922\) 0 0
\(923\) 88.9898i 2.92913i
\(924\) 0 0
\(925\) 7.79796i 0.256395i
\(926\) 0 0
\(927\) −0.202041 −0.00663590
\(928\) 0 0
\(929\) 10.4949i 0.344326i −0.985068 0.172163i \(-0.944924\pi\)
0.985068 0.172163i \(-0.0550756\pi\)
\(930\) 0 0
\(931\) 33.7980 + 34.4949i 1.10768 + 1.13052i
\(932\) 0 0
\(933\) 8.00000i 0.261908i
\(934\) 0 0
\(935\) 9.79796i 0.320428i
\(936\) 0 0
\(937\) 12.4949i 0.408191i 0.978951 + 0.204095i \(0.0654252\pi\)
−0.978951 + 0.204095i \(0.934575\pi\)
\(938\) 0 0
\(939\) −20.4949 −0.668826
\(940\) 0 0
\(941\) −3.79796 −0.123810 −0.0619050 0.998082i \(-0.519718\pi\)
−0.0619050 + 0.998082i \(0.519718\pi\)
\(942\) 0 0
\(943\) −17.3939 −0.566423
\(944\) 0 0
\(945\) 2.44949 1.00000i 0.0796819 0.0325300i
\(946\) 0 0
\(947\) −12.2020 −0.396513 −0.198257 0.980150i \(-0.563528\pi\)
−0.198257 + 0.980150i \(0.563528\pi\)
\(948\) 0 0
\(949\) 61.3939i 1.99293i
\(950\) 0 0
\(951\) 12.0000 0.389127
\(952\) 0 0
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) 0 0
\(955\) 7.10102i 0.229784i
\(956\) 0 0
\(957\) −17.7980 −0.575326
\(958\) 0 0
\(959\) 13.7980 + 33.7980i 0.445559 + 1.09139i
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −7.79796 −0.251286
\(964\) 0 0
\(965\) −0.202041 −0.00650393
\(966\) 0 0
\(967\) 7.50510i 0.241348i 0.992692 + 0.120674i \(0.0385055\pi\)
−0.992692 + 0.120674i \(0.961494\pi\)
\(968\) 0 0
\(969\) 33.7980i 1.08575i
\(970\) 0 0
\(971\) 12.8990i 0.413948i 0.978346 + 0.206974i \(0.0663615\pi\)
−0.978346 + 0.206974i \(0.933638\pi\)
\(972\) 0 0
\(973\) 16.8990 6.89898i 0.541756 0.221171i
\(974\) 0 0
\(975\) 6.89898i 0.220944i
\(976\) 0 0
\(977\) −55.1918 −1.76574 −0.882872 0.469614i \(-0.844393\pi\)
−0.882872 + 0.469614i \(0.844393\pi\)
\(978\) 0 0
\(979\) 2.20204i 0.0703775i
\(980\) 0 0
\(981\) 4.00000i 0.127710i
\(982\) 0 0
\(983\) −6.89898 −0.220043 −0.110022 0.993929i \(-0.535092\pi\)
−0.110022 + 0.993929i \(0.535092\pi\)
\(984\) 0 0
\(985\) 13.7980i 0.439640i
\(986\) 0 0
\(987\) 26.6969 10.8990i 0.849773 0.346918i
\(988\) 0 0
\(989\) 53.3939i 1.69783i
\(990\) 0 0
\(991\) 20.0000i 0.635321i −0.948205 0.317660i \(-0.897103\pi\)
0.948205 0.317660i \(-0.102897\pi\)
\(992\) 0 0
\(993\) 35.3939i 1.12319i
\(994\) 0 0
\(995\) −10.0000 −0.317021
\(996\) 0 0
\(997\) −52.2929 −1.65613 −0.828066 0.560631i \(-0.810559\pi\)
−0.828066 + 0.560631i \(0.810559\pi\)
\(998\) 0 0
\(999\) −7.79796 −0.246717
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.z.b.1231.4 4
4.3 odd 2 840.2.z.b.811.1 yes 4
7.6 odd 2 3360.2.z.a.1231.2 4
8.3 odd 2 3360.2.z.a.1231.3 4
8.5 even 2 840.2.z.a.811.4 yes 4
28.27 even 2 840.2.z.a.811.1 4
56.13 odd 2 840.2.z.b.811.4 yes 4
56.27 even 2 inner 3360.2.z.b.1231.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.a.811.1 4 28.27 even 2
840.2.z.a.811.4 yes 4 8.5 even 2
840.2.z.b.811.1 yes 4 4.3 odd 2
840.2.z.b.811.4 yes 4 56.13 odd 2
3360.2.z.a.1231.2 4 7.6 odd 2
3360.2.z.a.1231.3 4 8.3 odd 2
3360.2.z.b.1231.1 4 56.27 even 2 inner
3360.2.z.b.1231.4 4 1.1 even 1 trivial